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Abstract 1 

Whole genome sequencing (WGS) studies are being widely conducted to identify rare 2 

variants associated with human diseases and disease-related traits. Classical single-3 

marker association analyses for rare variants have limited power, and variant-set based 4 

analyses are commonly used to analyze rare variants. However, existing variant-set 5 

based approaches need to pre-specify genetic regions for analysis, and hence are not 6 

directly applicable to WGS data due to the large number of intergenic and intron regions 7 

that consist of a massive number of non-coding variants. The commonly used sliding 8 

window method requires pre-specifying fixed window sizes, which are often unknown as 9 

a priori, are difficult to specify in practice and are subject to limitations given genetic 10 

association region sizes are likely to vary across the genome and phenotypes.  We 11 

propose a computationally-efficient and dynamic scan statistic method (Scan the 12 

Genome (SCANG)) for analyzing WGS data that flexibly detects the sizes and the 13 

locations of rare-variants association regions without the need of specifying a prior fixed 14 

window size. The proposed method controls the genome-wise type I error rate and 15 

accounts for the linkage disequilibrium among genetic variants. It allows the detected 16 

rare variants association region sizes to vary across the genome. Through extensive 17 

simulated studies that consider a wide variety of scenarios, we show that SCANG 18 

substantially outperforms several alternative rare-variant association detection methods 19 

while controlling for the genome-wise type I error rates. We illustrate SCANG by 20 

analyzing the WGS lipids data from the Atherosclerosis Risk in Communities (ARIC) 21 

study. 22 

 23 
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Introduction 

An important goal of human genetic research is to identify the genetic basis for human 

diseases and traits. Genome-wide association studies (GWAS) have been widely used 

to dissect the genetic architecture of complex diseases and quantitative traits in the past 

ten years. Although GWAS has been successful for identifying thousands of common 

genetic variants putatively harboring susceptibility alleles for complex diseases,1 these 

common variants only explain a small fraction of heritability2 and the vast majority of 

variants in the human genome are rare.3; 4 In recent years, studies based on Whole 

Exome Sequencing have been conducted to detect rare variant associations in the 

coding sequences.5; 6 However, the majority of rare variants are non-coding and are 

located in introns and intergenic regions that are not covered by whole exome 

sequencing. The ENCODE project showed that a large fraction of these regions are 

functionally active,7 suggesting that these regions may also be linked with diseases or 

traits. A rapidly increasing number of Whole Genome Sequencing (WGS) association 

studies are being conducted to identify rare variants associated with complex traits and 

diseases. Examples include the Genome Sequencing Program of the National Human 

Genome Research Institute (NHGRI), and the Trans-Omics for Precision Medicine 

(TOPMed) Program of the National Heart, Lung, and Blood Institute (NHLBI). 

 

The common analytic strategy in GWAS is to perform individual variant tests followed by 

a multiple testing adjustment to identify trait- or disease-associated variants. However, 

individual variant analysis is not applicable for analyzing rare variants due to a lack of 

power.8-10 There is an active recent literature on rare variant analysis methods which 

jointly test the effects of multiple variants in a pre-specified genetic set, such as burden 

tests,11-13 and non-burden tests14-17 such as Sequence Kernel Association Test (SKAT14). 

Instead of testing each variant individually, these tests evaluate the cumulative effects of 

multiple variants in a gene, and can boost power when multiple variants in the region are 

associated with a disease or a trait.18; 19 A limitation of these variant set-based tests is 

that they need to pre-specify genetic regions to be used for analysis. Hence these 

existing gene-based approaches are not directly applicable to analysis of all the variants 

in WGS data, as variant sets are not well defined across the genome.  

 

Sliding window methods have been proposed to identify regions of the genome 

harboring rare variants associated with complex traits and diseases. These procedures 
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perform WGS association analysis by pre-specifying a certain size of moving windows 

that begin at the beginning of each chromosome with a fixed skip length and move along 

the genome.20-22 A major limitation of the sliding window approach is that it requires pre-

specifying a fixed window size, either using the base pairs or number of variants, which 

is often unknown in advance and might not be optimal across the genome and 

phenotypes. The sliding window size is often difficult to specify in practice, since the 

exact sizes of trait or disease-associated regions might differ across the genome and 

vary with phenotypes. Indeed, the sliding window methods are likely to lose power if a 

pre-specified region is too big by including too many neutral variants, e.g., by sub-

regions that contain only neutral variants, or a pre-specified region is too small by 

excluding adjacent regions that contain association signals. It is hence of substantial 

interest to develop a dynamic procedure that can scan the genome continuously by 

allowing the sizes and locations of the units for rare variant association testing to vary 

across the genome so that one can flexibly identify the associated regions without 

specifying a fixed window size and location as a priori. 

 

We propose using scan statistic-based methods to scan the whole genome continuously 

by allowing for overlapping windows of different sizes by “shifting forward” a window of a 

given size with a small number of variants at a time and searching for the windows 

containing association signals. Scan statistics are a broad class of methods looking for 

clusters of events in time and space. Some of them have been successfully used in 

genetic studies, e.g., to refine the search for new genes in linkage studies23 and to 

identify chromosomal patterns of SNP association for common variants in GWAS.24; 25 

Recently, likelihood-ratio based scan statistic procedures26; 27 have been proposed for 

identifying clusters of rare-disease variants in a large genetic region, such as a gene. 

However, these likelihood-ratio based scan methods are designed for refining a disease 

clustering region in a gene, but not for testing associations across the genome. Further, 

current methods do not allow covariates (e.g. age, sex, and population structures), and 

can only be used for binary traits. There is a pressing need to develop powerful scan 

methods for testing rare variant associations in WGS studies that can dynamically detect 

the varying sizes of rare variant association regions and their locations across the 

genome.  
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In this paper, we develop the SCAN the Genome (SCANG) method, which is a flexible 

and computationally efficient scan statistic procedure that uses the p-value of a variant 

set-based test as a scan statistic of each moving window, to detect rare variant 

association regions for both continuous and dichotomous traits. The goal of SCANG is to 

detect whether any rare-variant association region exists across the genome, and if they 

do exist, to identify the locations and sizes of these association regions. Specifically, 

SCANG first fits the null linear or logistic model that includes covariates, e.g., age, sex 

and ancestry PCs, but no genetic variants. Second, SCANG applies set-based tests to 

all possible candidate moving windows of different sizes within a pre-specified window 

range of practical interest. We include three tests in the SCANG framework: the burden 

test (SCANG-B), SKAT (SCANG-S) and an efficient omnibus test to aggregate 

information of the burden test and SKAT and different choices of weights using the 

ACAT method 28; 29 (SCANG-O). All the set-based tests share the same reduced model 

under the null hypothesis and hence the fitted null model is the same and only needs to 

be fit once when scanning the genome. Therefore, the computation of SCANG is highly 

efficient. Third, SCANG generates an empirical threshold calculated by Monte Carlo 

simulation, to control the Genome-wise/Family-wise Type I Error Rate (GWER/FWER) at 

a given level, e.g., 0.05. The windows with the p-values smaller than this threshold are 

detected as genome-wise significant association regions. Both individual-window p-

values and the genome-wise/family-wise p-values of these genome-wise significant 

windows are given.  

