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 2 

Abstract 1	

 2	

Sensory expectations from the accumulation of information over time exert strong predictive 3	

biases on forthcoming perceptual decisions. These anticipatory mechanisms help to maintain 4	

a coherent percept in a noisy environment. Here we present novel behavioural evidence that 5	

past sensory experience biases perceptual decisions rhythmically through alpha oscillations. 6	

Participants identified the ear of origin of a brief sinusoidal tone masked by dichotic white 7	

noise, and response bias oscillated over time at ~9 Hz. Importantly, the oscillations occurred 8	

only for trials preceded by a target to the same ear and lasted for at least two trials. These 9	

findings suggest that each stimulus elicits an oscillating memory trace, specific to the ear of 10	

origin, which subsequently biases perceptual decisions. This trace is phase-reset by the noise 11	

onset of the next trial, and remains within the circuitry of the ear in which it was elicited, 12	

modulating the sensory representations in that ear.  13	

 14	

Keywords: Alpha oscillation, Auditory perception, Decision criteria, Sensory expectations, 15	

Serial dependence and Signal detection theory.   16	
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 3 

Introduction 1	

 2	

It has been long known that perception depends heavily on expectations and perceptual 3	

experience. Helmholtz (1867) introduced the concept of unconscious inference, suggesting 4	

that perception is at least partly inferential, or generative. Gregory (1997) described 5	

perception as a series of hypotheses to be verified against sensory data, using many 6	

compelling illusions to back his view. Both suggested that perception is a proactive, 7	

predictive process, where the brain makes best guesses about the world to test against sensory 8	

data, updating the guesses as needed. 9	

Recent techniques lend themselves to quantitative study of predictive perception. One 10	

example is serial dependence: under many conditions, the appearance of images in a 11	

sequence depends strongly on the stimulus presented just prior to the current one. Judgements 12	

of orientation (Fischer and Whitney, 2014), numerosity (Cicchini et al., 2014), motion (Alais 13	

et al., 2017), facial identity or gender (Liberman et al., 2014; Taubert et al., 2016), beauty and 14	

even perceived body size (Alexi et al., 2018) are strongly biased towards the previous image. 15	

Strong serial biases are also observed in audition, so far only for pitch discrimination 16	

(Arzounian et al., 2017; Chambers and Pressnitzer, 2014). To our knowledge, no study has 17	

investigated whether other aspects of auditory processing, such as sound localisation, also 18	

exhibit serial dependence.  19	

Sequential effects can last for seconds, even minutes (Chopin and Mamassian, 2012), 20	

suggesting that perception does not rely solely on the instantaneous stimulation, but on 21	

predictions conditioned by events over a long time-course. Counter-intuitively, the biases 22	

introduced by serial dependence can lead to more efficient perception (Cicchini et al., 2018): 23	

while the biases constitute perceptual errors, these errors are offset by a reduction in response 24	

variance and are therefore beneficial overall. As the world tends to remain constant over the 25	
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 4 

short term (Dong and Atick, 1995; Voss, 1975), past events are good predictors of the future. 1	

On the assumption that nothing has physically changed, the previous stimulus acts as a 2	

predictor, or a prior, to be combined with the current sensory data to enhance the signal. And 3	

on average, that predictor is useful in reducing error.  4	

However, not all serial effects are positive. Classical adaptation aftereffects are 5	

negative (Thompson and Burr, 2009): prolonged inspection of downward motion causes 6	

stationary stimuli displayed to the same location to appear to move upwards (Addams, 1834). 7	

Similar negative aftereffects have been observed in almost every dimension, including 8	

orientation (Gibson and Radner, 1937), colour (Neitz et al., 2002), faces (Leopold et al., 9	

2001), and numerosity (Burr and Ross, 2008). They also exist in audition and cover a 10	

similarly wide range of aspects, from auditory motion (Grantham and Wightman, 1979), 11	

sound localisation (Kashino and Nishida, 1998) and tone intensity (Reinhardt-Rutland and 12	

Anstis, 1982) to gender of human voices (Schweinberger et al., 2008) and even vocal affect 13	

(Bestelmeyer et al., 2010). While the classical paradigm usually involves long periods of 14	

adaptation, sizeable negative aftereffects can arise after very brief presentations in vision as 15	

in audition (Aagten-Murphy and Burr, 2016; Alais et al., 2017, 2015).  16	

What determines whether assimilation or contrastive effects prevail, and how do the 17	

two opposing mechanisms interact? One factor is stimulus strength: strong, salient, high-18	

contrast, long-duration stimuli tend to lead to negative aftereffects, while brief, less salient 19	

low-contrast stimuli result in positive aftereffects (Kanai and Verstraten, 2005; Pantle et al., 20	

2000; Yoshimoto et al., 2014). Taubert et al. (2016) reported strong positive serial 21	

dependence for judgments of the gender of faces (a stable attribute) and negative aftereffects 22	

for judgments of emotion (a labile attribute, where change is important) on the same stimuli. 23	

However, negative and positive effects may also reflect individual preferences. Abrahamyan 24	

et al. (2016) found that some individuals, termed “switchers”, tend to respond opposite to 25	
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 5 

their previous choice, while others prefer to “remain” with whatever response they gave in 1	

the preceding trial. Finally, Chopin and Mamassian (2012) made a surprising observation 2	

within the same experiment: stimuli close in time were negatively correlated with the current 3	

percept, while those more remote positively. Importantly, their modelling results suggest that 4	

both negative and positive dependencies could be explained by a single predictive adaptation 5	

mechanism. However, how such a predictive adaptation mechanism could be implemented 6	

neurally is unclear.  7	

Generally, the neuronal mechanisms underlying serial dependence are largely 8	

unknown. It is assumed that the prior is generated at mid-high levels of analysis, and fed back 9	

to early sensory areas, which in turn modify the prior (Friston, 2005; Lee and Mumford, 10	

2003; Summerfield and de Lange, 2014; Summerfield and Koechlin, 2008; Yuille and 11	

Kersten, 2006), but we do not know how this information is propagated, nor do we have a 12	

grasp on the underlying neural mechanisms. One possibility is that recursive propagation and 13	

updating of the prior is related to low-frequency neural oscillations (Friston et al., 2015; 14	

Sherman et al., 2016; VanRullen, 2017).  15	

Although controversial, evidence is gathering that synchronous rhythmic neural 16	

activity may serve to bind stimulus components into a unitary percept  (Buzsáki and 17	

Draguhn, 2004; Engel et al., 2001; Gray et al., 1989). Besides the neural evidence in animals 18	

and humans, recent psychophysical evidence shows that neural oscillations in mammalian 19	

brain modulate perceptual performance, and that these oscillations can be synchronized either 20	

by abrupt perceptual stimuli (Fiebelkorn et al., 2013, 2011; Landau and Fries, 2012), or by 21	

motor-action (hand or eye movements) (Benedetto et al., 2018, 2016; Benedetto and 22	

Morrone, 2017; Tomassini et al., 2017, 2015). Using signal detection theory (Green and 23	

Swets, 1966; Macmillan and Creelman, 2004), we have recently shown within the same 24	

experimental setup that oscillations can occur in both sensitivity (accuracy) and criterion 25	
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 6 

(response bias) at different frequencies (theta for sensitivity, alpha for criterion), suggesting 1	

separate mechanisms underlying those two perceptual properties (Ho et al., 2017). 2	

Oscillations in bias could plausibly reflect the reverberation of recursive error propagation 3	

within a generative perception framework.  4	

Alpha oscillations in criteria are consistent with EEG evidence of an association 5	

between criteria shifts and modulations of alpha power (Craddock et al., 2017; Haegens et al., 6	

