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The human body is made up of hundreds, perhaps thousands of cell types and states, most of which are 
currently inaccessible genetically. Genetic accessibility carries significant diagnostic and therapeutic potential 
by allowing the selective delivery of genetic messages or cures to cells. Research in model organisms has 
shown that single regulatory element (RE) activities are seldom cell type specific, limiting their usage in genetic 
systems designed to restrict gene expression posteriorly to their delivery to cells. Intersectional genetic 
approaches can theoretically increase the number of genetically accessible cells, but the scope and safety of 
these approaches to human have not been systematically assessed due primarily to the lack of suitable 
thorough RE activity databases and methods to explore them. A typical intersectional method acts like an AND 
logic gate by converting the input of two or more active REs into a single synthetic output, which becomes 
unique for that cell. Here, we systematically assessed the intersectional genetics landscape of human using a 
curated subset of cells from a large RE usage atlas obtained by Cap Analysis of Gene Expression sequencing 
(CAGE-seq) of thousands of primary and cancer cells (the FANTOM5 consortium atlas). We developed the 
heuristics and algorithms to retrieve AND gate intersections and quality-rank them intra- and interindividually. 
We find that >90% of the 154 primary cell types surveyed can be distinguished from each other with as little as 
3 to 4 active REs, with quantifiable safety and robustness. We call these minimal intersections of active REs 
with cell-type diagnostic potential "Versatile Entry Codes" (VEnCodes). Each of the 158 cancer cell types 
surveyed could also be distinguished from the healthy primary cell types with small VEnCodes, most of which 
were highly robust to intra- and interindividual variation. Finally, we provide methods for the cross-validation 
of CAGE-seq-derived VEnCodes and for the extraction of VEnCodes from pooled single cell sequencing data. 
Our work provides a systematic view of the intersectional genetics landscape in human and demonstrates the 
potential of these approaches for future gene delivery technologies in human. 
 
INTRODUCTION 
 
The exact number of different cell types that make up the body of 
a human adult is yet to be defined, but is expected to be in the 
order of several hundred, perhaps thousands of different cell 
types (Valentine et al., 1994; Carrol, 2001). Major efforts have 
recently been launched to attempt to catalogue and molecularly 
describe every cell type in different tissues of the human body 
(Andersson et al., 2014; FANTOM Consortium and the RIKEN 
PMI and CLST (DGT), 2014; Macosko et al., 2015; Bahar Halpern 
et al., 2017; Regev et al., 2017; Hon et al., 2018). The number 
and the complexity of cell types increases further when one 
considers that cells exist in different states, not only when a cell 
divides or undergoes successive differentiation steps during 
normal developmental processes, but also when a cell becomes 
infected, cancerous or specifically responds to physical or 
chemical stimuli (Valentine et al., 1994; Carrol, 2001; Macosko et 
al., 2015). 
 
A major challenge in biology and biomedicine has been to 
genetically identify and deliver genetically encoded messages to 
a specific cellular type and/or state within complex organisms. 
Most gene delivery systems are limited by the technology 
available to distinguish the desired cellular types and/or states 
between themselves prior to gene delivery; most technologies 
relying primarily on cell-surface markers for selectivity (Lukashev 
and Zamyatnin, 2016; Hardee et al., 2017). These markers are 
seldom cell-specific, and this lack of specificity inevitably leads to 
DNA delivery to unwanted cells. This can have negative 
consequences, such as introducing undesired artefacts in 
research studies or side-effects in gene-therapy-based 

interventions. Additionally, the usage of sporadically defined cell 
surface markers for cellular targeting restricts both the ability to 
systematize the generation of cell-specific gene delivery vectors 
and to scale this system up for any cell type or state in any 
organism. 
  
An alternative to these “pre-DNA delivery” selectivity procedures 
is to use cell-type- and cell-state-unspecific viral or non-viral DNA 
delivery systems (Duan, 2016; Wong et al., 2016), and work out 
the cell specificity post-delivery by exploring unique genetic 
properties of the target cell. The transcriptional program of any 
given cell reflects, at the most basic level, a unique combination 
of binary on/off states of the regulatory elements (REs) present in 
the genome. REs can be used multiple times by different cells 
either at different anatomical sites, time points of life history or 
during disease or environmental responses (Mallo, 2006; Luan et 
al., 2006; ENCODE Project Consortium, 2012; Mortazavi et al., 

 
Figure 1. Intersectional genetics. Scheme of the intersectional genetics 
approach to obtain cell-type specific drivers by restricting expression to the 
cells where two or more REs with broader activity overlap (intersect). REs 
are the inputs that will pass through a typical AND logic gate and give a 
single genetically-defined output in the cells where the RE activities 
intersect.  
 

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted November 18, 2019. ; https://doi.org/10.1101/552984doi: bioRxiv preprint 

https://doi.org/10.1101/552984
http://creativecommons.org/licenses/by-nc/4.0/


 

bioRxiv Preprint | Macedo & Gontijo | Page 2 of 14 

2013; Kron et al., 2014; Andersson et al., 2014; FANTOM 
Consortium and the RIKEN PMI and CLST (DGT), 2014). 
Therefore, while the activity of a single carefully-chosen RE could 
theoretically provide sufficient specificity to identify a particular 
cell type and/or state post-DNA delivery in some cases, it is 
unlikely to provide the required specificity to distinguish most cell 
types and/or states between themselves (Mallo, 2006; Luan et al., 
2006). 
  
Aware of this fact, developmental biologists studying model 
organisms have devised intersectional genetic methods to 
increase target cell specificity of gene drivers by exploring the 
anatomical overlap between expression patterns driven by two 
independent REs (Lakso et al., 1992; Struhl and Basler, 1994; 
Awatramani et al., 2003; Suster et al., 2004; Stockinger et al., 
2005; Luan et al., 2006; Farago et al., 2006). Similarly, molecular 
and synthetic biologists have engineered systems that use 
Boolean logic to sense different cell states in bacteria and yeast 
(Siuti et al., 2013, Nissim et al., 2007). In many of these synthetic 
computational systems, the REs are the inputs which will pass 
through a typical AND gate and give a single genetically-defined 
output (Figure 1). Similar systems have been applied to 
mammalian cells, where they are able to distinguish between 
different cancer cell types or detect cancer cells arising from 
normal cells in vitro (Nissim and Bar Ziv, 2010; Liu et al., 2014; 
Morel et al., 2016). Despite being successful, the full potential of 
this type of intersectional approach has never been evaluated or 
applied systematically to generate drivers for every cell type in a 
body, even less so to a complex organism like human, which lacks 
thoroughly developmentally-characterized gene drivers. 
  
Here, we hypothesized that the majority of cell types and/or cell 
states in human could be distinguished post-DNA delivery using 
multiple input AND gates (intersectional methods of active REs, 
Figure 1), and that the intersecting inputs could be obtained, 
quality-ranked, and cross-validated using currently publicly 
available RE usage databases.  
 