 

We demonstrate through simulation that SCANG is often more powerful than existing 

methods across a broad range of study designs for both continuous and dichotomous 

traits. We also apply SCANG to the analysis of the WGS and lipid traits from the 

Atherosclerosis Risk in Communities (ARIC) study. By allowing for estimating the 

optimal sizes of the genome-wide significant variants-phenotype association regions, 

SCANG detected a significant association between rare variants in a 4,637 bp region 

which resides in NECTIN2 [MIM:600798] on chromosome 19 with small dense low-

density lipoprotein cholesterol (sdLDL-c), an association that is missed by the 

conventional sliding window approach.20 SCANG also detected more association regions 

between rare variants and lipoprotein(a) (Lp(a)) than the sliding window procedure for all 

the considered tests.20 
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Material and Methods 
SCAN the Genome (SCANG) 
SCANG is a dynamic adaptive scan procedure for detecting regions of rare variants that 

are significantly associated with a phenotype. For each region, SCANG analytically 

calculates a set-based p-value and also empirically calculates a genome-wise p-value, 

which adjusts for multiple testing of all the moving windows of different sizes under 

consideration, including some overlapping windows, across the genome.  

 

Aggregation Tests for Multiple Variants of a Given Region 

Suppose that the data are from n subjects and there are p variants across the genome. 

Given a genetic set with 𝑝𝑝0 variants, for subject i, let 𝑦𝑦𝑖𝑖 denote a phenotype with mean 

𝜇𝜇𝑖𝑖, 𝑿𝑿𝒊𝒊 = (𝑋𝑋𝑖𝑖1,𝑋𝑋𝑖𝑖2, … ,𝑋𝑋𝑖𝑖𝑖𝑖) denote the covariates, and 𝑮𝑮𝒊𝒊 = (𝐺𝐺𝑖𝑖1, … ,𝐺𝐺𝑖𝑖𝑖𝑖) be a vector of 𝑚𝑚 

variants in a given variant set. To relate the sequenced variants in the set to the 

phenotype, when samples are unrelated, we consider the following Generalized Linear 

Model (GLM): 

𝑔𝑔(𝜇𝜇𝑖𝑖) = 𝛼𝛼0 + 𝑿𝑿𝒊𝒊𝑻𝑻𝜶𝜶+ 𝑮𝑮𝒊𝒊𝑻𝑻𝜷𝜷, 

where 𝑔𝑔(𝜇𝜇) = 𝜇𝜇 for a continuous trait, and 𝑔𝑔(𝜇𝜇) = logit(𝜇𝜇) for a binary trait, 𝛼𝛼0 is an 

intercept, 𝜶𝜶 = �𝛼𝛼1, … ,𝛼𝛼𝑞𝑞�
T is a 𝑞𝑞 × 1 column vector of covariate effects and 𝜷𝜷 =

(𝛽𝛽1, … ,𝛽𝛽𝑚𝑚)T is a 𝑚𝑚 × 1 vector of the genotype effects in the variant set. Under GLMs, the 

null hypothesis of no association between the genetic variants in a set with the trait, 

adjusting for covariates and population structure and relatedness, corresponds to testing 

the null hypothesis 𝐻𝐻0:𝜷𝜷 = 𝟎𝟎, that is, 𝛽𝛽1 = 𝛽𝛽2 = ⋯ = 𝛽𝛽𝑝𝑝0 = 0. The score statistic of the 

marginal model for variant j is defined as 

𝑈𝑈𝑗𝑗 = ∑ 𝐺𝐺𝑖𝑖𝑖𝑖(𝑦𝑦𝑖𝑖 − 𝜇̂𝜇𝑖𝑖)𝑛𝑛
𝑖𝑖=1 , 

where  𝜇̂𝜇𝑖𝑖 is the estimated mean of 𝑦𝑦𝑖𝑖 under the global null hypothesis (𝐻𝐻0:𝜷𝜷 = 0) and is 

obtained by fitting the global null model 𝑔𝑔(𝜇𝜇𝑖𝑖) = 𝛼𝛼0 + 𝑿𝑿𝒊𝒊𝜶𝜶. For an extension to account 

for relatedness using Generalized Linear Mixed Models (GLMMs), see the Discussion 

Section. 

 

To jointly test the effects of multiple variants in a given region I, burden tests collapse 

genotype information of all the variants in the region into a single genotype score and 
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test for the association between this score and a trait. Specifically, burden tests count 

the total number of minor alleles in the set and the corresponding score statistic is 

𝑄𝑄𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 = �∑ 𝑤𝑤𝑗𝑗𝑈𝑈𝑗𝑗𝑗𝑗∈𝐼𝐼 �2, 

where 𝑤𝑤𝑗𝑗 is the weight for variant j.10 𝑄𝑄𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 asymptotically follows a chi-square 

distribution with 1 degree of freedom and its p-value can be computed analytically.  

 

Another widely used set-based test is SKAT,14 which tests for the genetic set association 

using a variance-component score test. The corresponding SKAT test statistic is 

𝑄𝑄𝑠𝑠𝑘𝑘𝑘𝑘𝑘𝑘 = ∑ 𝑤𝑤𝑗𝑗2𝑈𝑈𝑗𝑗2𝑗𝑗∈𝐼𝐼 , 

where 𝑤𝑤𝑗𝑗 is the weight for variant j.14 𝑄𝑄𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 asymptotically follows a mixture of chi-square 

distributions and its p-value can also be obtained analytically.14  

 

For both burden test and SKAT, we consider using the family of beta densities of MAF 

as weights,14 i.e., for each variant j, 𝑤𝑤𝑗𝑗 = 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵(𝑀𝑀𝑀𝑀𝐹𝐹𝑗𝑗; 𝑎𝑎1,𝑎𝑎2), the beta density function 

with two parameters 𝑎𝑎1 and 𝑎𝑎2. Common choices of the parameters are 𝑎𝑎1 = 1 and 𝑎𝑎2 =

1, which correspond to equal weights under the assumption of the same effect of all 

variants, or 𝑎𝑎1 = 1 and 𝑎𝑎2 = 25, which corresponds to upweighting more rare variants 

under the assumption that more rare variants have larger effects. The power of each test 

depends on the true disease model. However, the true disease model is unknown and 

variable in practice. To robustly aggregate information from different tests and weights, 

we propose an omnibus test using the Cauchy method via ACAT28; 29 and define the test 

statistic as    

𝑄𝑄𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 =
1

|2𝐴𝐴|
� [ 𝑡𝑡𝑡𝑡𝑡𝑡��0.5 − 𝑝𝑝𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(𝑎𝑎1,𝑎𝑎2)�𝜋𝜋�

{𝑎𝑎1,𝑎𝑎2}∈𝐴𝐴

+  𝑡𝑡𝑡𝑡𝑡𝑡��0.5− 𝑝𝑝𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏(𝑎𝑎1,𝑎𝑎2)�𝜋𝜋� ], 

where  𝑝𝑝𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(𝑎𝑎1,𝑎𝑎2) and 𝑝𝑝𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏(𝑎𝑎1,𝑎𝑎2) denote the p-value of SKAT and burden test using 

the beta function 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏(𝑀𝑀𝑀𝑀𝑀𝑀,𝑎𝑎1,𝑎𝑎2) = 𝑀𝑀𝑀𝑀𝐹𝐹(𝑎𝑎1−1)(1−𝑀𝑀𝑀𝑀𝑀𝑀)(𝑎𝑎2−1) as the weight, and 𝐴𝐴 is 

a set of specified values (𝑎𝑎1,𝑎𝑎2), and |𝐴𝐴| is the size of set 𝐴𝐴. In the simulation studies, 

we set 𝐴𝐴 = {(𝑎𝑎1,𝑎𝑎2)} = {(1,1), (1,25)}.  Other choices of 𝑎𝑎1 and 𝑎𝑎2, e.g., (𝑎𝑎1,𝑎𝑎2) =

(0.5,0.5) can also be used. The p-value of  𝑄𝑄𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 could be approximated by29  

𝑝𝑝𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 = 1
2
− 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(𝑄𝑄𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜)

𝜋𝜋
. 