2014; Iemi et al., 2017; Iemi and Busch, 2018; Limbach and Corballis, 2016) and phase 7	

(Sherman et al., 2016). Decreases in alpha power consistently coincide with more liberal 8	

decision criteria in vision (Iemi et al., 2017; Iemi and Busch, 2018; Limbach and Corballis, 9	

2016) as well as touch (Craddock et al., 2017; Haegens et al., 2014). Notably, the alpha 10	

modulation can be observed several hundred milliseconds before stimulus onset (Craddock et 11	

al., 2017; Limbach and Corballis, 2016), suggesting that criteria shifts are driven, at least in 12	

part, by alpha oscillations. This notion is further supported by the observation that the phase 13	

of prestimulus alpha can predict criteria changes (Sherman et al., 2016). Furthermore, the 14	

relationship between prestimulus alpha and criteria change was strongly influenced by target 15	

expectancy, reinforcing the view that alpha oscillations are involved in sensory anticipation 16	

or prediction (de Lange et al., 2013; Klimesch et al., 1998; Mayer et al., 2016; Premereur et 17	

al., 2012; Rohenkohl and Nobre, 2011; Sanders et al., 2014).  18	

VanRullen and Macdonald (2012) have proposed an oscillatory mechanism by which 19	

past perceptual history is stored in memory. By cross-correlating the EEG response with the 20	

corresponding visual stimulus, they showed that random, non-periodic luminance changes 21	

elicited a “perceptual echo”, a reverberatory response at ~10 Hz that lasted for at least 1 s. 22	

Recent findings have confirmed that this long-lasting oscillation serves to maintain sensory 23	

representations over time (Chang et al., 2017; Huang et al., 2018), which could influence 24	

subsequent perception.  25	
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 7 

Given these findings, we hypothesised that the alpha oscillations observed in criteria 1	

(Ho et al., 2017) may underlie a predictive mechanism that biases perceptual decisions, 2	

giving rise to sequential effects. To test this idea, we asked participants to indicate the ear of 3	

origin of a brief monaural sinusoidal tone masked by uncorrelated streams of dichotic white 4	

noise in each ear (illustrated in Fig. 1A). The tone was presented at random intervals after the 5	

noise onset which served to reset the phase of ongoing neural oscillations. From our previous 6	

work (Ho et al., 2017), we expected decision criterion to oscillate at alpha frequencies (8–12 7	

Hz). If these oscillations are instrumental in communicating perceptual expectations, the 8	

rhythmic fluctuations in criteria should be contingent on the previous stimuli.  9	

 10	

 11	
Figure 1. (A) Schematic of a trial. On each trial, white noise was presented simultaneously to 12	
both ears for 2 s. A pure tone of 1 kHz and 10 ms duration was delivered with equiprobability 13	
to the left or right ear. The SOA was randomly selected from an interval of 0.2-1.2 s post 14	
noise onset. The ITI jittered randomly between 1.2-2.2 s. (B) Application of signal detection 15	
theory (SDT). To look for oscillations in sensitivity and criterion, we first pooled across all 16	
15 participants (creating an aggregate subject) and binned the data with non-overlapping, 17	
rectangular windows of 10 ms. For each bin, we calculated d-prime (d’) and decision 18	
criterion (c) using the hits (H) and false alarm (FA) from the left- and right-target conditions, 19	
respectively. (M: misses, CR: correct rejections). The calculations follow the Equations 1-2. 20	
(C) Schematic illustration of the linear regression analysis based on single trials. We 21	
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 8 

computed the sine and cosine of the time at which the target was presented (t = 1, 2… n) for 1	
every tested frequency from 4-12 Hz (in 0.01-Hz steps). Based on the sine and cosine 2	
regressors, we estimated parameters b1 and b2 (b0 is a constant) for all responses (coded as 0 3	
= ‘left’ and 1 = ‘right’) in y.  4	
 5	

 6	

Results 7	

 8	

Stimulus history affects response bias but not sensitivity 9	

Participants performed a two-alternative forced-choice (2AFC) task which required them to 10	

identify the ear of origin of a weak, brief tone (10 ms) embedded in white noise (2 s in 11	

duration). The target tone was delivered randomly with equal probability in either ear with a 12	

stimulus-onset asynchrony (SOA) randomly drawn from an interval of 0.2–1.2 s post noise 13	

onset. Using a staircase procedure, we kept the target’s intensity around individuals’ 14	

thresholds (75 % accuracy).  15	

We first examined whether observer sensitivity and response bias, as measured 16	

respectively by d-prime (d’) and decision criterion (c) (Eq. 1&2, see also Fig. 1B), were 17	

contingent on the preceding stimuli. As shown in Fig. 2A, stimulus history did not influence 18	

observer sensitivity. Whether the last target (1-back) and second-last target (2-back) occurred 19	

in the left or right ear had no effect on detecting the current target: the difference in 20	

sensitivity contingent on the preceding left (blue bars) and right stimuli (red bars) was not 21	

statistically significant after multiple comparison correction (with FDR = 5 %), p = 0.07 and 22	

p = 0.56 for 1- and 2-back, respectively. However, Fig. 2B shows that criterion was affected 23	

by stimulus history. Curiously, there was no significant 1-back effect (when FDR adjusted), p 24	

= 0.86, but a strong 2-back effect (p = 0.0002) of observer response biases towards the 25	

previously presented stimulus, either left or right. The effects remained significant for stimuli 26	
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 9 

three trials back, p = 0.008, and four trials back, p = 0.009, but was non-significant five trials 1	

back, p = 0.85.  2	

We then examined the dependency of the previous response (Fig. 2C), which revealed 3	

a negative influence of one trial back, marginally significant after FDR correction 4	

(p = 0.053). This response-dependent negative serial dependence could result from response 5	

switching, mentioned in the Introduction. However, two trials back, which should not be 6	

affected by response switching, showed the same positive aftereffect found for the stimulus-7	

based analysis, p = 0.0001 (FDR corrected). Trials further in the past (not shown) had no 8	

significant effect, all p’s > 0.05. Even though not statistically robust, this repulsive effect 9	

could account for the stimulus-based null effect in the 1-back (Fig. 2B), discussed further in 10	

the Discussion section.  11	

To gain a better understanding of the sequential effects in response bias, we examined 12	

the effects in individual subjects. Figure 2D plots the individual biases (differences in 13	

responses preceded by left from those preceded by right) for 1-back trials against 2-back 14	

trials. All subjects except one (subject 5) showed a positive serial effect for trials that were 2-15	

back, while there was much greater subject variability in the 1-back condition, with 5 16	

participants showing a positive and the remaining 9 showing a negative effect. This pattern of 17	

results is consistent with previous reports of individual differences in switching responses 18	

from one trial to the next (Abrahamyan et al., 2016).  19	

That both negative and positive effects are observed only for criteria is particularly 20	

interesting, as we have previously shown that response biases oscillate at low alpha 21	

frequencies, ~8 Hz, and there is evidence that alpha oscillations are involved in predictive 22	

processes and modulation of decision criteria (de Lange et al., 2013; Sherman et al., 2016). In 23	

a preliminary analysis of the temporal dynamics of the 1-back effect, we sorted the individual 24	

response data by target SOA (from noise onset) and grouped them into 12 bins of 83 ms, 25	
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 10 

computed the difference in left and right bias contingent on the preceding trial and averaged 1	

across all participants. As can be seen from Fig. 2E, the effect of stimulus history on response 2	