RESULTS 
 
Data preparation / normalization 
  
To quantify how cellular specificity scales with the number of 
intersecting active REs (k), we developed algorithms and scripts 
using Python language to analyze genome-wide data on promoter 
and enhancer usage for hundreds of primary human cell types 
obtained by the FANTOM5 consortium (Andersson et al., 2014; 
FANTOM Consortium and the RIKEN PMI and CLST (DGT), 
2014; Lizio et al., 2015). Briefly, the FANTOM5 data consists of 
curated subsets of transcriptional start site “peaks” determined by 
capped analyses of gene expression (CAGE)-sequencing 
(CAGE-seq). The height of each CAGE-seq peak provides 
quantitative information in normalized tags per million (TPM) 
values, which is interpreted as being directly proportional to the 
activity of the promoter or enhancer that it represents. 
  
Before analyzing the FANTOM5 data, we manually curated the 
FANTOM5 human cell type database consisting of 184 distinct 
cell types from multiple donors (giving a total of 562 datasets), by 
selecting for healthy primary cells and removing cell 
treatments/infections and cells obtained from cancer samples 
(Figure S1). We also attempted to remove datasets that were less 
likely to represent single cell types. Examples of the samples 
removed during curation are: datasets from cells infected with 
Salmonella or Candida albicans, datasets for cells labeled “whole 
blood”, and datasets from mesenchymal precursor cells obtained 
from cancer samples. Some datasets were merged into a single 
cell type category, for example: “CD8+ T Cells (pluriselect)” and 

“CD8+ T Cells”, and “Melanocyte dark” and “Melanocyte light” 
were treated as single cell type categories, respectively. This 
curation resulted in a list of 154 distinct primary cell types from 
multiple donors, giving a total of 537 samples and averaging ~3.5 
samples (donors) per cell type (range 2-6). Table S1 contains the 
list of curated cell types used in this study as well as all of the 
excluded and merged categories. 
  
The total number of possible RE combinations for a target cell 
type is C(r, k) = (r!/(k!(r - k)!), where r stands for the number of 
REs of the database (e.g., 201 802 promoters in FANTOM5), and 
k for the number of REs chosen to combine. For k = 4, this gives 
6.9 x 1019 possible combinations. To ask if any combination is 
specific for the target cell type, however, we need to ask if the k 
combined elements are all active in the given cell type AND at 
least one of the k elements is inactive in each of the other cell 
types in the database. If the k elements could be binarized into 
active (TRUE) an inactive (FALSE) categories, this question can 
be asked using boolean logic gate functions such as: (1k1 AND 1k2 
AND… 1kn) AND ((2k1 AND 2k2 AND.... 2kn) NOR (3k1 AND 3k2… 

AND 3kn)... NOR (nk1 AND nk2… AND nkn)), where c{1→n}k{1→n} 
represents the status of the RE element k in cell type c (where the 
target cell type is 1). The truth table for this function has 2(c*k) rows, 
which for 154 cell types and k = 4 gives 2.7 x 10185 rows. Clearly, 
saturating the search for all possible combinations for any given 
cell type and testing them by brute-force is a daunting 
computational task. 
 
The complexity of the database for a given cell type can 
nevertheless be reduced for each search using heuristic methods. 
For instance, REs that are inactive in the target cell or active in 
the target cell and also active in most other non-target tissues 
(e.g., REs of housekeeping genes) are not helpful for the purpose 
of making cell-type-specific intersectional gene drivers. 
 
Hence, to increase the likelihood of finding fruitful intersections 
and to reduce database complexity and computing time, we 
applied several filters on the database to select for sparsely-active 
REs. The first step is to define RE activity thresholds. We decided 
to be conservative and apply different activity thresholds for the 
target cell type and for the non-target cell types. This would 
increase the chances that the selected REs are truly active in the 
target cell type and inactive in the non-target cell type. To reduce 
database size and concentrate on potentially active REs in the 
target cell type, we created subsets of data for each target cell 
type where we retained only the REs that were consistently 
potentially ON (>0 TPM) in all donors for that cell type (Figure 2A). 
We next collapsed the data from multiple donors of the non-target 

 

Figure 2. Conservative criteria for RE activity. Different conservative criteria 
for RE activity were applied to target (A) and non-target cells (“Other cell types”) 
(B). Each row represents a possible RE activity scenario. Each box represents 
the activity of the RE per donor (D) or the collapsed intersection or average (M), 
according to the color key. REs from target cells were considered active if the 
intersection of all cell donors were above a TPM threshold (blue squares). REs 
from other cell types were considered active if the average raw TPM (M) of all 
donors was above the threshold. 
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cell types to a single non-target cell-type datapoint by averaging 
the expression of the multiple donors (Figure 2B). This reduces 
the database complexity by a factor of ~3.5. 
 
To select for sparsely-active REs, we studied the RE activity 
landscape by testing the following thresholds for RE activity in the 
target cell type: 0.5, 1, and 2 TPM. The higher the RE activity 
threshold, the more stringent the RE selection is. For inactivity, 
we tested 0, 0.01, and 0.1 TPM in non-target cells. By applying 
these thresholds, we transform the continuous CAGE-seq peak 
data into binary datasets. 
 
We then wrote a program that randomly samples the filtered RE 
landscape by choosing a combination of k “active” REs for a target 
cell type and asking whether this combination is exclusive to the 
target cell type compared to the other cell types of the database. 
We call this the “Sampling Method” (Figure 3A).  
 
To further reduce computing time, the algorithm first selects for 
sparsely-active REs by removing all REs that are active in more 
than X% of the cell types. This removes broadly expressed REs. 
We start with X = 90%, but decrement 5 units (i.e., 85%) each 
time there are not enough REs left in the dataset after the filter 
(e.g., n of REs < k). We ran this sampling program up to n = 1000 
times for a k range of 1 to 10, and calculated the percentage of 
cells for which at least one exclusive combination for the target 
cell type was found. This percentage served as an indicative of 
the cellular specificity of combinations of k active REs. 
 
Random sampling of intersecting active REs 
 
Using promoter data from the subpanel of 154 primary human cell 
types, we find that cellular specificity of k intersecting REs 
increases logarithmically from 10-20% for k = 1 up to a plateau of 
40-80% starting at k = 5, depending on the activity threshold (0.5-

2 TPM, with a fixed inactivity threshold at 0 TPM; Figure 3B). The 
0.5 TPM activity threshold gave the highest selectivity. Relaxing 
the inactivity thresholds from 0 to 0.1 TPM (with a fixed activity 
threshold at 1 TPM) increased the % of cells that could be 
detected by 10-15% depending on the k used, again reaching a 
plateau at around k = 5 (Figure 3C). A similar scenario was 
observed using enhancer data, albeit the activity threshold that 
gave the highest selectivity was lower (0.1 TPM) than for 
promoters, likely reflecting the generally lower TPM values of the 
enhancer subset (Figure 3D). Relaxing the inactivity thresholds 
up to 0.1 (with a fixed activity threshold of 0.5 TPM) did not 
improve the cell selectivity (Figure 3E). These results suggest that 
combinations of just a handful of active REs could provide 
substantial cellular resolution in human. As predicted, the usage 
of a single input (k = 1) has a very limited potential to detect cell 
types or cell states. Moreover, even though a two-input AND gate 
greatly increases the number of detectable cell types, it is unlikely 
to provide the breadth required to be applicable for a technique 
aimed at detecting most cell types and/or states in the human 
body. Finally, at least for this dataset and methodology used, our 
results suggest that our ability to sort cell types based on active 
RE intersections plateaus between 4-6 REs.    
 