Compared to the minimum p-value combination, the Cauchy-based ACAT method is 

expected to increase power when more than one p-value of candidate tests are small. 

The proposed method also has two advantages over SKAT-O.17 First, it is flexible to the 
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choices of weights, while SKAT-O is not able to combine SKAT and burden test under 

different choices of weights. Second, SKAT-O is computationally more expensive than 

the proposed omnibus test using ACAT.  

 

Dynamic Detection of Rare Variants Association Regions with Different Window Sizes 

using Scan Statistic 

Under the global null hypothesis, no variant is associated with a phenotype across the 

genome. Under the alternative hypothesis, there exist r signal regions that contain 

variants associated with the phenotype. We allow the variants-phenotype associated 

signal regions to have different sizes across the genome. Our goal is to detect whether 

any variants-phenotype associated region exists across the genome, and if they do 

exist, to identify the locations and sizes of these regions. Specifically, we first test the 

global null of variants-phenotype association region in the genome 𝐻𝐻0: 𝑟𝑟 = 0, and if 𝐻𝐻0 is 

rejected, detect and estimate all the variants-phenotype associated regions.  

 

SCANG tackles this hypothesis testing problem by using the extreme value of the set-

based p-value of all candidate moving windows of different sizes in a range of windows 

of practical interest, 

𝑝𝑝𝑚𝑚𝑚𝑚𝑚𝑚 =  max
𝐿𝐿𝑚𝑚𝑚𝑚𝑚𝑚≤|𝐼𝐼|≤𝐿𝐿𝑚𝑚𝑚𝑚𝑚𝑚 

𝑝𝑝(𝐼𝐼), 

where 𝑝𝑝(𝐼𝐼) is the p-value of region I, |I| denotes the number of variants in region I, and 

𝐿𝐿𝑚𝑚𝑚𝑚𝑚𝑚 and 𝐿𝐿𝑚𝑚𝑚𝑚𝑚𝑚 are the smallest and largest variants number in windows of practical 

interest that are used for searching, respectively. For SCANG-S(𝑎𝑎1,𝑎𝑎2) and SCANG-

B(𝑎𝑎1,𝑎𝑎2), 𝑝𝑝(𝐼𝐼) is the p-value of SKAT and burden test using beta(MAF) weight with 

parameters 𝑎𝑎1 and 𝑎𝑎2, respectively. For SCANG-O, 𝑝𝑝(𝐼𝐼) = 𝑝𝑝𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 is the p-value of the 

proposed omnibus test which combines the information of burden test and SKAT using 

different weighting schemes using ACAT. A small value of 𝑝𝑝𝑚𝑚𝑚𝑚𝑚𝑚 indicates evidence 

against the null hypothesis. We reject the null hypothesis if the p-value of a region is 

smaller than a given threshold which controls the genome/family-wise type I error at the 

𝛼𝛼 level. If this results in only one region, the estimated signal region, i.e., the variants-

phenotype associated region, is 𝐼𝐼 = argmin𝐿𝐿𝑚𝑚𝑚𝑚𝑚𝑚≤|𝐼𝐼|≤𝐿𝐿𝑚𝑚𝑚𝑚𝑚𝑚  𝑝𝑝(𝐼𝐼). If this results in multiple 

overlapping regions, we localize the signal region as the interval whose p-value is 
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smaller than the threshold and achieves the local minimum in the sense that the p-value 

of that region is smaller than the regions that overlap with it.  

 

Threshold for Controlling the Genome/Family-Wise Type I Error Rate 

Since the candidate search windows in SCANG overlap with each other, the test 

statistics of these windows are highly correlated, and hence the standard Bonferroni 

correction for multiple testing adjustment is too conservative for SCANG and leads to 

power loss. Therefore, we propose an empirical threshold to control for the genome-wise 

type I error rate at the 𝛼𝛼 level. The empirical threshold is calculated based on Monte 

Carlo simulations. For each simulated set 𝑏𝑏, We sample a set of 𝑛𝑛 × 1 vectors {𝒖𝒖�𝒃𝒃}1≤𝑏𝑏≤𝐵𝐵 

from a multivariate normal distribution 𝑁𝑁(0, 𝑰𝑰𝒏𝒏) and calculate the pseudo-score vector by 

𝑼𝑼�𝒃𝒃 = 𝑮𝑮𝑷𝑷
𝟏𝟏
𝟐𝟐𝒖𝒖�𝒃𝒃, where 𝑮𝑮 = (𝑮𝑮𝟏𝟏𝑻𝑻, … ,𝑮𝑮𝒏𝒏𝑻𝑻) is the 𝑝𝑝 × 𝑛𝑛 genotype matrix, 𝑝𝑝 is the total number of 

observed variants in the whole genome in a study and 𝑛𝑛 is the number of subjects in the 

study, and 𝑷𝑷 is the 𝑛𝑛 × 𝑛𝑛 projection matrix of the null GLM.14; 30 Note that every pseudo-

score vector uses the same genotype matrix 𝑮𝑮 and shares the same estimated 𝑝𝑝 ×

𝑝𝑝 covariance matrix 𝚺𝚺� = 𝑮𝑮𝑮𝑮𝑮𝑮𝑻𝑻. Then we calculate the region-based p-value of 𝑝𝑝�𝑏𝑏(𝐼𝐼) 

using the pseudo-score 𝑼𝑼�𝒃𝒃. Although the individual score statistic might not be normally 

distributed for rare variants, the distributions of set-based test statistics are the same as 

those calculated using the pseudo-scores by assuming the normality for individual 

pseudo-scores, e.g., SKAT statistics using the observed scores and the pseudo-scores 

both follow a mixture of chi-square distribution. Hence the pseudo-p-value 𝑝𝑝�𝑏𝑏(𝐼𝐼) follows 

the same distribution as 𝑝𝑝(𝐼𝐼). Finally we calculate the extreme value 𝑝𝑝�𝑚𝑚𝑚𝑚𝑚𝑚
𝑏𝑏  of  𝑝𝑝�𝑏𝑏(𝐼𝐼) using 

the pseudo-score 𝑼𝑼�𝒃𝒃. To control for the genome/family-wise type I error rate at the 𝛼𝛼 

level, we use the 𝛼𝛼th quantile of the empirical distribution of �𝑝𝑝�𝑚𝑚𝑚𝑚𝑚𝑚
𝑏𝑏 �1≤𝑏𝑏≤𝐵𝐵 as the 

threshold. In practice, we select 𝐵𝐵 = 2,000 for controlling the genome-wise/family-wise 

type I error rate, for example, at the 0.05 level. 