bias oscillates smoothly over time, warranting further investigation.  3	

 4	

 5	
Figure 2. Results of the serial dependence analysis. (A) Group mean sensitivity contingent 6	
on whether the last (1-back) and second last (2-back) target occurred the left (blue bars) or 7	
right ear (red bars). There was no significant influence of stimulus history on observer 8	
sensitivity. (B) Group mean response bias contingent on the ear of origin of the preceding 1- 9	
to 5-back stimuli. The difference between the contingent left and right (blue and red bars, 10	
respectively) are significant for the 2-, 3- and 4-back stimuli (FDR corrected). (C) Group 11	
mean response bias contingent on the response 1-2 trials back. The difference between the 12	
contingent left and right (blue and red bars, respectively) is significant for both 1- and 2-back 13	
(FDR corrected). (D) Individual stimulus-based bias differences in the 1-back plotted against 14	
those in the 2-back. These differences were computed by subtracting the contingent left bias 15	
(blue bars in (B)) from the contingent right bias (red bars). Except for subject 5, all other 16	
subjects show a positive bias difference in the 2-back. In contrast, there was greater subject 17	
variability in the 1-back, with only 5 participants showing a positive effect. (E) Temporal 18	
dynamics of the 1-back effect. The individual response data were grouped into 12 bins of 83 19	
ms. For each bin, we computed the difference in left and right bias contingent on the 20	
preceding trial as in (C) and averaged across all participants. Not only does the difference in 21	
bias change from negative to positive but it also increases and decreases in a smooth 22	
transition depending on the target SOA (from noise onset), suggesting that the 1-back effect 23	
fluctuates rhythmically over time. All error bars indicate ±1 MSE. 24	
 25	
 26	

 27	
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Oscillation of response bias but not sensitivity 1	

We applied two different methods to examine response bias and sensitivity for rhythmic 2	

fluctuations. The first is the same curve fitting approach we used in our previous study (Ho et 3	

al., 2017). For this analysis, we pooled the individual trials across all participants, sorted the 4	

trials by target SOA and grouped them into hundred 10-ms bins, from 0.2 to 1.2 s post noise 5	

onset. For each bin, we computed d’ (Eq. 1) and c (Eq. 2) and fitted sine curves of different 6	

frequencies to the temporal sequences of d’ and c.  7	

We first considered the data as a whole (without dividing the trials contingent on the 8	

preceding stimuli) and searched for significant modulations within the range of 4-12 Hz in 9	

0.1-Hz steps. This frequency range encompasses the theta and alpha band. Figures 3 A&B 10	

show the binned aggregate data as a function of target SOA from noise onset, expressed as 11	

both sensitivity (Fig. 3A) and criterion (Fig. 3B). The shaded yellow and green areas 12	

enveloping the lines represent ±1 standard error (N = 14) of the group mean (SEM), 13	

computed by bootstrapping the individual trials 2,000 times and applying the same curve 14	

fitting analysis to the surrogate data. It is evident that while sensitivity shows no clear 15	

oscillation, the criterion does oscillate around the frequency of 9.4 Hz, as indicated by the 16	

grey curve in Fig. 3B. For comparison, we fitted a sinusoidal with the same frequency, 9.4 Hz 17	

(grey curve in Fig. 3A) to the sensitivity data. 18	

We evaluated the goodness of each harmonic fit (4-12 Hz) using R2 combined with a 19	

permutation procedure, which involved shuffling the individual responses 2,000 times and 20	

applying the same curve fitting analysis to the surrogate data. From the surrogate data, we 21	

constructed a distribution of maximal R2 (across all tested frequencies) for sensitivity (Fig. 22	

3D) and criterion (Fig. 3E), against which we compared the R2 of the original data. The 23	

results are summarised in Fig. 3C. For sensitivity (orange line), no frequency produced a 24	

good fit, none near the corrected 95% confidence threshold of R2 = 0.12 (dotted black line). 25	
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However, the criterion data (green line) showed significant modulations between 9.2 and 9.6 1	

Hz, with a strong peak at 9.4 Hz (R2 = 0.15). The significance test (illustrated in Fig. 3D&E) 2	

confirmed that this frequency, 9.4 Hz, was significant for criterion, p = 0.009 (Fig. 3D), but 3	

not sensitivity, p = 0.9 (Fig. 3D). The phase of the 9.4 Hz oscillation at trial onset relative to 4	

the noise burst onset was 179° ± 16º SD (by bootstrap).  5	

 6	

 7	
Figure 3. Results of the curve fitting analysis. (A) The yellow line shows the time course of 8	
the detrended sensitivity (d’) based on the aggregate data (by pooling all trials across the 14 9	
participants and binned with a rectangular smoothing window of 20 ms moved every 10 ms). 10	
For display, we smoothed the data but conducted all statistical analyses on the non-smoothed 11	
data. The shaded area around the yellow line represents ±1 SD of the bootstrapped data. The 12	
black curve depicts a 9.4 Hz oscillation fitted to the sensitivity data. (B) The analysis of the 13	
criterion (c) data (green line) followed the same binning and curve fitting procedure. The 9.4 14	
Hz oscillation (black curve) fits the criterion better than the sensitivity data. (C) The 15	
goodness of the harmonic fit R2 obtained by the procedure illustrated in A&B. The R2 for the 16	
criterion (green line) is highest round 9.4 Hz, while it is low and constant for sensitivity 17	
(yellow line). The dotted black line represents the 95 percentiles of the permutation 18	
distribution depicted in E. (D-E) To obtain a significance evaluation of the goodness of the 19	
fit, we shuffled the aggregate data 2,000 times. After each shuffle, we fitted the data and 20	
extracted the maximal R2 between 4-12 Hz illustrated in the yellow (sensitivity, D) and green 21	
distributions (criterion, E). The red lines indicate the R2 yielded by the fit the original data at 22	
9.4 Hz. The p-values reflect the proportion of permuted R2 that is equal or greater than the 23	
original R2 (red line) across all tested frequencies.  24	
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 The results shown in Fig. 3 were based on an aggregate data analysis (i.e., by pooling 1	

all trials across subjects). In principle, the criterion oscillation in Fig. 3B could derive from a 2	

few subjects with very strong oscillatory effects. To verify that this is not the case, we 3	

examined the individual data and evaluated their coherence as a group using the linear 4	

regression analysis in Eq. 5 (illustrated in Fig. 1C). As detailed in the Methods, this approach 5	

does not require data binning. We applied the regression analysis to the individual accuracy 6	

(correct or incorrect) and response data (‘left’ or ‘right’).  7	

The results, summarised in Fig. 4, corroborate those of the aggregate data analysis. 8	

Figure 4A plots the amplitude spectrum for accuracy (an approximation of sensitivity) and 9	

Fig. 4B that for response bias (an approximation of criterion), which were computed using 10	

the individual estimates of the fixed-effect regression parameters, β1 and β2, and their 11	

vectorial mean (Eq. 6). The shaded yellow and green areas enveloping the lines represent ±1 12	

SEM. Response bias (Fig. 4B) shows a strong peak around the same frequency, 9.4 Hz, as the 13	

R2 results for criterion in Fig. 3C. Using a similar permutation procedure as in the aggregate 14	

analysis, we evaluated the significance of each frequency between 4-12 Hz in 0.1-Hz steps. 15	

The corrected p-values are plotted in Fig. 4D&E for accuracy and response bias, respectively. 16	

The results for response bias shows that the oscillation at 9.4 Hz is significant (p = 0.027) 17	

after correction for multiple comparisons with maximal statistics (illustrated in Fig. 4F). The 18	

amplitude at 9.4 Hz is A = 0.02 ± 0.01 SEM. While there are several peaks in the amplitude 19	

spectrum for accuracy (Fig. 4A), none was significant after multiple comparison correction 20	