Safety is also a concern when considering possible human 
applications of RE activity-based methods, such as unwanted 
leakage (noisy or unpredicted RE activity) in cell-targeted 
therapies. Using high k values would be beneficial in this sense, 
because, for each extra k, there is an extra safety layer to account 
for false negatives when compared to k = 1. Namely, the 
probability p of leakage decreases exponentially by pk. By 
applying the simple RE selection criteria described above (with 
activity thresholds of 0.5 and 0.1 TPM for promoters and 
enhancers and a strict inactivity threshold of 0 TPM for both), the 
usage of a four-input AND gate (k = 4 combination of promoters 
and/or enhancers), which can theoretically add as many as three 

 

Figure 3. Random sampling method to find intersecting active REs (VEnCodes). A. Rationale for the sampling method. First, k REs are randomly selected 
from the set of REs that are active (“1”) in the target cell type. Inactive REs are depicted as “0”. Then, we ask if at least one sampled RE is inactive in each other 
cell type in the data set. If yes, these k REs satisfy VEnCode criteria or the target cell type (e.g., the k REs must intersect exclusively in the target cell). If not, we 
repeat steps 1 and 2. If in the first or second iteration (i+1), the k REs satisfy VEnCode criteria, then the k RE selection is counted as a VEnCode and is stored. B-
E. Probing the intersection genetics landscape for promoter (B, C) and enhancer (D, E) datasets using the sampling method. Plotted are the percentages of cell 
types found to have at least one VEnCode per k and different activity (B,D) and inactivity (C,E) TPM thresholds. For the activity panels, the inactivity threshold was 
fixed at 0 for both promoters and enhancers. For the inactivity panels, the activity thresholds were fixed at 0.5 and 0.1 for promoters and enhancers, respectively. 
F. Visual representation of a VEnCode for hepatocytes. Binary heatmap where each column represents one of the 154 primary human cell types and each row 
one RE from the promoter data set. Blue (active RE), white (inactive RE). 
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safety layers against false negatives when compared to k = 1, is 
able to discern ~77% and ~76% of human cell types, respectively 
(Figure 3B and 3D), suggesting that it is a good compromise 
between technical feasibility (i.e., generating biological systems 
that use four REs and translate the activity of the gene products 
regulated by these REs into a single genetic readout) and breadth 
of cell types that can be detected. These multiple-input AND gates 
can also be seen as the minimal intersection of co-activated REs 
that is diagnostic of a given cell type or state within a given 
complex mixture of cells in a culture dish, in a tissue biopsy 
sample, or in the human body. We call these intersecting active 
REs, Versatile Entry Codes (VEnCodes) (Figure 3F). 
  
Heuristic selection of intersecting active REs (VEnCodes) 
  
The random “sampling” method still falls short of probing the 
enormous landscape of possible VEnCodes. We thus attempted 
a heuristic approach to probe the VEnCode landscape. We used 
the same binarization criteria as in the sampling method but 
removed the filter for sparsely-active REs that retains REs that 
were active in a percentage of the cell types assayed. This was 
done since the effectiveness of this approach is not affected by a 
large dataset of less sparsely-active REs. REs occupy the rows 

of the database and can be represented as a{1→k}REb, where “a” 
represents the position of the RE in the VEnCode (e.g., for a 
VEnCode with k intersections, a will go from 1 to k) and b 
represents the row number in the RE list. We then applied a 
greedy algorithm that considers the sparseness of expression 
(Figure 4A). In brief, the REs are first sorted by expression 
sparseness and the sparsest RE (RE1) is chosen as a first-order 
position (hereafter, “node”) 1RE1. All cell type columns in which 
1RE1 activity is 0 are then culled from the database, and all 
remaining >1RE>1 are resorted in ascending fashion according to 
the number of cell types they share co-activity with 1RE1. Then, 
1RE1 is tested in combination with the next RE (2RE2) to verify if it 

satisfies criteria as a VEnCode (i.e., if the intersection between 
the active REs 1RE1 ∩ 2RE2 occurs exclusively in the target cell 
samples). It follows that for each k = 2 combination that satisfies 
VEnCode criteria, all further k > 2 combinations that use these two 
REs will satisfy the criteria for VEnCode. If no k = 2 combination 
satisfies VEnCode criteria, the algorithm creates secondary 
nodes and reiterates the pattern described above. To increase the 
coverage of the landscape, each multiple node test is performed 
with the three nearest neighbors by order of sparseness. If no k = 
3 combination satisfies VEnCode criteria, the algorithm creates 
tertiary nodes and so on. We call this approach the “heuristic 
approach”. 
  
Applying the heuristic approach to search for VEnCodes using 
similar threshold conditions as used for the sampling method 
above, we obtained cell-specific combinations of k promoters and 
enhancers for ~90% and ~80% of the cell types, respectively 
(Figure 4B-E). More importantly, this method shifts leftwards the 
plateau for the maximum number of cell types detected so that we 
are now able to retrieve specific combinations for a larger 
percentage of cell types even at lower k numbers. For instance, 
at k = 4, we retrieve ~88% and ~77% of cell types, using 
promoters and enhancers, respectively.  
 
To try to find VEnCodes for the cell types where they could not be 
retrieved using either the sampling or the heuristic method, we 
combined enhancer (k1) and promoter (k2) data in a method we 
called “heuristic2” approach (Figure 5A). This method increases 
cellular resolution to ~85% of cell types for k = 2 (combinations of 
2 k1 enhancers and 2 k2 promoters) and >90% of cell types for k 
= 4 (combinations of 4 k1 enhancers and 4 k2 promoters, Figure 
5B), allowing the generation of VEnCodes for difficult cell types 
that could not be resolved using promoter or enhancer data alone 
(Figure 5C). Even though none of our methods saturate the RE 
activity intersection landscape, these results consistently indicate 

 

Figure 4: Heuristic method to find intersecting active REs (VEnCodes). A. Rationale for the heuristic method. An example is given for a VEnCode with k = 3. 
This algorithm follows a greedy strategy where at each node of the decision tree it makes the locally optimal choice. First, it sorts the REs in the dataset by sparseness, 
then it takes the sparsest RE (first-level node) and asks if it is inactive in all non-target cell types. If yes, this RE is cell-type specific, and the next k-1 sparsest REs 
can be added to increase safety. If not, it finds out in which cell types this RE is active and searches the data set for a new RE that is inactive in those problematic 
cell types. If this is successful, then the intersection between these two REs will be specific for the target cell type. In case there is no RE that matches the query, it 
re-orders the REs by sparseness, this time calculating sparseness only at the “problematic” cell types. It then chooses the sparsest RE as the second-level node and 
repeats the procedure as described for the first node, increasing node depth until a VEnCode is found. Node depth is always ≤k and the algorithm tests several nodes 
at each level before it gives up. In the example given, there was no need to reorder by sparseness as there was a satisfactory VEnCode.  B-E. Probing the intersection 
genetics landscape for promoter (B, C) and enhancer (D, E) datasets using the heuristic method. Plotted are the percentages of cell types found to have at least one 
VEnCode per k and different activity (B,D) and inactivity (C,E) TPM thresholds. For the activity panels, the inactivity threshold was fixed at 0 for both promoters and 
enhancers. For the inactivity panels, the activity thresholds were fixed at 0.5 and 0.1 for promoters and enhancers, respectively.    
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that combinations of just a few active REs could provide 
substantial cell type resolution in human. 
 