  

Searching Algorithm for Multiple Signal Regions 

In general, there might be several regions associated with the phenotype in the whole 

genome sequence. We note that the signal regions are short relatively to the size of the 

whole genome, and reasonably well separated in WGS. Hence intuitively, the scan 

statistic (p-value) of a properly estimated signal region should achieve a local minimum. 

On the other hand, the estimated signal region should also achieve genome-wise 
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significance. We now describe an algorithm for detecting multiple signal regions 

(variants-phenotype association regions) as follows.   

1. Set a genome-wise/family-wise significance level 𝛼𝛼, e.g, 𝛼𝛼 = 0.05, the largest 

number of variants used in searching windows 𝐿𝐿𝑚𝑚𝑚𝑚𝑚𝑚, the smallest number of 

variants used in searching windows 𝐿𝐿𝑚𝑚𝑚𝑚𝑚𝑚 and an overlap fraction 0 ≤ 𝑓𝑓 ≤ 1, 

whose explanation is provided below. Calculate the empirical threshold 

ℎ(𝛼𝛼, 𝐿𝐿𝑚𝑚𝑚𝑚𝑚𝑚,𝐿𝐿𝑚𝑚𝑚𝑚𝑚𝑚 ) for controlling the genome/family-wise type I error rate at the 𝛼𝛼 

level.  

2. Calculate the 𝑝𝑝(𝐼𝐼) for all the windows whose numbers of variants |𝐼𝐼|′𝑠𝑠 are 

between 𝐿𝐿𝑚𝑚𝑚𝑚𝑚𝑚 and 𝐿𝐿𝑚𝑚𝑚𝑚𝑚𝑚. 

3. Pick the candidate set  

ℐ1 = {𝐼𝐼:  𝑝𝑝(𝐼𝐼) < ℎ(𝛼𝛼, 𝐿𝐿𝑚𝑚𝑚𝑚𝑚𝑚,𝐿𝐿𝑚𝑚𝑚𝑚𝑚𝑚),  𝐿𝐿𝑚𝑚𝑚𝑚𝑚𝑚 ≤ |𝐼𝐼| ≤ 𝐿𝐿𝑚𝑚𝑚𝑚𝑚𝑚 }, 

where  ℎ(𝛼𝛼, 𝐿𝐿𝑚𝑚𝑚𝑚𝑚𝑚,𝐿𝐿𝑚𝑚𝑚𝑚𝑚𝑚) is the empirical threshold to control for the genome-wise 

type I error at the 𝛼𝛼 level. If ℐ1 ≠ ∅, we reject the null hypothesis. Then rank the 

p-values of all the regions in the candidate set from the smallest to the largest, 

and set 𝑗𝑗 = 1 and proceed with the following steps. 

4. Let 𝐼𝐼𝑗𝑗 = argmin𝐼𝐼∈ℐ𝑗𝑗  𝑝𝑝(𝐼𝐼), remove all the regions that overlap by more than the 

prespecified overlap fraction f with 𝐼𝐼𝑗𝑗 from the candidate set, and update the 

candidate set as ℐ𝑗𝑗+1, that is, ℐ𝑗𝑗+1 = ℐ ∖ {𝐼𝐼 ∈ ℐ𝑗𝑗:  �𝐼𝐼⋂𝐼𝐼𝑗𝑗� / |𝐼𝐼| > 𝑓𝑓}. 

5. Repeat step 4 with 𝑗𝑗 = 𝑗𝑗 + 1 until ℐ𝑗𝑗 is an empty set. 

6. Define 𝐼𝐼1, 𝐼𝐼2, … as the estimated signal regions. 

Figure S21 in the supplementary materials shows a simple example of this searching 

algorithm. Specification of the minimum and maximum searching window lengths 𝐿𝐿𝑚𝑚𝑚𝑚𝑚𝑚 

and 𝐿𝐿𝑚𝑚𝑚𝑚𝑚𝑚 is an important issue in SCANG. Specifically, the range of the searching 

window length should be wide enough to ensure that each signal region will be 

searched. In the meantime, the range of the searching window length determines 

computation complexity. A smaller range of searching window lengths requires less 

computation. In practice, we choose the smallest and largest searching window lengths 

𝐿𝐿𝑚𝑚𝑚𝑚𝑚𝑚 and 𝐿𝐿𝑚𝑚𝑚𝑚𝑚𝑚 based on sliding windows with multiple sizes, for example, in the 

simulation studies, we set 𝐿𝐿𝑚𝑚𝑚𝑚𝑚𝑚 as the 1%st percentile of the number of variants in all the 

3 kb sliding windows of simulated genome, and 𝐿𝐿𝑚𝑚𝑚𝑚𝑚𝑚 as the 99%th percentile of the 
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number of variants in all 7 kb sliding windows of simulated genomes for the given 

sample size.  

 

Since we consider all possible locations and multiple sizes of moving windows within the 

range 𝐿𝐿𝑚𝑚𝑚𝑚𝑚𝑚 ≤ |𝐼𝐼| ≤ 𝐿𝐿𝑚𝑚𝑚𝑚𝑥𝑥  in the SCANG procedure, there might be multiple overlapped 

regions which achieve genome-wise significance. The fraction f is defined as the 

proportion of overlapped variants and controls for the degree of overlapping of detected 

regions. For example, when 𝑓𝑓 = 0, the detected regions are non-overlapping with each 

other, and when 𝑓𝑓 = 1, we keep every region below the genome-wise/family-wise 

threshold as the detected regions. In simulation studies and real data analysis, we allow 

the detected signal regions to be overlapping and set the overlap fraction 𝑓𝑓 = 0.5. To 

reduce the computation time, we consider the searching window length with a skip of 5 

variants.  

 

Simulation Studies 

To validate SCANG in terms of protecting the genome/family-wise type I error and to 

assess its power compared to the conventional sliding window procedure, which 

considers sliding windows with a fixed length and skip length, we carried out simulation 

studies using a wide range of configurations. For all simulations, we generated 

sequence data by simulating 20,000 chromosomes for a 5 Mb region on the basis of the 

calibration coalescent model that mimics the linkage disequilibrium (LD) structure of 

samples of African American by using COSI.31 The simulation studies used the 5 Mb 

sequence to represent the whole genome and focused on low frequency and rare 

variants (minor allele frequency, MAF < 0.05). 

 

Type I Error Simulations 

To investigate whether SCANG preserves the desired genome/family-wise type I error 

rate, we simulated continuous phenotypes using the model: 

𝒚𝒚 = 0.5𝑿𝑿𝟏𝟏 + 0.5𝑿𝑿𝟐𝟐 + 𝝐𝝐, 
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where 𝑿𝑿𝟏𝟏 is a continuous covariate generated from a standard normal distribution, 𝑿𝑿𝟐𝟐 is 

a dichotomous covariate taking values 0 and 1 with a probability of 0.5, and 𝝐𝝐 follows a 

standard normal distribution. 

 

We repeated the type I error simulations for dichotomous phenotypes as above, except 

the dichotomous outcomes were generated via the model: 

logit 𝑃𝑃(𝑦𝑦 = 1) = 𝛼𝛼0 + 0.5𝑿𝑿𝟏𝟏 + 0.5𝑿𝑿𝟐𝟐, 

where 𝑿𝑿𝟏𝟏 and 𝑿𝑿𝟐𝟐 were continuous covariates, 𝛼𝛼0 was set to make the prevalence to 1%. 