(Fig. 4D).  21	

Figure 4F illustrates how the p-values were computed and corrected. The green dots 22	

(2,000 in total) clustering in a ring around the origin (0, 0) represent the joined distribution of 23	

maximal Β1 and Β2 (group averages of the individual β1 and β2) obtained by permutation. To 24	

construct this distribution, we determined the maximal vector of each randomisation, 25	
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irrespective of the frequency. The red dot shows the group mean estimated from the original 1	

data at the peak frequency, 9.4 Hz. The red circle has a radius equal to the distance of the red 2	

dot (Β1, Β2) to the origin (0, 0). The p-value reflects the proportion of permuted data 3	

exceeding the original data (the green points that fall outside the circle).  4	

Finally, Fig. 4C shows the individual phase and amplitude vectors for response bias at 5	

9.4 Hz. The length of the vectors reflects the amplitude of the 9.4 Hz oscillation and the 6	

vector direction indicate individual phases at noise onset. The vectors are tightly clustered 7	

around a phase angle, 𝜃, of 172º ± 16º SEM (Eq. 7). This is consistent with the phase angle 8	

we obtained from the curve fitting analysis with the aggregate data (see above).  9	

 10	

 11	
Figure 4. Results of the linear regression analysis based on individual data and single trials. 12	
(A) The yellow line represents the amplitude spectrum for accuracy computed from the 13	
vectorial average of the individual estimates of β1 and β2 (see Eq. 7). The shaded area around 14	
the line indicates ±1 SEM. (B) Amplitude spectrum of response bias based on the same 15	
analyses as for accuracy. (C) Individual 2D vectors (β1, β2) at 9.4 Hz for response bias. The 16	
length of the line indicates the amplitude and the direction of the line the phase at noise onset 17	
(i.e., phase reset). (D) The results of the 2D permutation test for accuracy for the frequency 18	
range of interest, 4-12 Hz. We corrected for multiple comparisons using maximal statistics 19	
illustrated in F. (E) Corrected p-values for response bias obtained by the same 2D 20	
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permutation as for accuracy. The dotted black line indicates 𝛼 = 0.05. (F) Illustration of the 1	
2D permutation test by which the p-values in D&E were computed. They reflect the 2	
proportion of maximal permutation vectors that exceed the group mean (red dot), i.e., the 3	
green points that fall outside the red circle.    4	
 5	

Oscillation in response bias is driven by stimulus history 6	

Having established the existence of rhythmic fluctuations in bias and criterion in both the 7	

aggregate and individual data, we investigated how the oscillations relate to serial effects 8	

driven by expectations from stimuli of previous trials using two different analysis. In the first 9	

analysis, we separated the trials based on whether the previous stimulus had been presented 10	

to the same ear (congruent) or a different ear (incongruent), and tested both sets of data for 11	

oscillations in both sensitivity and bias, using the same curve fitting and linear regression 12	

analyses as above. As predicted, the oscillation observed in criterion (Figs. 3&4) was driven 13	

by the preceding stimulus history, occurring only when the previous stimulus was congruent 14	

with the current stimulus.  15	

Figure 5 shows the results of the analysis of the aggregate data. As before, we fitted 16	

the temporal sequences of sensitivity (d’) and criterion (c) for congruent (Fig. 5A) and 17	

incongruent trials (Fig. 5C) with sinusoids ranging in frequency between 4-12 Hz in 0.1 Hz 18	

steps. Congruent trials (dark green line), but not incongruent trials (light green line), showed 19	

a good fit at 9.4 Hz (thick grey line). The goodness of fit at all tested frequencies are plotted 20	

in Fig. 5D. The largest R2 was obtained around 9.4 Hz for congruent trials, with R2 = 0.15, 21	

while for incongruent trials, the goodness of fit did not approach significance at any 22	

frequency. As in the previous analysis, we created a distribution of maximal R2 (Fig. 5D) 23	

from the 2,000 surrogate datasets obtained by permutation and determined the 95 percentile 24	

for both congruent (Fig. 5D) and incongruent (Fig. 5E) trials. Any frequency with R2 25	

exceeding this threshold (R2 = 0.12, dotted black line in Fig. 5B), was considered significant. 26	

Only the peak (green line, congruent trials) around 9.4 Hz survived the multiple comparison 27	
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correction, with p = 0.01. The phase of this 9.4-Hz oscillation for congruent trials was, at 1	

noise onset, 180° ± 17º SD (by bootstrap). For incongruent trials, the phase at 9.4 Hz was 2	

179° ± 34º SD.   3	

 4	

 5	
Figure 5. Results of the one-back analysis for criterion with aggregate data. (A) The dark 6	
green line shows the binned congruent trials. For display, we smoothed the data but 7	
conducted all statistical analyses on the non-smoothed data. The error bars indicate ±1 SD 8	
obtained by bootstrapping the aggregate data 2,000 times. The thick grey line represents the 9	
9.4-Hz oscillation which we fitted to the criterion data. The incongruent trials were submitted 10	
to the same binning, curve fitting and bootstrapping procedure; the results are summarised in 11	
panel (B). (C) The goodness of fit for congruent (dark green line) and incongruent trials 12	
(light green line) at all tested frequencies from 4-12 Hz in 0.1-Hz steps. The black dotted line 13	
indicates the 95 percentiles of the distribution of maximal R2 obtained by permuting the 14	
individual trials. (D) Distribution of maximal R2 for congruent trials. The vertical red line 15	
indicates the R2 of the original data and the p-value reflects the proportion of maximal R2 16	
greater or equal the R2 of the original data. (E) Distribution of maximal R2 for incongruent 17	
trials, calculated as in panel (D). 18	
 19	

As before, we examined the individual subject data using the linear model in Eq. 5, 20	

separately for congruent and incongruent trials. The amplitude spectra in Fig. 6A and 6D are 21	

based on the individual estimates of β1 and β2 averaged across the 14 participants (see Eq. 7). 22	

As for the aggregate data, the congruent trials (dark green line) yielded a large peak around 23	
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9.4 Hz with A = 0.03 ± 0.009 SEM (Fig. 6A). At this frequency, the amplitude is reduced for 1	

the incongruent amplitude spectrum with A = 0.02 ± 0.01 SEM (Fig. 6D). Inspection of the 2	

individual vectors shows a tight cluster around a mean phase angle (at noise onset) of 164º ± 3	

13º SEM for congruent trials (Fig. 6B), while incongruent trials had a slightly greater phase 4	

dispersion, with a mean phase angle (at noise onset) of 177º ± 18º SEM (Fig. 6E).  5	

The results of the 2D permutation test plotted in Fig. 6G corroborate the observations 6	

in Figs. 5A&D. The only frequencies to survive the strict multiple comparison correction 7	

were around 9.4 Hz (dark green line, congruent trials) with p = 0.045. In contrast, 8	

incongruent trials showed no significant frequencies (light green line). The 2D permutation 9	

distributions for congruent and incongruent trials at 9.4 Hz are plotted in Fig. 6C and 6F, 10	

respectively. The thick red dot shows the amplitude and phase of the group mean with respect 11	

to the permutation distribution. Only in the congruent case does the group mean exceed the 12	

distribution of maximal vectors significantly (Fig. 6C).  13	

We also analysed the sensitivity for congruent and incongruent trials, but failed to 14	

find significant oscillations in either data set (data not shown). The lack of modulation in 15	

sensitivity in the present study is consistent with our previous findings that sensitivity 16	

oscillates in antiphase between the left and right ears (Ho et al., 2017): because they are out 17	

of phase, they should cancel each other under the conditions of this study, where results for 18	

left and right ears need to be combined for the sensitivity analysis. We checked this 19	

hypothesis by a post-hoc regression analysis of the accuracy of congruent trials separated by 20	

ear of origin. We first examined the phase coherence across subjects at all frequencies of 21	

interest (4-12 Hz) for each ear and congruence condition separately. Observers showed 22	

significant phase consistencies for both ears for the congruent trials at only one region in the 23	

frequency spectrum, from 9.1 to 9.7 Hz (consistent with the grey shaded region of 24	

significance in Fig. 6B). At no frequency was there strong phase coherence in the 25	
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incongruent trials. Using the Watson-Williams test (circular analogue to a two-sample t-test; 1	