Measuring VEnCode robustness  
  
Next, we asked whether we could devise algorithms to rank a 
VEnCode according to its quality and robustness. A k = 4 
VEnCode assumes, based on the available RE usage data, that 
the four chosen REs are never active together in any cell type 
and/or state except in the desired target cell type and/or state. 
Clearly, there could be many instances when this premise is false, 
so that the VEnCode falls apart. For instance, the VEnCode is 
compromised if the VEnCode is also able to detect a cell type 
which is not included in the database used or if false negatives 
are a prevalent artifact of the databases used to devise 
VEnCodes (e.g., a given RE is labelled as inactive in our 
database, but it is, in reality, active or for any reason unstably 
fluctuates between active and inactive states). To attempt to 
quantify these problems, we carried out Monte Carlo simulations 
of false negative results by randomly activating REs and 
recalculating whether or not the VEnCode continued being 
selective for our target cell type after each simulation (Figure 6A). 
We scored how many false negatives on average (for n 
simulations) are required until the VEnCode falls apart. This gives 
the quality value Eraw for each VEnCode. Eraw varies as a function 
of k comprising the VEnCode and the number of cell types c in 
the database. The higher the k, the higher Eraw, attesting to the 
fact that intersections are more robust to technical errors and 
biological noise. To make E comparable between different 
conditions, we normalize Eraw according to a reference best-case-
scenario Ebest(c, k) value, which was obtained by Monte Carlo 

simulations performed as described above, yet for the best-case-
scenario for a VEnCode: where all k REs are inactive in the non-
target cell types). Hence, normalized E = 100*Eraw/Ebest(c, k) (Figure 
S2 and Table S2). The idea is that E is directly proportional to the 
intraindividual robustness of a given VEnCode towards a cell type 
(Figure 6B). 
 
To understand how E scales with cell type identity, we used the 
sampling method to obtain an unbiased set of VEnCodes using k 
= 4 promoters. From the 114/154 cell types for which we retrieved 
5-20 VEnCodes in n = 10000 samplings, we obtained E values 
varying between 6 and 99 (Figure 6C and Figure S3A). The E 
quality index varied substantially between cell types. For instance, 
“Fibroblast - Mammary” cells only allow the generation of 
VEnCodes with small E values (between 5 and 17), while 
hepatocytes allow the generation of high-quality VEnCodes with 
large E values (between 62 and 91). To test whether the heuristic 
method improved VEnCode quality, we calculated E from a 
subset of 5-20 promoter VEnCodes obtained from 131/154 cell 
types, which comprised 113 cell types for which we obtained 
VEnCodes using the sampling method (Figure 6C and Figure 
S3B). As expected, the heuristic method statistically significantly 
improved VEnCode quality by an average of 21.1 units (range 6-
57) above random sampling for 88.5% of cell types (100/113, p < 
0.0005, Bonferroni-corrected unpaired T tests, Figure 6C). Similar 
results were obtained for enhancer VEnCodes: average 
improvement of 14.1 units (range 4-40) over random sampling for 
83% of cell types (93/112, p < 0.00005, Bonferroni-corrected 
unpaired T tests, Figure 6D and Figure S3C-D). We conclude that 
the heuristic method not only finds VEnCodes for a larger amount 
of cell types, but also generates higher quality VEnCodes. 

 

Figure 5. Heuristic2 method to find intersecting active REs (VEnCodes). A. Rationale for the Heuristic2 method. This algorithm combines the efficiency of the 
heuristic method with the extra flexibility of using both enhancers and promoters to target a cell type. First, it finds the k sparsest enhancers (k1) that are active for 
the target cell type and asks if they are a VEnCode. If they are not, it focuses on the “problematic” cell types in which the enhancers are active, and, using the 
approach described in Figure 4, asks if there are any combination of promoters (k2) that are not active in those cell types. If so, then the intersection of the enhancer 
and promoter activities is specific to the target cell type. B. Probing the intersection genetics landscape using the Heristic2 method. Plotted are the percentages of 
cell types found to have at least one VEnCode per k using promoter (orange circles), enhancer (gray circles), or promoter + enhancer (blue circles) data. C. Visual 
representation of a VEnCode obtained using the Heuristic2 method for trabecular meshwork cells. Binary heatmap where each column represents one of the 154 
primary human cell types and each row one RE from the enhancer (blue boxes) and promoter (orange boxes) datasets. Red boxes and arrows depict the cell type 
data that are preventing the interception of enhancers from being a VEnCode for the trabecular meshwork cells. Green boxes highlight the promoter expression 
data in those problematic cell types. 
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VEnCode interindividual robustness  
 
An ideal VEnCode retains its specificity towards the target cell 
type across multiple individuals of a population. For this, the 
VEnCode must be robust to interindividual variation on cell-
specific RE usage patterns. Interindividual variation could arise 
either due to technical variation introduced during determination 
of active and inactive REs for a given cell type in a given individual 
or as true biological variation in RE usage for that cell type 
between individuals. The likelihood of relying on false positive 
calls to generate VEnCodes should be inversely proportional to 
the number of individuals surveyed for RE usage in the target cell 
type. To verify this, we estimated interindividual robustness “z” of 
VEnCodes by calculating the percentage of VEnCodes generated 
from a subset of cell type donors that retained VEnCode 
satisfiability for all other donors of that cell type, whose data were 
not used to generate the initial VEnCodes (Figure 7A). Our results 
show that despite some variability between interindividual 
robustness across different cell types, on average, their 
VEnCodes (k = 4) are robust (Figure 7B). Namely, when promoter 
usage data from one and two donors are used, the z values 
increases on average by ~9.4% from 90.6 to 100%, respectively 
(p < 0.00001, Wilcoxon test for a subset of 66 cell types with 3 
donors with 0 < n < 71 VEnCodes generated by the sampling 
method in all conditions; Figure 7, top left panel). Similar results 
were found for a subset of cell types (n = 9) with 4 donors, where 
2 donors were sufficient to saturate z (Figure 7, bottom left panel). 
Enhancer data from a single donor seems to carry even more 
predictability for other donors than promoter data, as z is on 
average only 1.4% lower than 100% when data from one donor is 
used instead of 2 (p = 0.00096, Wilcoxon test for a subset of 67 
cell types with 3 donors Figure 7, top right panel). When the 
subset of 6 cell types with enhancer data from 4 donors was 
analyzed, data from a single donor was sufficient to saturate z 
(Figure 7, bottom right panel). These results suggest that using 

data from more than one donor is most helpful for promoter data, 
where it can help significantly increase VEnCode interindividual 
robustness, and hence the likelihood that a VEnCode will be 
specific for the target cell in different individuals. 
 