Case-control sampling was used.  

 

For both continuous and dichotomous simulations, we applied SCANG-B, SCANG-S and 

SCANG-O to 104 replicates of genomes with size 5 MB, and examined the genome-wise 

type I error rate at α = 0.05 and 0.01. For SCANG-B and SCANG-S, we considered two 

weighting schemes, that is, for each variant j, 𝑤𝑤𝑗𝑗 = 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵(𝑀𝑀𝑀𝑀𝐹𝐹𝑗𝑗; 1,25) or 𝑤𝑤𝑗𝑗 =

𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵(𝑀𝑀𝑀𝑀𝐹𝐹𝑗𝑗; 1,1) (unweighted). For SCANG-O, we used the ACAT method to construct 

the omnibus scan test by combining SKAT and burden in each window with two different 

weights 𝑤𝑤𝑗𝑗 = 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵(𝑀𝑀𝑀𝑀𝐹𝐹𝑗𝑗; 1,25) or 𝑤𝑤𝑗𝑗 = 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵(𝑀𝑀𝑀𝑀𝐹𝐹𝑗𝑗; 1,1) (unweighted) with the SCANG 

framework. The smallest and largest numbers of variants used in searching windows 

𝐿𝐿𝑚𝑚𝑚𝑚𝑚𝑚 and 𝐿𝐿𝑚𝑚𝑚𝑚𝑚𝑚  were determined by the distributions of the numbers of variants in all 

sliding windows of 3 kb, 4 kb, 5 kb, 6kb and 7 kb in length. Specifically, we select the 

smallest number of variants of searching windows 𝐿𝐿𝑚𝑚𝑚𝑚𝑚𝑚 as the 1%st percentile of the 

number of variants in all the 3 kb sliding windows of simulated genomes, and the largest 

number of variants of searching windows 𝐿𝐿𝑚𝑚𝑚𝑚𝑚𝑚 as the 99%th percentile of the number of 

variants in all 7 kb sliding windows of simulated genomes. Note that 𝐿𝐿𝑚𝑚𝑚𝑚𝑚𝑚 and 𝐿𝐿𝑚𝑚𝑚𝑚𝑚𝑚 

depend on the sample sizes n, which were set to be 2500, 5000 and 10000. To be 

specific, we set in the simulation  𝐿𝐿𝑚𝑚𝑚𝑚𝑚𝑚 = 45 and 𝐿𝐿𝑚𝑚𝑚𝑚𝑚𝑚 = 185 for n = 2,500, 𝐿𝐿𝑚𝑚𝑚𝑚𝑚𝑚 = 50 and 

𝐿𝐿𝑚𝑚𝑚𝑚𝑚𝑚 = 200 for n = 5,000, and 𝐿𝐿𝑚𝑚𝑚𝑚𝑚𝑚 = 70 and 𝐿𝐿𝑚𝑚𝑚𝑚𝑚𝑚 = 250 for n = 10,000. 

 

Empirical Power Simulations 
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We randomly selected two signal regions (variants-phenotype association regions) 

across the 5 Mb sequence in each replicate. The length of the signal regions was 

randomly selected with lengths 3 kb, 4 kb, 5 kb and 6 kb. Within each signal region, 10% 

of variants were randomly chosen as causal variants with non-zero effect sizes β’s and 

the effect sizes of causal variants were set as a decreasing function of MAFs specified 

later in this paragraph.  We generated continuous phenotypes by 

𝒚𝒚 = 0.5𝑿𝑿𝟏𝟏 + 0.5𝑿𝑿𝟐𝟐 + 𝛽𝛽1𝑮𝑮𝟏𝟏𝒄𝒄 + ⋯𝛽𝛽𝑠𝑠𝑮𝑮𝒔𝒔𝒄𝒄 + 𝝐𝝐, 

where 𝑿𝑿𝟏𝟏, 𝑿𝑿𝟐𝟐 and 𝝐𝝐 are the same as those used in the type I error simulations, 𝑮𝑮𝟏𝟏𝒄𝒄 , … ,𝑮𝑮𝒔𝒔𝒄𝒄 

are the genotypes of the s causal variants in the two signal regions, and 𝛽𝛽s are effect 

sizes for causal variants. Similarly, we generated dichotomous phenotypes for case-

control data under the logistic model 

logit 𝑃𝑃(𝑦𝑦 = 1) = 𝛼𝛼0 + 0.5𝑿𝑿𝟏𝟏 + 0.5𝑿𝑿𝟐𝟐 + 𝛽𝛽1𝑮𝑮𝟏𝟏𝒄𝒄 +⋯𝛽𝛽𝑠𝑠𝑮𝑮𝒔𝒔𝒄𝒄, 

where 𝛼𝛼0, 𝑿𝑿𝟏𝟏 and 𝑿𝑿𝟐𝟐 are the same as those used in the type I error simulations, 

𝑮𝑮𝟏𝟏𝒄𝒄 , … ,𝑮𝑮𝒔𝒔𝒄𝒄 are again the genotypes of the s causal variants in the 2 signal regions, and 𝛽𝛽s 

are log ORs for the causal variants. For both models, we set the effect sizes as a 

decreasing function of MAFs 𝛽𝛽𝑗𝑗 = 𝑐𝑐| 𝑙𝑙𝑙𝑙𝑙𝑙10 𝑀𝑀𝑀𝑀𝐹𝐹𝑗𝑗 |, for continuous traits, 𝑐𝑐 = 0.18, and for 

dichotomous traits, 𝑐𝑐 = 0.255, which gives an OR of 3 for a variant with MAF = 5 × 10−5. 

 

We applied SCANG-B, SCANG-S and SCANG-O to simulated datasets, and compared 

them with the corresponding conventional sliding window procedure where the sliding 

window size was set to be fixed at 3 kb, 4kb, 5kb, 6kb, 7 kb. For burden test and SKAT, 

we considered the same two weighting schemes as those in the type I error simulations, 

i.e., for the jth variant, 𝑤𝑤𝑗𝑗 = 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵(𝑀𝑀𝑀𝑀𝐹𝐹𝑗𝑗; 1,1) (unweighted) and 𝑤𝑤𝑗𝑗 = 𝐵𝐵𝐵𝐵𝑡𝑡𝑡𝑡(𝑀𝑀𝑀𝑀𝐹𝐹𝑗𝑗; 1,25).  

We controlled the genome/family-wise type I error rate at the 0.05 level by using the 

proposed empirical threshold for SCANG and the Bonferroni correction for sliding 

window procedures. The ranges of the searching window lengths specified as the 

minimum and maximum numbers of variants in searching windows are the same as 

those used in the type I error rate simulation, i.e, (𝐿𝐿𝑚𝑚𝑚𝑚𝑚𝑚, 𝐿𝐿𝑚𝑚𝑚𝑚𝑚𝑚) =

(45,185), (50, 200), (70, 250) for sample sizes 2,500, 5,000, 10,000 respectively. Note 

that the lengths of signal regions are randomly set from 3 kb to 6 kb, hence the ranges of 
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the searching window lengths specified using the smallest and the largest numbers of 

variants in 3 kb to 7 kb searching windows were larger than those of true signal regions. 

Burden test, SKAT and the proposed omnibus test were considered in the framework of 

SCANG and the conventional sliding window procedure. 