Berens, 2009), we confirmed that the group phase distributions for left- and right-ear 2	

accuracy in the congruent trials were significantly different (p < 0.05, Bonferroni corrected) 3	

between 9.1 and 9.7 Hz, peaking at around 9.4 Hz. Figure 6H shows the individual vectors at 4	

9.4 Hz for congruent trials containing a left target with a mean direction (thick red line) of 5	

~189° ± 12° SEM. For congruent trials containing a right target, the individual vectors show 6	

a mean direction of ~304º ± 14° SEM at 9.4 Hz (Fig. 6I). Although the relationship between 7	

the left and right accuracy on congruent trials is not exactly antiphase (~115°), they do show 8	

a trend in this direction. This suggests that the absence of sensitivity oscillations (Figs. 2&3) 9	

in the present study is likely due to a cancellation of left and right ear oscillations.  10	

 11	

 12	
Figure 6. Results of the one-back analysis for response bias with individual subject data. (A) 13	
Amplitude spectrum for the congruent trials computed based on the individual estimates of β1 14	
and β2 averaged across participants. The shaded area around the dark green line indicates ±1 15	
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SEM. By the same method, we computed the amplitude spectrum with incongruent trials; the 1	
results can be inspected in panel (D). (B) Individual phase and amplitude vectors (at noise 2	
onset, i.e., phase reset) based on congruent trials at 9.4 Hz. The subjects are coded with the 3	
same colours as in Fig. 4C. The individual vectors for incongruent trials at 9.4 Hz are shown 4	
in (E). (C) The joined distribution of maximal vectors for congruent trials. The p-value 5	
reflects the proportion of vectors that exceed the group mean (red dot); in practice, that is the 6	
number of green points falling outside the red circle. The joined distribution of maximal 7	
vectors for incongruent trials is shown in (F). (G) The computations in (C&F) were done for 8	
every tested frequency between 4-12 Hz in 0.1-Hz steps. The dark and light green lines depict 9	
the corrected p-values for congruent and incongruent trials, respectively. The black dotted 10	
line indicates 𝛼 = 0.05 (corrected for multiple comparisons). (H) As a post-hoc test, we split 11	
the congruent trials further into trials that contained a left target and trials that contained a 12	
right target and tested their phase relationship using circular statistics. At 9.4 Hz observers 13	
showed very strong phase coherence for both ears. Here, we plot the individual phase and 14	
amplitude vectors for congruent trials containing a target in the left ear. The thick red line 15	
indicates the direction of the mean vector (with unit length) which is close to 180º. (I) The 16	
individual phase and amplitude vectors at 9.4 Hz for congruent trials containing a right target. 17	
The direction of the mean vector is ~300º.  18	
 19	

 As the serial dependence analysis showed strong 2-back effects (Fig. 2B), we 20	

hypothesised that the 9-Hz oscillation could be long-lasting, spanning at least two trials, 21	

which is also suggested by recent findings (Chang et al., 2017). To investigate whether events 22	

two trials back show measurable oscillations near 9.4 Hz, we separated the 1-back 23	

incongruent data (which show no significant oscillations in Fig. 5C) further on the basis of 24	

whether the stimulus two trials back was congruent or incongruent. Given that the 1-back 25	

incongruent data showed no oscillation in previous analyses, any memory trace should be 26	

relatively weak and confined to a very narrow frequency window 0.5 Hz wide, 9.1-9.6 Hz, 27	

the frequency range where the congruent 1-back data showed a significant oscillation (after 28	

correction for multiple comparison; grey shaded box in Fig. 6B). We used the same analysis 29	

as before, but instead of testing every frequency from 4-12 Hz, we allowed the curve-fitting 30	

algorithm to search for the best frequency within our limited window of interest (9.1-9.6 Hz) 31	

for both the original and shuffled data. The results, shown in Fig. 7 confirm a 9-Hz oscillation 32	

in the 2-back congruent data which was best fitted by a sinusoidal with frequency of ~9.2 Hz, 33	
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R2 = 0.08. The permutation test confirmed that this fit is significant (Fig. 7B), p = 0.037 when 1	

compared with the best fits of shuffled data within the frequency of interest, 9.1-9.6 Hz. 2	

There was no modulation near this frequency in the 2-back incongruent data (Figs 2E&F): R2 3	

= 0.02, with p = 0.7 (Fig. 7D). No other frequency within the range of 4-12 Hz approached 4	

significance, after multiple comparison correction.  5	

To examine the individual data and group coherence at 9.2 Hz, we applied the same 6	

regression analysis as before (Eq. 5). Figure 7C shows the individual vectors at 9.2 Hz based 7	

on the 2-back congruent trials and Fig. 7G the individual vectors based on the incongruent 8	

trials. The individual phases in the congruent condition cluster around a similar phase, 190° ± 9	

18°, similar to that of the 1-back congruent data (Fig. 6B). The mean phase angle in the 10	

incongruent condition is 295° ± 15° and bears no relation to either the mean phase in the 1-11	

back congruent or incongruent condition (Figs. 6B&E). Figures 7D&H show the results of 12	

the 2D permutation test at 9.2 Hz, which are consistent with the results of the aggregate data 13	

analysis. Very few points (dark cyan dots in Fig. 7D) from the permutation distribution 14	

(p = 0.013) exceed the group mean vector (thick red dot) in the congruent condition, while 15	

many more points exceed the mean vector in the incongruent condition, p = 0.36 (Fig. 7H). 16	

Taken together, the results suggest that the 9-Hz oscillation lasts at least two trials. Although 17	

the reverberation is weaker 2-back than 1-back, as to be expected, it may be sufficient to 18	

induce the long-lasting serial dependence observed on average (Fig. 2).  19	

 20	
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 1	
Figure 7. Results of the two-back analysis for criterion with aggregate data. For this analysis, 2	
we separated the incongruent data from the 1-back analysis (Figs. 5&6) further into 3	
congruent and incongruent 2-back. (A) The dark cyan line shows the binned congruent trials. 4	
As in Fig. 4, we smoothed the data for display but conducted all statistical analyses on the 5	
non-smoothed data. The error bars indicate ±1 SD obtained by bootstrap (n = 2,000). The 6	
dark grey thick line represents the best fitting sinusoid which for the congruent trials was at 7	
9.2 Hz (the frequency was free to vary between 9.1 and 9.6 Hz). The binned incongruent data 8	
is shown in (E), fitted with the same frequency, 9.2 Hz. No other frequency in the 9.1-9.6 Hz 9	
range fitted better. (B) The R2 obtained at 9.2 Hz (thick red line) was compared against the 10	
goodness-of-fit of the shuffled data (dark cyan histogram), binned and fitted as the original 11	
data. The test confirmed that the 9.2-Hz oscillation in the congruent data was significant. As 12	
shown in (F), the same test for the incongruent condition was not significant. (C) The 13	
individual vectors in the congruent condition at 9.2 Hz. The subjects are colour-coded as in 14	
Figs. 4&6. Their phases cluster around a similar phase as in the congruent 1-back (Fig. 6B). 15	
In contrast, (F) shows the incongruent phase cluster at 9.2 Hz and their mean phase bears no 16	
relation to either the congruent or incongruent mean phase in the 1-back (Figs. 6B&D). (D) 17	
The result of the 2D permutation test for the congruent condition, which is consistent with the 18	
result of the aggregate data analysis shown in (B). The 2D permutation result for the 19	
incongruent condition is shown in (H) and also consistent with the result in (F).  20	
 21	