Even though there is no correlation between average VEnCode 
quality E for a cell type and the cell type’s interindividual 
robustness z (Figure S4), consistent with the fact that an 
interindividually robust VEnCode needs not be of high E quality, 
or that a VEnCode with a high E score is not necessarily the best 
VEnCode for multiple individuals, the optimal scenario would be 
to determine VEnCodes from a large cohort of donors of a cell 
type and then choose the VEnCodes with highest E scores from 
this subset. With this in mind, we calculated the five best 
VEnCodes using the Heuristic2 method with for k ranging from 1 
to 4 for a list of primary cell types with at least 3 donors 
(Supplementary Data S1). This list can serve as a starting point 

 

Figure 6. Method for ranking VEnCode intraindividual robustness. A. Outline of the method to calculate the E value of a VEnCode. Eraw is calculated by taking 
a VEnCode (1.) and accounting for possible false-negatives in the data by turning inactive REs into active ones (2.). To this end, the algorithm performs random 
0-to-1 changes in the dataset, one at a time, and then checks if the VEnCode condition is still satisfied. It reiterates e1 times until the VEnCode condition is no 
longer satisfied. It then repeats the simulation n times (3.) and returns Eraw by calculating the average of all e values obtained (4.). Eraw is then normalized according 
to the formula described in Figure S2 and Table S2 to obtain E. B. Visual representation of four (1-4) hepatocyte VEnCodes obtained using different algorithms 
and promoter data. Binary heatmap where each column represents one of the 154 primary human cell types and each row one RE from the promoter data (blue 
boxes). The E value of each VEnCode is depicted on the right. C-D. The effect on E values of using sampling (blue) or heuristic (orange) methods to obtain 
VEnCodes. The heuristic method increases average E for most cell types for promoter (C) and enhancer (D) data. y axis represents different cell types ordered by 
increasing E obtained by the sampling method. Each dot is a VEnCode (n = 5-20 per primary cell type). Darker diamonds represent the mean. 
 

 

Figure 7. VEnCode inter-
individual robustness. 
A. Rationale for the estimation of 
VEnCode interindividual 
robustness. VEnCodes that are 
generated based on data from 
one or more donors are tested as 
VEnCodes on data from other 
donors. The % of VEnCodes that 
satisfy VEnCode criteria for the 
other donors is z. B. Box plots 
representing z obtained from 
various primary cell types based 
on promoter and enhancer data. 
Subsets of primary cells for 
which three (top panels, orange) 
and four (bottom panels, blue) 
donors were tested. z is 
saturated at 100% for all cell 
types tested when VEnCodes 
are determined using data from 
2 cell donors. 
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to explore other properties of VEnCodes and to perform cross-
validation experiments using independent techniques, similar to 
what we report further below.  
  
VEnCodes for alternative cell states: cancer 
 
The FANTOM5 database contains RE usage data for 274 cancer 
cell line samples (Andersson et al., 2014 and FANTOM5 
Consortium et al., 2014; Lizio et al., 2015), which can be merged 
into 158 cancer cell types (Table S3). If VEnCodes could be 
determined for cancer cell types, they could be used in different 
cell targeting methods, such as to improve cell selectivity in gene 
therapy directed towards cancer cells. To verify if VEnCodes 
could be determined for cancer cell types, we created in silico 
models for diseased patients carrying one cancer cell type each 
by adding the cancer cell type data to the 154 primary cell type 
database (Figure 8A). While there are many caveats and sources 
of additional noise with this strategy, such as cell line 
heterogeneity, long-term cell culture artifacts, cell donor gender, 
and the incompleteness of the cell type and state database used, 
to cite just a few, it already serves the purpose of submitting the 
cancer cell types to the same stringent criteria as if they were a 
new primary cell type. Furthermore, the availability of data from 
cancer cell types obtained from multiple donors provides the 
possibility to test for interindividual robustness of the cancer cell 
VEnCodes.  
 
Exploring the RE landscape of cancer cell types we again noticed 
that VEnCodes are readily obtained even for smaller k values 
(Figure 8B), except for enhancers, where only ~14% of cancer cell 
types had a specific enhancer (k = 1, Figure 8B). At k = 4, ~99% 
of cancer cell types surveyed could be distinguished using the 
heuristic method for promoters or enhancers (Figure 8B). This 
goes up to 100% using the heuristic2 method already with a k = 3 
(Figure 8B). Cancer cell type VEnCodes are generally of very high 

quality, as shown by their large E values (Figure 8C and 8D). 
Using the heuristic method increases the E values, similarly to 
what we observed in primary cell lines (Figure 8C and 8D). 
 
One caveat of the in silico cancer patient model is that not all cells 
of origin of some cancer cell types are present in the primary cell 
database. This is the case for small cell lung carcinoma (SCLC), 
which is thought to originate from neuroendocrine cells of the lung 
(Park et al., 2011). Certainly, an expansion of the primary cell 
database is warranted and it would help generate safer and more 
robust VEnCodes. 
 
To study this issue more carefully, we looked at mesothelioma, 
for which the assumed primary cell of origin, the mesothelial cell, 
is available in the current database. We first stratified the 
mesothelioma cell types into three cytological classes according 
to Cellosaurus (Barioch, 2018): epithelioid (n = 7: ACC-MESO-1, 
ACC-MESO-4, Mero-14, Mero-41, Mero-82, Mero-95, NCI-H226, 
and No36 (epithelial-like stellate cells)), sarcomatoid (n = 3: NCI-
H2052, NCI-H28, and ONE58), and biphasic (n = 5: Mero-25, 
Mero-48a, Mero-83, Mero-84, NCI-H2452). We then asked how 
difficult it was to generate robust VEnCodes for these 
mesothelioma types (Figure 8E and 8F). We find that while 
VEnCodes can be readily generated for primary mesothelial cells 
with k = 2, larger k values are required to generate VEnCodes for 
mesothelioma cells. VEnCodes were found for all mesothelioma 
subtypes, except for epithelioid mesothelioma cells, which could 
only be identified when promoter data was used, and even then 
they were of poor quality (E = ~7). In general, VEnCode 
intraindividual robustness E increased with higher k, again 
attesting for the potential safety value of using more intersections 
(Figure 8E and 8F).  
 
As many cancer cell types are characterized by a level of 
heterogeneity, we were expecting less interindividual robustness 

 