 

In order to evaluate power, we considered two criteria. The first one is the causal variant 

detection rate, which is defined as 

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 =
𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝑜𝑜𝑜𝑜 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣

. 

Here we defined a causal variant is detected if it is in one of detected signal regions. The 

causal variants detection rate could be regarded as the power of causal variants 

detection. The second one is the signal region detection rate, which is defined as  

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 =
𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝑜𝑜𝑜𝑜 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟

. 

Here we defined the signal region as detected if it is overlapped with one of detected 

signal regions. Both the causal variant detection rate and the signal region detection rate 

can be regarded as the power of test. 

 

Application to ARIC WGS Data 

The Atherosclerosis Risk in Communities (ARIC) study WGS data were generated by 

the Baylor College of Medicine Human Genome Sequencing Center. DNA samples were 

sequenced at 7.4-fold average depth on Illumina HiSeq instruments. After sample-level 

quality control,20 the ARIC WGS data consisted of around 55 million variants observed in 

1,860 African Americans (AAs) and 33 million variants observed in 1,705 European 

Americans (EAs). Among all of the variants, 17.3% and 19.4% of them were common 

variants (MAF>5%) in AA and EA individuals, respectively. For this analysis, we focused 

on analyzing low frequency/rare variants across the genome, including low-frequency 

variants (1% ≤ MAF ≤ 5%, 13.4% in AA and 9.1% in EA) and rare variants (MAF < 1%, 

69.3% in AA and 71.5% in EA).  
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To illustrate the proposed methods, we applied SCANG and a sliding window procedure 

for the whole-genome association analyses of two quantitative traits, sdLDL-c and Lp(a), 

both of which are related to cardiovascular disease risk.20 Following Morrison et.al,20 for 

the sliding window approach, we used the sliding window of length 4 kb and began at 

position 0 bp for each chromosome, with a skip length of 2 kb, and tested for the 

associations between the variants in each window and the phenotype using SKAT and 

burden test that weighted the variants by weights 𝑤𝑤𝑗𝑗 = 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵(𝑀𝑀𝑀𝑀𝑀𝑀; 1,25) and no weight 

𝑤𝑤𝑗𝑗 = 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵(𝑀𝑀𝑀𝑀𝑀𝑀; 1,1), respectively. For the SCANG procedure, we applied the 

corresponding SCANG-S(1,25) and SCANG-B(1,1) to detect rare variant association 

regions. We further applied SCANG-O, which used the proposed omnibus test that 

aggregated SKAT(1,1), SKAT(1,25), Burden(1,1) and Burden(1,25) in the SCANG 

framework. We adjusted for age, sex and the first three principal components of ancestry 

in the analysis, consistent with that described in Morrison et al.20 Since the distribution of 

both sdLDL-c and Lp(a) are markedly skewed, we used the rank-based inverse normal 

transformed traits as phenotypes in the analysis.  

 

We set the range of search window sizes in the SCANG procedures by specifying the 

minimum and maximum numbers of variants in searching windows between 𝐿𝐿𝑚𝑚𝑚𝑚𝑚𝑚 and 

𝐿𝐿𝑚𝑚𝑚𝑚𝑚𝑚, which was determined by the distributions of the numbers of variants in all the 3 

kb, 4 kb, 5 kb, 6 kb and 7 kb sliding windows, that is, the 1%st percentile of the numbers 

of variants of all 3 kb sliding windows and the 99%th percentile of the numbers of 

variants of all 7 kb sliding windows. Since the number of variants in AAs is larger than 

that of EAs, 𝐿𝐿𝑚𝑚𝑚𝑚𝑚𝑚 and 𝐿𝐿𝑚𝑚𝑚𝑚𝑚𝑚 are different between AAs and EAs. Specifically, for AAs, 

𝐿𝐿𝑚𝑚𝑚𝑚𝑚𝑚 = 20 and 𝐿𝐿𝑚𝑚𝑚𝑚𝑚𝑚 = 170, and for EAs, 𝐿𝐿𝑚𝑚𝑚𝑚𝑚𝑚 = 15 and 𝐿𝐿𝑚𝑚𝑚𝑚𝑚𝑚 = 120. We controlled the 

genome-wise/family-wise error rate (GWER/FWER) at the 0.05 level in the SCANG 

analysis using the proposed empirical threshold. For the sliding window procedure, 

followed Morrison et al,20 a minimum number of 3 minor allele counts were required in a 

window with a skip of length of 2kb, resulting in a total of 1,337,673 and 1,337,382 4 kb 

overlapping windows in AA and EA, respectively. As around 1.3 million windows were 

tested using the sliding window procedure, we used the Bonferroni method to control for 

the GWER/FWER at the 0.05 level. We hence set the region-based significance 
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threshold for the sliding window procedure at 3.75 × 10−8 (approximately equal to 

0.05/1,337,000). We note that SCANG directly controls for the GWER/FWER without the 

need of further multiple testing adjustment.  

 

Results 

Simulation of the Type I Error 

The empirical genome-wise/family-wise type I error rates estimated for the SCANG 

methods, including SCANG-B(1,1), SCANG-B(1,25), SCANG-S(1,1), SCANG-S(1,25) 

and SCANG-O are presented in Table 1 for α = 0.05 and 0.01 levels, respectively. All 

the five procedures have a well-controlled GWER type I error rate for both continuous 

and dichotomous traits at these significant levels, though for dichotomous traits in small 

sample size (n=2,500), SCANG-S(1,1) and SCANG-S(1,25) could be slightly 

conservative.  

 

Additional results from simulations of the genome-wise type I error for SCANG using 

different ranges of searching window lengths are presented in Table S1 and S2 for both 

continuous traits and dichotomous traits. They suggest that SCANG properly controls 

the genome-wise type I error rate at the nominal 𝛼𝛼 = 0.05 or 0.01 levels for continuous 

traits. For dichotomous traits, SCANG-B(1,1), SCANG-B(1,25) and SCANG-O could also 

protect the genome-wise type I error, while SCANG-S(1,1) and SCANG-S(1,25) are 

conservative when the minimum searching length is small accompanying small sample 

sizes. In the current application, there were only include 20 variants in a region with a 

sample size of 2500, but it quickly approaches the nominal type I error rate 0.05 or 0.01 

as the sample size increases. 

 

Statistical Power of SCANG and Alternative Methods 

We compared the power of SCANG with the conventional sliding window procedure in a 

series of simulation studies for both continuous and dichotomous traits by generating 5 

Mb sequence data using a coalescent model. The ranges of the searching window 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted February 17, 2019. ; https://doi.org/10.1101/552950doi: bioRxiv preprint 

https://doi.org/10.1101/552950


17 
 

lengths specified using the smallest and the largest numbers of variants in searching 

windows were much larger than those of true signal regions (Figure S1).  

 

For continuous traits, SCANG had a much higher power than the sliding window 

procedure in the sense that SCANG had higher causal variants and signal region 

detection rates, and the advantages of SCANG were consistent for different choices of 

tests and weights (Figure 1 and Figure S2). For the sliding window procedures, the 

causal variants detection rate increased as the searching window length increased, 

while the signal region detection rate decreased as the searching window length 

increased. This indicates that, when the searching window length increases, the sliding 

window procedure tends to miss more signal regions, but the detected significant 

regions contain more causal variants. SCANG solves this problem by flexibly selecting 

the locations and the sizes of the signal regions.  