  22	

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted February 18, 2019. ; https://doi.org/10.1101/553222doi: bioRxiv preprint 

https://doi.org/10.1101/553222
http://creativecommons.org/licenses/by/4.0/


 22 

Discussion 1	

 2	

To maintain a stable and coherent percept in a world that is naturally noisy and ambiguous, 3	

observers take advantage of past information to anticipate forthcoming sensory input. While 4	

there is a good deal of behavioural evidence in favour of this predictive account of 5	

perception, little is known about the underlying neural mechanisms. Here, we present 6	

evidence suggesting that predictive perception is implemented rhythmically through alpha-7	

band oscillations, along the lines of the “perceptual echo” suggested by VanRullen and 8	

Macdonald (2012).   9	

 Our current study shows that identifying the ear of origin of a weak tone was strongly 10	

biased by previous stimuli, two or even three trials before the current trial. Although the 11	

immediately previous trial had no average serial effect, we observed a strong rhythmic 12	

fluctuation in bias (measured by criterion) at ~9.4 Hz, which was critically dependent on 13	

stimulus history: strong oscillations occurred only when the previous target had been 14	

presented to the same ear as the current one, and weaker oscillations could be elicited by 15	

stimuli in the same ear two trials previously. The results reinforce our previous study (Ho et 16	

al., 2017) showing oscillations in criterion (for a different task) at similar frequencies (around 17	

7.5 and 8.7 Hz), and extend these in an important way by showing that the oscillations are 18	

contingent on past stimulus history.  19	

 Why do oscillations occur only when the previous trial was presented to the same ear 20	

as the current one? One possible mechanism, illustrated in Fig. 8, is based on the “perceptual 21	

echo”, as suggested by VanRullen and Macdonald (2012; see also Bowen, 1989). An 22	

auditory signal presented to one ear should elicit a neural reverberatory response that 23	

oscillates in the alpha range, and affects subsequent perceptual decisions. Our data further 24	

suggest that the perceptual echo is confined to the ear in which it is evoked. We assume that 25	
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the phase of this oscillation becomes aligned to the onset of the noise-burst of the following 1	

trial (dotted vertical black lines in Fig. 8), and that the alignment phase is opposite for each 2	

ear (180° for the left and 0° for the right ear). This echo could then bias the response to 3	

subsequent signals presented to the same ear, either by modulating the neural gain of the 4	

signals (Rahnev et al., 2011), or by causing a shift in the decision boundary.  5	

To illustrate, Fig. 8 shows putative internal representations of noise and signal. 6	

Presentation of a stimulus may set up an internal “echo” at about 9 Hz, confined to that ear. 7	

The onset of the noise burst resets the phase of the echo, to about 180° in the left ear (Fig. 8	

8A) and 0° in the right ear (Fig. 8B). If we assume that the echo modulates gain, then the 9	

amplitude of the response to stimuli presented to the same ear will depend on time of 10	

presentation, more amplified if presented at a peak than at a trough. This modulation will be 11	

reflected in response bias, but not average sensitivity, as the echoes in the two ears are 12	

assumed to be out of phase (discussed below). The new stimulus will in turn elicit a new echo 13	

in that ear (red trace), which reverberates to the next trial.  14	

 15	

 16	
Figure 8. Possible mechanisms by which past sensory experience biases forthcoming 17	
perceptual decisions, causing oscillations in congruent but not incongruent trials. (A) The 18	
green oscillation represents the ‘echo’ evoked by a target in the left ear in the previous trial 19	
(n-1). The reverberation resonates at alpha rhythm and continues to the current trial (n) where 20	
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it synchronises with other ongoing brain oscillations (possibly related to perceptual and 1	
decisional processes) by the noise onset. In this example, the current target is congruent with 2	
the preceding target, i.e., both occur in the left ear. Because the echo is ear specific, it will 3	
bias the observer’s decision towards a “left response” when the stimulus is presented in the 4	
excitatory period of the echo and toward a “right response” in the negative periods. (B) Here, 5	
the target is incongruent with the preceding target, i.e., it occurs in the opposite ear. In this 6	
case, the echo has no influence on the observer’s decision. In both scenarios, the target of the 7	
current trial will elicit a new echo (red oscillation) that reverberates into the next trial.  8	
 9	
  10	

 How could cyclic increases in sensitivity or gain result in changes in criterion but not 11	

in d’? As the sequence of stimuli was completely random, past information was not 12	

informative about the current trial, and therefore could not increase d’, either on average or in 13	

a cyclical manner; but it can change the trial-by-trial judgment of which ear carried the weak 14	

signal. It is important to point out that criterion changes do not necessarily reflect decision 15	

processes (such as shifts in decision boundaries), but can also reflect perceptual changes 16	

(Peters et al., 2016; Witt et al., 2015). In the current experimental design, calculations of d’ 17	

can only be made after combination of hits and false alarms to stimuli presented to the two 18	

ears. If the modulation of activity in the two ears is in counterphase, they will cancel each 19	

other out when the output is combined for d’, but add together for criterion. Evidence from 20	

our previous (Ho et al., 2017) and present study (of Figs. 6H&I) suggests that this does occur: 21	

when the congruent data are separated for ear of origin of the signal, the oscillations in the 22	

left ear tend to be out of phase with those of the right (~115° on average in this study).  23	

Why did our experiments reveal no positive serial dependence on the immediately 24	

previous trial (1-back), as is normally observed in studies of serial dependence? There are (at 25	

least) two possible, non-mutually exclusive explanations. The first is a consequence of the 26	

forced-choice paradigm used here (while most studies of serial dependence use a 27	

reproduction technique). Forced-choice paradigms can lead to sequential response biases 28	

independent of the stimuli, such as alternation of responses (Abrahamyan et al., 2016), 29	

especially after a long run of similar responses (probably related to the gambler’s fallacy 30	
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(Burns and Corpus, 2004; Tversky and Kahneman, 1971). As the responses were strongly 1	

correlated with stimuli (75% correct), a systematic alternation would tend to cancel out 2	

positive serial dependence based on the previous stimulus (but have no effect on average for 3	

trials two-back). Not all observers alternate: some show the opposite tendency, “sticking” 4	

with the current response. Figure 2C is consistent with this idea: while only one observer 5	

showed negative serial dependence for 2-back trials, the variability in 1-back trials was much 6	

higher: five out of 14 observers showed positive 1-back biases, showing a tendency for 7	

“sticking”, while the others could be switchers. Further evidence comes from the response-8	

based analysis, which showed a strong negative serial dependency, meaning that responses 9	

tended to be different from the previous one (independent of the stimuli). As stimuli and 10	

responses were highly correlated, this response-dependent bias will also impact the 11	

dependence on previous stimuli, potentially cancelling any positive serial dependence that 12	

may have been present.  13	

Another possible reason for the lack of positive 1-back effects is that the stimuli may 14	

have caused both positive serial dependence and negative adaptation aftereffects. As 15	

mentioned in the introduction, both types of effects have been reported in sequential 16	

judgments, sometimes within the same experiment (Abrahamyan et al., 2016; Chopin and 17	