Figure 8. VEnCodes for cancer cell types. A. Strategy for simulating a cancer patient in silico. B. Probing the intersection genetics landscape for cancer cell 
types using the Heuristic2 method. Plotted are the percentages of cell types found to have at least one VEnCode per k using promoter (orange circles), enhancer 
(gray circles), or promoter + enhancer (blue circles) data. C-D. The effect on E values of using sampling (blue) or heuristic (orange) methods to obtain VEnCodes 
for cancer cell types. The heuristic method increases average E for most cell types for promoter (C) and enhancer (D) data. y axis represents different cancer cell 
types ordered by increasing E obtained by the sampling method. Each dot is a VEnCode (n = 5-20 per primary cell type). Darker diamonds represent the mean. 
E-F. Case study of mesothelioma cancer cells stratified into epithelioid, sarcomatoid, and biphasic subtypes. Primary mesothelial cells are shown in the left column 
as a reference. Rows depict increasing k. Boxes are filled if at least one VEnCode is found using k REs. If a VEnCode is found, the box is colored according to 
binned average E value of the VEnCodes found (n = 1-20). G-H. Box plots representing interindividual robustness z values obtained from all cancer cell types with 
3 (G, H) or 4 (I) donors based on promoter (left panels) and enhancer (right panels) data. G. Subsets of cancer cells for which biological replicates were available 
(i.e., repeated assays with the same cancer cell line). H-I. Subsets of cancer cells types for which independent cell lines were analyzed. z is saturated at 100% for 
all cell types tested when VEnCodes are determined using data from 2 cell donors. 
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in cancer cells relative to primary cell types. We thus applied the 
sampling method to calculate the interindividual robustness z of 
cancer cell types. We found that cancer cell type VEnCodes (k = 
4) determined either from promoters or enhancer usage data, 
have very high interindividual robustness z, which is already 
saturated when data from 2 donors are used (Figure 8G-I). These 
results show that small RE usage signatures can reproducibly 
define dozens of cancer cell types. The level of interindividual 
robustness is similar to that of technical replicates (Figure 8G, 
compare top and bottom panels). Even genetically hypervariable 
cancer cell types, such as SCLC cells (George et al., 2015), for 
which data from four cell lines were available, also gave 100% z 
values when data from two donors were used (Figure 8I). We 
conclude that highly robust and safe cancer cell VEnCodes can 
be obtained using CAGE-seq data.  
 
VEnCode cross-validation 
 
Having shown that a publicly-available RE usage database based 
on CAGE-seq data can be used to generate and quality-rank 
VEnCodes for hundreds of primary and cancer cell types, we next 
asked whether these CAGE-seq-based VEnCodes could be 
cross-validated using other publicly-available comprehensive RE 
usage datasets. There are two types of cross-validation that 
would be desirable: first, to show that all the REs used in the 
VEnCodes for a given cell type are indeed active in that cell type. 
Second, that the combination of enhancers is exclusively active in 
that cell type. Of these, only the first type of cross-validation is 
currently feasible without extensive consortium-level biological 
experimentation due to the lack of a suitable database with the 
breadth and depth of the FANTOM5 database as regards RE 
usage in primary cells. To cross-validate CAGE-seq VEnCodes 
for a specific cell type using RE activity estimated by other 
methods in the same cell type, we searched the literature for 

suitable studies and found 18 candidate cell types that could be 
used for cross-validation (Table S4): three “healthy” cell types 
(human induced pluripotent stem cells (hiPSCs) and 2 primary cell 
types), and 15 cancer cell types/lines. Whereas FANTOM5 data 
on hiPSCs were not included in our curated primary cell database, 
the fact that hiPSCs and human embryonic stem cells (hESCs) 
share nearly identical molecular profiles and pluripotency 
properties (Chin et al., 2010; Bock et al., 2011; Marei et al., 2017) 
allows the usage of a high-quality functional enhancer dataset 
generated for hESCs (Barakat et al., 2018) for VEnCode cross-
validation. The methods for RE activity estimation in the retrieved 
studies varied between chromatin immunoprecipitation (ChIP)-
based methods, DNA accessibility-based methods (FAIRE, DHS, 
ATAC-seq), enhancer function methods (eRNA, STARR-seq), 
and combinations of these methods (Table S4). We downloaded 
raw data (BED, FASTA, CSV, BroadPeak, or TSV files) from the 
studies and parsed the data to retrieve compatible genomic 
locations of “active” or potentially active enhancers (for DNAse 
accessibility-dependent techniques).  
 
To cross-validate the CAGE-seq-determined VEnCodes, we 
generated up to 200 VEnCodes (with k = 4) for each of the 18 cell 
types and determined the fraction of k per VEnCodes that were 
considered active in the external database (Figure 9A). Any 
degree of overlap (>0 nt) between the CAGE-seq RE coordinates 
and the external database active RE coordinates was considered 
positive for validation. Cross-validation results varied between cell 
types and studies. Fully validated k = 4 VEnCodes, for instance, 
were found for 11/18 (61.1%) cells, while partially-validated k ≥ 
2/4 in 17/18 (94.4%) cell types (Figure 9B). The low validation for 
some cell types could be due to many factors, such as cell identity 

Figure 9. Cross-validation of CAGE-seq-determined VEnCodes. A. Strategy for cross-validation of CAGE-seq-determined VEnCodes using external databases. 
B. Heatmaps depicting the distribution of cross-validated VEnCodes, for k = 4 enhancers, according to the number of validated k/VEnCode for each cell type. The 
databases used for cross-validation of each cell type and the full description of the cell types are provided in Table S4. C. Venn diagrams depicting the % of active 
enhancer calls determined in this study using the FANTOM5 database CAGE-seq data (gray circles; notice that they are sometimes too small to see in the figure) 
that overlap with the external cross-validation databases (peach and yellow). D. Heatmaps depicting the distribution of cross-validated VEnCodes, for k = 4 enhancers, 
according to the number of validated k/VEnCode for each cell type using exclusively CAGE-seq enhancers that are present in the external databases. *HEK293 cells 
originate from fetal kidney tissue, but they were placed in this group as they are derived from adenovirus-transformation and have a complex karyotype. 
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and the nature of the method used to determine RE activity. 
Indeed, the likelihood of VEnCode cross-validation correlated 
significantly with the % overlap of active RE calls between CAGE-
seq and the external method (r = 0.90, p < 0.00001; Figure S5). 
This is not unexpected as the readouts used to determine 
enhancer activity in the different studies vary in specificity and 
sensitivity. Regardless of these limitations, our results indicate 
that for a majority of cell types, CAGE-seq VEnCodes can be 
cross-validated using RE usage datasets independently 
determined by other methods. To bypass the limitation of low 
overlap between enhancer activity calls in different database, we 
first cross-validated enhancers, and then determined VEnCodes 
using the curated primary cell CAGE-seq data (Figure 9C). With 
this approach, cross-validated VEnCodes were obtained for all 18 
cell types (Figure 9D), and these VEnCodes could be further 
quality-ranked according to their E value (Figure S6 and 
Supplementary Data S2). Hence, high-quality VEnCodes can be 
found using exclusively the subset of CAGE-seq REs that are 
cross-validated against publicly-available RE usage datasets. 
 
VEnCodes using single-cell sequencing data 
 
Genomewide RE activity profiles have traditionally been obtained 
using large cell populations, as in the case of the FANTOM5 
CAGE-seq data studied herein. While the advantage of these bulk 
preparations is the increased depth and resolution of the RE 
activity predictions obtained, a clear disadvantage is the loss of 
single-cell resolution. This is most evident in situations where 
RNA is prepared from complex mixtures of cells, such as healthy 
tissues samples and cancer biopsies. Single-cell strategies that 
can both resolve cell heterogeneity and infer RE activity have 
been developed, but they still provide a relatively shallow 
(discontinuous) and noisy view of RE activity per cell (e.g., 
Buenrostro et al., 2015; Cusanovich et al., 2015; Chen et al., 
2018; Cusanovich et al., 2018a; Cusanovich et al., 2018b Mezger 
et al., 2018; Kuono et al., 2019). These properties limit the 
usefulness of single-cell strategies for VEnCode determination, 
which requires very stringent RE activity criteria, especially for 
negative RE activity calls. Single cell CAGE-seq (C1 CAGE), for 
instance, recovers per cell on average ~15, ~10, ~5, and <5% of 
bulk CAGE-seq-determined enhancers expressed at 10-100, 5-
105, 1-5 and <1 TPM (Kuono et al., 2019). Considering that the 
thresholds for enhancer inactivity and activity in our study are 0 
and >0.5 TPM, this suggests that the rate of false positives in C1 
CAGE-determined VEnCodes would be high. 
 