 

The power difference between SCANG-S and the conventional sliding window method 

was similar using both weighting schemes, indicating that the substantial power gain of 

SCANG-S was robust to the choices of weights. Since only 10% of variants are causal 

variants in the signal regions, the power of SCANG-B was much lower than SCANG-S. 

However, the difference in power between SCANG-B and the conventional sliding 

window method was even larger, suggesting that the superior performance of SCANG is 

intrinsic and is not driven by the choices of set-based tests. The simulation results 

examining dichotomous traits were qualitatively similar and showed SCANG 

outperformed the conventional sliding window method, and the superior performance of 

SCANG was robust to the choices of set-based tests and weights (Figure S3 and S4). 

 

We also conducted power simulations for different proportions of causal variants (40%) 

and different effect sizes in the signal regions. The results for both continuous and 

dichotomous phenotypes are presented in Figures S5-S16. They show that SCANG had 

much higher power than the conventional sliding window procedure in all considered 

settings. The power gain was also consistent for different choices of set-based tests and 

weights, and increased with the percentage of causal variants in signal regions. 
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Furthermore, with 10% causal variants in signal regions, the power of SCANG-S was 

higher than that of SCANG-B. With 40% causal variants in signal regions, the power of 

SCANG-B was higher than that of SCANG-S. In both scenarios, the power of SCANG-O 

was similar to the method that has the higher power (Figure 2 and Figure S17), 

demonstrating that SCANG-O is robust and has omnibus power and could aggregate 

different association tests without losing much power.  

 

We further compared the power of SCANG-O with SCANG-S(1,1), SCANG-S(1,25), 

SCANG-B(1,1) and SCANG-B(1,25) for multiple effect sizes and different causal variants 

proportions (10% and 40%) of 10,000 samples, where the two numbers in the 

parentheses are the values (𝑎𝑎1,𝑎𝑎2) of the weight using the beta function beta(MAF, 𝑎𝑎1, 

𝑎𝑎2). The results for continuous trait and binary trait are summarized in Figure S18 and 

Figure S19 in the Supplementary Data. The pattern was similar, and showed SCANG-O 

has a similar power to the method with the highest power if the genetic architecture were 

known, and is robust with little power loss by combining different tests. 

 

Application to ARIC WGS Data 

We compared the results using SCANG and the conventional sliding window procedure 

from the analysis of the lipid traits using the WGS data from the ARIC study. SCANG 

detected a region of 4,637 bp (from 45,382,398 to 45,387,034 bp on chromosome 19) 

consisting of 60 variants that had a significant association with sdLDL-c. Specifically, this 

detected region has a region-based p-value of 1.31× 10−9 and genome-wise/family-wise 

p-value of 0.0445, among EAs using SCANG-O, which uses the ACAT method to 

combine SKAT(1,1), SKAT(1,25), Burden(1,1) and Burden(1,25) in each search window. 

This region resides in NECTIN2 and covers two uncommon variants with individual 

variant-level p-values less than 1 × 10−6, including rs41290120 (𝑝𝑝 = 8.47 × 10−9 ), which 

is a pQTL of apolipoprotein E32, and rs283808 ( 𝑝𝑝 = 5.71 × 10−7). Note several common 

variants in NECTIN2 have been found to have significant association with sdLDL-c in 

previous studies.33; 34  There is no significant region detected by SCANG-S(1,25) and 

SCANG-B(1,1). The significance of SCANG-O for this region was driven by SCANG-

S(1,1). 
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The conventional 4 kb sliding window approaches used in the earlier analysis20 did not 

identify any genome-wide signal regions. Specifically, none of the 4 kb sliding windows 

covers both variants rs41290120 and rs283808 in NECTIN2. In the sliding windows that 

cover variant rs41290120, their p-values are much larger than that of the detected region 

from SCANG (Table 2).  For example, the proposed omnibus test gives p-value 4.7 ×

10−8 and 4.5 × 10−8 for the sliding windows indexed by rs41290120, which is larger than 

that of the detected region by SCANG-O (𝑝𝑝 = 1.3 × 10−9). The significant region 

detected by SCANG-O was evaluated for replication in ARIC AAs and was also strongly 

associated with sdLDL-c (𝑝𝑝 = 2.7 × 10−4), and was more significant than the sliding 

windows indexed by rs41290120 (Table 3).     

 

Figure 3 and Figure S20 summarize the genetic landscapes of the windows that are 

significantly associated with Lp(a) among AAs and EAs separately, using the five 

methods (SCANG-O, SCANG-S(1,25), SCANG-B(1,1) and the two sliding window 

procedures using SKAT(1,25) and Burden(1,1), where the two numbers in the 

parentheses are the values of beta(MAF) weight parameters 𝑎𝑎1 and 𝑎𝑎2, respectively. All 

of the significant windows resided in a 1.02 Mb region on chromosome 6 (from 

160,501,196 bp to 161,524,329 bp), which includes seven genes IGF2R [MIM: 147280], 

SLC22A1 [MIM: 602607], SLC22A2 [MIM: 602608], SLC22A3 [MIM: 604842], LPAL2 

[MIM: 611682], LPA [MIM: 152200], PLG [MIM: 173350] and MAP3K4 [MIM: 602425], 

which have been previously shown to have common variants associated with Lp(a).35-38 

Overall, the significant regions detected by SCANG-S(1,25) and SCANG-B(1,1) not only 

covered the significant windows detected by the corresponding sliding window 

procedures in both populations, but also detected several new regions that were missed 

by the sliding window method.  

 

Specifically, SCANG-S(1,25) detected 132 and 64 significant regions, outperforming the 

4 kb sliding window procedure with SKAT(1,25) which detected 127 and 35 significant 

sliding windows among AAs and EAs, respectively. SCANG-B(1,1) detected 54 and 19 

significant regions, while the 4 kb sliding window procedure only detected 8 and 5 
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significant sliding windows among AAs and EAs, respectively. In addition, SCANG-

S(1,25) and SCANG-B(1,1) were also able to detect several new regions which were 

separated from the regions detected by the corresponding sliding window procedures. 

For example, SCANG-S(1,25) could detect significant association between regions in 

IGF2R (from 160,501,196 bp to 160,507,026 bp) among EAs, which are at least 90 kb 

away from the detected sliding windows. The performance of SCANG-O was similar to 

SCANG-S(1,25), which detected most associations among the five methods. In 

summary, SCANG-O not only enables the identification of more significant findings, but 

also is less likely to miss important regions.  