Mamassian, 2012; Taubert et al., 2016). Negative aftereffects tend to be shorter lived than the 18	

positive dependencies, and should therefore affect only 1-back, not 2-back trials (Chopin and 19	

Mamassian, 2012). This seems to be less plausible given the strong dependence on response 20	

(while aftereffects are stimulus-driven), but we cannot rule out the possibility.   21	

Whatever the reason for the lack of positive serial dependence in the averaged results, 22	

our study suggests that oscillations may be a more sensitive signature of memory-based 23	

perceptual effects than simply looking at average results. Many competing effects could 24	
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reduce or annul average serial dependence effects, without affecting rhythmic, time-1	

dependent oscillations.  2	

As both vision and audition have similar serial dependencies and oscillations of 3	

decision criteria at alpha rhythm, the mechanism described in Fig. 8 may generalise to other 4	

sensory modalities. However, considering the anatomical and organisational differences 5	

between the visual and auditory system, it is possible that this mechanism had to be adapted 6	

to the specific architecture of each sense. For instance, oscillatory effects that are robust in 7	

vision are not readily observed in audition (VanRullen et al., 2014; Zoefel et al., 2015; Zoefel 8	

and Heil, 2013; Zoefel and VanRullen, 2017). However, by using dichotic rather than diotic 9	

stimulation (as all previous studies had done) we were able to show that similar to visual 10	

sensitivity, auditory sensitivity also oscillates but in antiphase for the two ears (Ho et al., 11	

2017). As a result, when we summed the ears (as would be the case in diotic stimulations), 12	

the sensitivity oscillations cancelled each other out. Our findings therefore show that the ears 13	

need to be stimulated separately in order to observe certain oscillatory effects.  14	

In summary, we showed that when participants were asked to determine the ear of 15	

origin of a brief sinusoidal target masked by white noise, their decision criteria oscillated at 16	

an alpha rhythm. Further analyses revealed that the alpha oscillation in criteria was driven 17	

entirely by trials in which the target occurred in the same ear as that of the immediately 18	

preceding trial. When the previous and current targets occurred in opposite ears, we found no 19	

observable oscillations of criteria. To account for these findings, we proposed that every 20	

target elicits a long-lasting reverberation at alpha rhythm that is ear-specific and continues to 21	

the next trial, where it synchronises with other ongoing brain oscillations possibly related to 22	

both perceptual and decisional processes. Because this ‘echo’ is ear specific, it will only bias 23	

perceptual decisions (towards or away from the ear in which the echo was elicited), if the 24	

following target occurs in the same ear. The bias is not absolute but fluctuates over time, and 25	
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may become stronger as more evidence of the same stimuli occurs successively in the 1	

sequence. Although this model is very basic, we believe it could be elaborated to explain 2	

more complex serial dependence effects and provide a deeper understanding of how 3	

expectation or prediction guides perception.  4	

 5	

Materials and Methods 6	

 7	

Participants 8	

Eighteen healthy participants took part in the experiment. All reported normal hearing. Four 9	

participants were male and two left-handed. After inspecting participants’ auditory thresholds 10	

and (log-transformed) reaction times, we excluded four participants (one male) from the data 11	

analysis for the following reasons. Three exhibited large differences in mean auditory 12	

threshold between the left and right ear (1 standard deviation from the group mean) and one 13	

displayed an atypical distribution of very long reaction times (2.5 standard deviations from 14	

the group mean). The mean age of the remaining 14 participants was 21.14 ± 4.22. All 15	

participants provided written, informed consent. The study was approved by the Human 16	

Research Ethics Committees of the University of Sydney. No power analysis was used to 17	

decide the number of subjects or the number of trials per subject. We based our sample size 18	

estimations on our previous study (Ho et al., 2017), which showed oscillations in auditory 19	

perceptual performance before, and other studies on similar behavioural rhythms in vision 20	

(Fiebelkorn et al., 2013; Landau and Fries, 2012).  21	

 22	

Experimental procedure  23	

The experimental design was kept largely the same to our earlier study (Ho et al., 2017). 24	

However, instead of the bilateral tone discrimination task (2×2 design) used in our previous 25	
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experiment, we asked participants to determine the ear of origin of a similarly brief 1	

sinusoidal tone of 10-ms duration and 1,000 Hz in frequency masked by dichotic white noise.  2	

As in the previous experiment, participants sat in a dark room and listened to auditory 3	

stimuli via in-ear tube-phones (ER-2, Etymotic Research, Elk Grove, Illinois). They wore 4	

earmuffs on top of the tube-phones (3M Peltor 30 dBA) to isolate external noise. The 5	

broadband white-noise masks were 2 s long and randomly generated each trial. To ensure that 6	

the noise masks were both clearly lateralised and uncorrelated, the left- and right-ear maskers 7	

were in antiphase (each a time-reversed duplicate of the other). As illustrated in Fig. 1A, the 8	

noise segments were presented to both ears with simultaneous onset. The target tone was 9	

delivered randomly with equal probability in either ear during the 2-s noise masker with a 10	

stimulus-onset asynchrony (SOA) randomly drawn from an interval of 0.2–1.2 s post noise 11	

onset. Participants responded via button press on a response box (ResponsePixx, Vpixx 12	

Technologies, Saint-Bruno, Quebec). All participants used their thumbs to respond were 13	

instructed to respond as soon as possible while the noise masker was still present. For each 14	

ear, the target’s intensity was kept around individuals’ thresholds (75 % accuracy) using an 15	

accelerated stochastic approximation staircase procedure (Faes et al., 2007; García-Pérez, 16	

2011). The next trial started after a silent inter-trial interval (ITI) of random duration between 17	

1.2–2.2 s.  18	

Participants completed 2,800 trials (40 blocks of 70 trials) in total. Blocks lasted ~5 19	

minutes and participants were allowed to rest after every block. Prior to the experiment, they 20	

completed a practice block of 20 trials with feedback but no feedback was provided during 21	

the experiment. Stimuli were presented using the software PsychToolbox (Brainard, 1997) in 22	

conjunction with DataPixx (Vpixx Technologies, Saint-Bruno, Quebec) in MATLAB 23	

(Mathworks, Natick, Massachusetts).  24	

 25	
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Signal detection theory 1	

Prior to the data analysis, trials in which the response occurred before the target onset or after 2	

the noise offset were excluded. Additionally, we eliminated trials with reaction time (RT) 3	

exceeding the 99 % confidence intervals of individuals’ RT and with target intensity beyond 4	

the 95 % confidence intervals of individuals’ thresholds.  5	

We computed d’ and c using Eq. 1 and 2 from signal detection theory (SDT) (Green 6	

and Swets, 1966; Macmillan and Creelman, 2004). As illustrated in Fig. 1B, the calculation 7	

of the hit rate (Hright) was based on the hits from the right target condition and the false alarm 8	

rate (FAleft) based on the false alarms from the left target condition. d’ is given by the 9	

difference between z-transformed hit and false alarm rates:  10	

 𝑑$ = & '()*+, -& ./012,
3

 (1) 11	

Half the sum of the z-transformed hit and false alarm rates gives c, the bias towards one of 12	

the responses (left ear when positive and right ear when negative).  13	

 𝑐 = −0.5	×	 𝑧 𝐻=>?@A + 	𝑧 𝐹𝐴EFGA  (2) 14	

 15	

Behavioural oscillations 16	

Aggregate data analysis. To look for oscillations in sensitivity and response bias, we applied 17	

two different methods. The first is the same curve fitting approach we used in our previous 18	

study (Ho et al., 2017). For this analysis, we pooled across all 14 participants, sorted the trials 19	

by target SOA and grouped the data into hundred 10-ms bins, from 0.2 to 1.2 s post noise 20	

onset. The mean number of trials per bin was 151 ± 24 for the left-target condition and 21	