Some of the limitations described above can be partially 
circumvented using strategies that consolidate single cell RE 
activity profiles by pooling a sufficiently large number of single 
cells after taxonomic cell clustering (e.g., Pott and Lieb, 2015; 
Alessandri et al., 2019; Bravo-González-Blas et al., 2019; Lareau 
et al., 2019; Stuart et al., 2019; Urrutia et al., 2019; Xiong et al., 
2019; Zeng et al., 2019; Zhou et al., 2019). We thus hypothesized 
that pooled C1 CAGE Seq data could retrieve enough enhancers 
to enter the VEnCode determination pipeline. 
 
To test this, we obtained pooled enhancer activity prediction data 
from a subset of untreated adenocarcinomic human alveolar 
basal epithelial cell line [“T0” (untreated) A549 cells, n = 35 cells 
(Table S5); Kuono et al., 2019). From this set of cells, we retrieved 
540 unique enhancers, which were considered “ON” (Table S6). 
All other non-retrieved enhancers were considered “OFF”. This 
data was then processed as described above for bulk CAGE-
sequenced cancer cells (Figure 10A). Results showed that 
VEnCodes could be successfully retrieved from enhancer activity 
profiles obtained from pooled C1 CAGE data (Figure 10B). In 
general, C1 CAGE-based VEnCodes obtained by the sampling 
method were 34.1 and 38.3% worse in quality than bulk and bulk-

validated CAGE-seq-determined VEnCodes, respectively (35.0 ± 
6.7, 53.1 ± 7.5, and 56.7 ± 6.90, average ± SD E values for C1 
CAGE, bulk, and bulk-validated CAGE-seq enhancers, 
respectively; p < 0.01 for each respective comparison; Tukey HSD 
post-hoc test, Figure 10B and 10C). A similar pattern was 
observed for VEnCodes obtained using the heuristic method, 
albeit VEnCode quality was significantly increased for all 
estimates, as compared to the sampling method, as expected (p 
< 0.01; Tukey HSD post-hoc test, Figure 10B and 10C). We 
conclude that RE activity profiles obtained from single-cell 
sequencing data can be successfully integrated into the VEnCode 
pipeline when pooled estimates are used. At least for C1 CAGE 
seq of a small number of A549 cells, these estimates are not 
optimal as those from bulk-sequencing data due to their 

Figure 10. VenCodes from single-cell-derived RE usage data. A. Strategy 
for integrating single-cell-derived RE usage data into the VEnCode-
generation pipeline. Single-cell data, such as enhancer usage patterns 
obtained from C1 CAGE-seq, are pooled and then integrated into the curated 
database of bulk CAGE-seq enhancer panel. B. Heatmaps depicting the E 
quality of 200 k = 4 enhancer VEnCodes obtained by the sampling or heuristic 
method from single cell (35 pooled “T0” cells from C1 CAGE-seq; Kuono et 
al., 2019), bulk CAGE-seq (FANTOM5), or bulk-validated CAGE-seq data (as 
described in Figure 9) for A549 cells. Columns represent 200 VEnCodes 
ranked according to E value, and rows represents cell types, ranked 
according to average ((active k)/VEnCode). C. Box plots representing the 
quantification of the E value data reported in B. Different letters represent 
conditions that are statistically significantly different (ANOVA performed with 
all six conditions, followed by Tukey HSD, p < 0.01).  
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proneness to false negative RE calls and the generally reduced 
quality of the VEnCodes generated. 
 
DISCUSSION 
 
A major challenge in biomedicine is to access and gain control of 
a specific cellular type, be it in a healthy or disease state, within a 
complex and highly adaptable body. A methodology that allows 
genetic access to all cellular types and states in the human body 
would have a major impact in multiple domains of life science, 
including the possibility of studying and designing novel research 
tools, therapies, as well as better bioinspired technology and 
cosmetics. Such methodology addresses a major problem in the 
fields of life sciences research, biological engineering, and gene 
therapy: cellular-targeting, i.e., how to restrict the desired genetic 
intervention to a unique set of cells within an organism or different 
cell states within unicellular populations. 
 
Even when specific solutions exist (e.g., antibodies against target 
cell surface proteins or viruses with tropism towards certain cell 
types) that give access to a single cell type or state in an 
organism, no approach is known that allows for the systematic 
generation of similar specific solutions for other cell types or 
states in any given organism. Therefore, there is a profound 
limitation in the technologies available to genetically access 
particular cellular types and states in a very limited set of 
organisms. 
 
An alternative to these procedures is to use methods that do not 
rely on cell-specific strategies to deliver genetic materials to cells. 
For instance, to use a system that delivers the desired genetic 
material to as many cells as possible in a complex organism, 
unrestrictedly. Considering that such systems are becoming 
available (e.g., unbiased non-integrating viral delivery or 
chemical-based delivery), the challenge becomes to have a highly 
versatile approach to activate any particular genetic message 
exclusively within a target cell type. 
 
Intersectional genetics provides a solution for cellular targeting in 
complex organisms. However, there are several challenges that 
have to be overcome in order to apply intersectional genetics in 
human. The first challenge is the understandable lack of a library 
of gene drivers with known expression patterns to choose 
intersections from. To overcome this, we attempted to explore 
alternative resources such as large RE usage databases 
determined using next-generation sequencing methods. We 
explored a curated panel of 154 primary human cell types and 158 
cancer cell types for which a uniform RE usage atlas consisting of 
CAGE-seq data is currently available (Andersson et al., 2014; 
FANTOM Consortium and the RIKEN PMI and CLST (DGT), 
2014; Lizio et al., 2015). FANTOM5 data and other datasets have 
been previously explored as potential sources of cell-specific 
features, including enhancers (Ienasescu et al., 2016; Gao et al., 
2016). One of these tools is SlideBase, which uses interacting 
sliders for the selection of expressed features from a given 
dataset by user-customized expression thresholds (Ienasescu et 
al., 2016). However, while such user-friendly tools can serve this 
and many other purposes, they are neither conceived nor 
optimized for a systematic analysis of intersectional genetics. An 
additional limitation is that the datasets have not been curated 
with the conservative criteria for unique cell types that we used. 
 
The second challenge is to understand the landscape of 
intersectional genetics in human, including its safety and 
reliability. To the best of our knowledge a systematic assessment 
of the potential and robustness of the intersectional genetics 
approach had never been performed for any organism, much less 
for humans. How far could intersectional genetics take us as an 

approach to gain accessibility to any given human cell? If each 
cell type does not have a uniquely active RE, or if the usage of a 
single unique RE carries high risk for therapeutic and diagnostic 
purposes due to technical artifacts and biological noise, would the 
unique intersection of two or more REs be enough to generate 
cell type specific gene drivers for every human cell type? This is 
a relevant question as there are several technical solutions 
available to explore genetically the intersections of active REs, 
such as split-transcription factors and recombinase-based FLP-
OUT strategies (Lakso et al., 1992; Struhl and Basler, 1994; 
Awatramani et al., 2003; Suster et al., 2004; Stockinger et al., 
2005; Luan et al., 2006; Farago et al., 2006; Nissim et al., 2007; 
Nissim and Bar Ziv, 2010; Siuti et al., 2013; Liu et al., 2014; Morel 
et al., 2016). 
 