152 ±	25 for the right-target condition. For each bin, we computed d’ and c as above (Eq. 22	

1&2). Using the standard MATLAB function fit included in the Curve Fitting toolbox, we 23	
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fitted the following Fourier series model (Eq. 3) to the resulting sequence of sensitivity and 1	

criterion (see Fig. 3A&B): 2	

 𝑓 𝑡 = 𝑎K + 𝑎L sin 𝜔𝑡 + 𝑏L cos 𝜔𝑡 = 𝐴 cos 𝜔𝑡 + 𝜙 , (3) 3	

where t is time (t = 0.2, 0.3… 1.2 in seconds), ω is the angular frequency (ω = 2𝜋𝑓) we want 4	

to test, a0 is a constant and a1 and b1 are the sine and cosine coefficients respectively. A and f 5	

represent amplitude and phase of the sinusoidal fit. We used a non-linear least-squares 6	

method (a standard implementation in MATLAB) whereby the summed squares of the 7	

residuals were minimised through successive iterations (400 iterations in total). As in our 8	

previous study (Ho et al., 2017), sensitivity displayed a decreasing non-linear trend over time 9	

which we removed before curve fitting using the same polynomial fit (polyfit in MATLAB). 10	

Detrending was not applied to the criterion curve. For each frequency between 4 and 12 Hz 11	

(in 0.1 Hz steps), we fitted the best sinusoid, allowing amplitude and phase to vary (two 12	

degrees of freedom). This yielded a measure of goodness of fit, R2, as a function of frequency 13	

(Fig. 3C). To test the significance of every fit, we applied a permutation procedure (Ernst, 14	

2004) whereby we shuffled the responses of each individual trial over all SOAs to generate 15	

2,000 surrogate datasets which we submitted to the same binning and curve fitting procedure 16	

as the original data. To correct for multiple comparisons, we determined the maximal R2 for 17	

every surrogate dataset irrespective of frequency. This resulted in a distribution of 2,000 18	

maximal R2 (Figs. 3D&E) against which we compared each fit to the original dataset. Any 19	

frequency that exceeded the 95 percentile of the maximal-R2 distribution (dotted line in Fig. 20	

3C) was considered significant. We also estimated the variability in the aggregate data by 21	

applying the bootstrap method which involves the random selection of the same number of 22	

trials (with replacement) as in the original data and submitting the surrogate datasets to the 23	

same binning and curve fitting procedure as above.  24	

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted February 18, 2019. ; https://doi.org/10.1101/553222doi: bioRxiv preprint 

https://doi.org/10.1101/553222
http://creativecommons.org/licenses/by/4.0/


 31 

Individual and group analysis. The curve fitting method described above requires a 1	

sufficient number of trials per time point to accurately estimate the oscillations underlying d’ 2	

and c. For that reason, we had to pool across all subjects and bin the aggregated data. In order 3	

to examine the individual data for oscillations and evaluate their coherence across subjects, 4	

we used a different approach which does not require data binning but allows for an estimation 5	

of participants’ sensitivity and response bias based on single trials (for similar approaches, 6	

see (Benedetto et al., 2018; Tomassini et al., 2017). As illustrated in Fig. 1C, the response yi 7	

(i = 1, 2… n, where n is the total number of trials) to a target presented at time ti (i.e., the 8	

interval from noise onset to target onset in seconds) can be modelled as the linear 9	

combination of harmonics at each tested (angular) frequency (compare with Eq. 3):  10	

 𝑌W = 	𝛽K + 𝛽L sin 𝜔𝑡W + 𝛽3 cos 𝜔𝑡W , (4) 11	

where Ŷn is the predicted responses and 𝛽0, 𝛽1 and 𝛽2 are fixed-effect regression parameters 12	

that can be estimated using the linear least-squares method implemented in MATLAB as the 13	

fitlm function from the Statistics and Machine Learning toolbox. To retain some consistency 14	

between the individual data and aggregate data analyses, we analysed sensitivity and 15	

response bias separately, that is, yi reflected either individual accuracy or response bias. 16	

Therefore, the model we used is a special case of the general linear model (GLM) as it is 17	

restricted to one dependent variable (also called multiple linear regression). This model 18	

estimates the regression parameters adequately when the sampling rate is uniform across the 19	

time series. As this condition may not always be met, we applied the full model which 20	

includes a third independent regressor containing information about the stimulus: 21	

 𝑌W = 	𝛽K + 𝛽L sin 𝜔𝑡W + 𝛽3 cos 𝜔𝑡W 	) + 𝛽ZS	(𝑡W), (5) 22	

where S is the stimulus at time t and takes the value –1 or +1 for left and right target 23	

respectively. We examined sensitivity based on participants’ correct and incorrect responses 24	
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in which case yi = 1 for correct and yi = 0 for incorrect. To analyse response bias, yi took the 1	

value 1 when participants made a ‘right’ response and 0 when they made a ‘left’ response.1 2	

To measure the group’s coherence in terms of both phase and amplitude at each frequency, 3	

we averaged the sine and cosine regression parameters across all participants, i.e., ΒL =4	

	L
W

𝛽LW
>  and Β3 = 	

L
W

𝛽3W
> , where n = 15 and i = 1, 2… n,  and obtained an amplitude 5	

spectrum (Figs. 4A&B) by taking the vectorial average of the individual estimates given by 6	

the square root of their sum squared for every frequency:  7	

 𝐴	 = 	 	ΒL3 + 	Β33 (6) 8	

We computed the mean phase 𝜃 by taking the arctangent of the ratio of the averaged sine to 9	

cosine regression parameter: 10	

 𝜃	 = 	 tan-L `a
`b

 (7) 11	

The significance of the model fit in Eq. 5 was evaluated using a two-dimensional (2D) 12	

permutation test. Specifically, we tested the null hypothesis that the individual response data 13	

contain no temporal structure and thus their time stamps should be interchangeable. To this 14	

end, we shuffled the SOAs (i.e., the interval between noise onset and target presentation), 15	

keeping the relationship between the response (‘left’ response or ‘right’ response) and 16	

stimulus (left target or right target) constant (Kennedy and in Statistics-Simulation, 1996; 17	

Winkler et al., 2014). The permutation was carried out at the individual subject level 2,000 18	

times per dataset. Each surrogate dataset was fitted using the same model described in Eq. 5 19	

and the resulting β1 and β2 were averaged across subjects for every frequency tested. This 20	

yielded a joined distribution of 2,000 surrogate means for each frequency from 4-12 Hz in 21	

																																																								
1	Binary responses can be modelled using a generalised linear model with a logit link function. In an ideal 
scenario in which the observer has no internal noise, simulation results suggest that the generalised linear model 
indeed outperforms the linear model; in more realistic settings, however, the two models yield comparable 
results (Knoblauch and Maloney, 2008) which our own simulations corroborate (not reported here). 	
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0.1-Hz steps. Similar to the multiple comparison correction we applied in the aggregate data 1	

analysis, we determined the maximal vector of each joined distribution, irrespective of the 2	

frequency. This resulted in a joined distribution of 2,000 maximal vectors, against which we 3	

compared the original mean (see Fig. 4F). This comparison entails determining the 4	

proportion of surrogate amplitude group means equal or exceeding the original group mean.  5	

 6	
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