We found herein that >90% of the primary human cell types 
surveyed can be safely and robustly distinguished from each 
other with as little as 3 to 4 REs. We called these combinations 
“VEnCodes” (for Versatile Entry Codes). VEnCodes can be 
defined as the smallest gene expression ON/OFF signature that 
carries enough diagnostic value to distinguish between the target 
cell and other non-target cell types within a complex mixture of 
cells. Clearly, VEnCodes with 1 and 2 REs exist and their 
technical exploitation is already feasible with current techniques. 
However, for many cells, more REs are required either to obtain 
a VEnCode, or to obtain a safer and more robust VEnCode. 
Hence, new intersectional methods are desirable to capitalize on 
the intersection of 3 or more active REs. 
 
While we obtained VEnCodes for most cells using heuristic 
methods, we failed to obtain VEnCodes for ~10% of the primary 
cells surveyed, even when 10 RE intersections were allowed. It is 
important to notice that we have by no means saturated the 
VEnCode search space. Hence, more thorough, brute-force 
methods (e.g., an exhaustive sampling method) might find 
VEnCodes for these difficult cell types. However, some of these 
cell types might indeed have poorly-distinguishable or 
indistinguishable RE activity profiles. These cell types might 
require other techniques for detection. One possibility, which was 
not explored here, is to use other intersectional methods based 
other Boolean logical operations, such as OR, NOT, NOR. 
 
To create a quality index for VEnCodes we determined its 
susceptibility to technical artifacts and biological noise using 
Monte Carlo simulations. We show that average VEnCode quality 
varies significantly between different primary cell types, so that 
certain cells, such as mast cells and hepatocytes, are more safely 
distinguishable from others than most fibroblasts subtypes. By 
exploring RE usage data from the same primary cell type obtained 
from multiple donors, we find that VEnCodes are very (~100%) 
robust, especially when determined using enhancer data. 
Promoter data-based VEnCodes for primary cell types increases 
when data from at least two cell type donors are used. It is not 
clear if this reduced robustness using single donor promoter data 
is due a technical or biological source of noise. 
 
To probe the RE space in a cell state paradigm, we explored data 
from different cancer cell lines isolated from patients diagnosed 
with tumors of the same cellular origin. Several cancer cell types 
are hypervariable in nature, posing a challenge for finding a 
specific VEnCode that detects the same cancer cell type across 
multiple individuals. However, VEnCodes could be determined for 
all cancer types surveyed where multiple cell lines were available, 
even for notoriously hypervariable cancer cell types such as 
SCLC cells. Furthermore, as VEnCode retrieval can be 
systematized, in the absence of a single VEnCode that satisfies 
detection criteria for multiple cancer cell subtypes, multiple 
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VEnCodes can be designed to account for cancer cell 
heterogeneity. 
 
Finally, we showed that VEnCodes obtained from CAGE-seq data 
can be cross-validated using enhancer usage data obtained by 
other methods. Intuitively, the methods of choice to cross-validate 
VEnCodes in target cells are methods that infer enhancer 
function, such as simple luciferase assays or STARR-Seq, where 
functional enhancers transcribe themselves (Arnold et al., 2013). 
Cross-validation of a second key assumption of VEnCodes -that 
they only function in the desired cell type and not in other cell 
types- is much more challenging, but can partially be addressed 
with larger primary cell RE activity databases and panels of 
complex human organoids. 
 
VEnCodes can now be explored as minimal RE-program-sensing 
parts that can be encoded genetically into plasmid-based 
biosensors, packaged into viral or non-viral systems, and 
delivered to cells in the body to diagnose whether or not the RE 
program of a given cell matches that of the VEnCode. Engineering 
biosensors that sense the activity of 3 to 4 REs and then perform 
a multiple-AND gate computation to generate a single output is 
technically feasible with synthetic biology. Such genetic 
biosensors could revolutionize medicine by allowing safe and 
specific gene delivery to any cell type or cell state in the human 
body.  
 
Enhancer-based VEnCodes are clearly the most promising 
combinations for generating intersectional genetics tools. Each 
enhancer can, for instance, be placed directly upstream of a 
general or synthetic basal promoter. In contrast, one needs to 
consider that promoter-based VEnCodes, such as those obtained 
in the heuristic2 method, might not necessarily autonomously 
convey the desired cell type specific transcription when placed in 
a synthetic construct context. Nevertheless, there are many 
efforts to map enhancer-promoter interactions (e.g., Andersson et 
al., 2014; Mora et al., 2016; Hait et al., 2018), which could be used 
to optimize the heuristic2 method. 
 
Finally, we have shown that single cell-based strategies for RE 
estimation such as C1 CAGE are compatible with the VEnCode 
pipeline. The VEnCodes obtained were understandably of lower 
quality than those derived from bulk CAGE-seq data alone. 
Pooling data from larger numbers of cells can theoretically 
improve VEnCode quality considering larger numbers of REs are 
obtained. The low-confidence negative RE activity calls generated 
by pooled single cell-sequencing data are another point of 
concern, which might also be mitigated by pooling larger numbers 
of cells. Nevertheless, a major benefit of single-cell strategies for 
VEnCode applications, is their potential to significantly increase 
the number of cell types with RE activity profiles. This potential to 
molecularly profile cell types and even to discover new cell types 
has become evident with single-cell RNA-seq (Macosko et al., 
2015; Bahar Halpern et al., 2017; Regev et al., 2017; Hon et al., 
2018). Expanding the number of cell types in the curated single-
cell RE activity database is critical because it helps reduce the 
amount of false VEnCodes for all cell types (e.g., the larger the 
amount of cell types with robust known active RE calls, the less 
likely it is to obtain a VEnCodes that will fail in practice). Hence, 
the inclusion of a new cell type with a single-cell-derived, partial 
RE profile based exclusively on sparse active RE calls is better 
than not having the profile at all. Finally, it would be interesting to 
verify in future studies whether, apart from integrating single cell 
and bulk RE activity profiles, the algorithms and strategies 
described herein could also be applied to RE activity data 
generated exclusively from single-cell data. 
 

In summary, our results suggest that VEnCodes for a wide-variety 
of human primary cell types and cancer cells can be discovered, 
quality-controlled, and cross-validated in silico using heuristic 
algorithms and publicly-available genome-wide RE-usage 
databases, such as the FANTOM5 promoter and enhancer 
atlases. VEnCodes could be used to engineer intracellular 
biosensors or devices that use intersectional genetics tools to 
“read” the VEnCodes and translate them into a custom genetic 
output. This would allow systematic genetic access to any of 
these cell types or states. Genetic access carries enormous 
therapeutic potential by allowing the selective delivery of genetic 
messages and cures to cells, such as various forms of gene 
therapy or the specific genetic ablation of abnormal cancerous 
cells.  
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