 

Computational Time 

The computation time of SCANG depends on the sample size and the range of 

searching window lengths. To analyze a 5 Mb region sequenced on 2,500, 5,000 or 

10,000 individuals, when we selected the searching window length between 3 kb and 7 

kb, SCANG-O required 14 mins, 40 mins and 2 hours, respectively, on a 2.70 GHz 

laptop with 12 Gb memory. The computation cost decreased as the range of searching 

window length decreased, for example, it only required half of the time when we selected 

the searching window length between 3 kb and 5 kb. SCANG-O took 36 hours for 

analyzing the whole genome of EA individuals with ARIC whole genome sequencing 

data using the same single laptop. SCANG also works for parallel computing. Analyzing 

the whole genome on 10,000 individuals only requires 12 hours if using 100 computation 

cores for SCANG-O. Computing time can be further substantially reduced using cloud 

computing.39 

 

DISCUSSION 
To overcome the limitations of the commonly used sliding window methods, which 

require pre-specifying fixed window lengths that are often unknown in practice, we 

propose SCANG, a dynamic and computationally efficient data adaptive scan procedure 

for use in WGS studies. SCANG is able to flexibly and powerfully detect rare variant 

associated regions in WGS by allowing the sizes of the variants-phenotype association 

regions to vary over the genome. SCANG allows for overlapping windows in scanning 
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the genome and controls for the genome/family-wise error rate using an empirical 

threshold. Using extensive simulation studies, we demonstrate that SCANG is able to 

properly control for the genome/family-wise error rate, and the power of SCANG is 

greater than that of the conventional sliding window procedures using a fixed window 

size. Analysis of WGS and lipid data from the ARIC study illustrates the advantages of 

the proposed scan method for rare variants analysis. SCANG-O detected considerably 

more significant variants-phenotype association regions than the conventional sliding 

window method.  For example, it was able to detect a significant association between 

the rare variants in a 4,637 bp region within NECTIN2 and sdLDL-c among EA 

individuals that was missed by the sliding window procedure in the earlier analysis.20 

These results show that SCANG improves the power of rare variants analysis by 

selecting the locations and the sizes of signal regions more precisely.   

 

Instead of using fixed window sizes and skip lengths used in the conventional sliding 

window method, SCANG allows for multiple searching window sizes by considering all the 

moving windows of different sizes whose number of variants within a given range and 

allowing the searching windows to overlap. In our current numerical analysis, we set the 

range of sliding window sizes using the number of basepairs, e.g., 3 kb to 7 kb. As more 

rare variants will be observed in a given window with a fixed number of basepairs when 

the sample size increases, one can consider, for a larger sample size, a range of sliding 

window sizes using a smaller number of basepairs, e.g., 1kb to 7 kb, to detect smaller 

signal regions. Alternatively, one can specify a range of sliding window sizes using the 

number of variants, e.g., 40-200 variants as  𝐿𝐿𝑚𝑚𝑚𝑚𝑚𝑚 = 40 and 𝐿𝐿𝑚𝑚𝑚𝑚𝑚𝑚 = 200. Such a range 

specification using the number of variants is independent of sample sizes. Due to the 

flexibility of moving window selection, SCANG is able to identify the locations and the sizes 

of rare variant association regions from the data more accurately, and hence could 

dramatically increase the power of rare variant association analysis.  

 

Different from some existing scan procedures, SCANG is a regression-based method 

that can be used for analyzing both continuous and discrete phenotypes. It allows for 

covariates adjustment, for example, ancestry PCs for population structure. By using the 

generalized linear mixed model framework, SCANG could also adjust for both population 
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structure and relatedness. Specifically, when the data consist of related samples, 

following SMMAT,40 we consider the following Generalized Linear Mixed Model (GLMM) 

𝑔𝑔(𝜇𝜇𝑖𝑖) = 𝛼𝛼0 + 𝑿𝑿𝑖𝑖𝑇𝑇𝜶𝜶+ 𝑮𝑮𝑖𝑖𝑇𝑇𝜷𝜷 + 𝑏𝑏𝑖𝑖, 

where the random effects 𝑏𝑏𝑖𝑖 account for population structure, relatedness and other 

types of between-observation correlation. We assume that 𝒃𝒃 ∼ 𝑁𝑁(0,∑ 𝜏𝜏𝑘𝑘𝜱𝜱𝒌𝒌
𝐾𝐾
𝑘𝑘=1 ) is an 𝑛𝑛 ×

1 vector of random effects 𝑏𝑏𝑖𝑖, with the variance components 𝜏𝜏𝑘𝑘 and the known 𝑛𝑛 × 𝑛𝑛 

covariance matrices 𝜱𝜱𝒌𝒌. This means the random effects 𝒃𝒃 can be decomposed into a 

sum of multiple random effects to account for different sources of relatedness and 

correlation as 𝒃𝒃 = ∑ 𝒃𝒃𝑘𝑘𝐾𝐾
𝑘𝑘=1  with 𝒃𝒃𝒌𝒌 ∼ 𝑁𝑁(0, 𝜏𝜏𝑘𝑘𝜱𝜱𝒌𝒌). For example, 𝒃𝒃1 accounts for family 

relatedness with its covariance matrix 𝜱𝜱𝟏𝟏 as the Genetic Relatedness Matrix (GRM). 

Additional random effects (𝒃𝒃𝟐𝟐,⋯𝒃𝒃𝑲𝑲) can be used to account for complex sampling 

designs, such as hierarchical designs and correlation between repeated-measures from 

longitudinal studies using subject-specific random intercepts and slopes. After we fit the 

null model, we could proceed with SCANG by using the same steps as those described 

in the Method Section with the GLM scores replaced by the GLMM scores. SCANG 

could be easily extended to survival and multiple phenotypes framework and hence 

provides a comprehensive framework of WGS studies. 

 

One attractive feature of the proposed method is that it allows for incorporating flexible 

weight functions to boost analysis power, for example, by giving larger weights to more 

rare variants and more functional variants which are more likely to be causal. Good 

choices of weights are likely to boost the power of SCANG. In our procedure, we 

consider continuous weights as a function of MAFs and give larger weights to more rare 

variants based on the fact that rare variants are more likely to be causal and variants 

with lower MAFs are likely to have larger effect sizes. However, this weight function also 

upweights neutral variants, for example, singletons and doubletons have the largest 

weights and most of them are neutral variants. One can also define weights using 

external bioinformatics and evolutionary biological knowledge by upweighting functional 

variants, such as using functional annotation information, e.g., protein scores, epigenetic 

scores, conservation scores, as well as integrative scores such as CADD41 and 

FATHMM-XF42. 
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The ability to obtain both individual region-level p-values without multiple comparison 

adjustment and their genome-wise/family-wise p-values with multiple comparison 

adjustment accounting for overlapping windows is another attractive feature of the 

proposed SCANG method. For each detected region, SCANG analytically calculates a 

variant set-based p-value, and also empirically calculates a genome-wise/family-wise p-

value which adjusted for multiple testing. Note that the proposed procedure considers all 

possible regions across the genome and hence most of region-based p-values could be 

highly correlated. Instead of performing the usual Bonferroni correction, which could be 

quite conservative for multiple testing adjustment in this situation, we empirically 

calculate genome-wise/family-wise p-values by efficient Monte Carlo simulations. For 

each region, we calculate the region-based p-value using the score-based tests, such as 

burden and SKAT and the new omnibus tests that combine burden and SKAT and 

different weights using the Cauchy-based ACAT method.29 Calculations of these 

methods only require fitting the null model by regressing a phenotype on covariates once 

across the genome.  Besides, we use the same genotype matrix 𝑮𝑮 in each simulation 

and hence we only need to calculate the covariance matrix of the individual score test 

once. Therefore, the computational time of SCANG is affordable even with Monte Carlo 

simulations. For example, analyzing the entire genome on 10,000 individual requires 12 

hours if we have 100 computation cores. However, calculating the empirical threshold 

still costs additional time. It is of future research interest to develop an analytic 

approximation to the genome-wide significance level for the proposed SCANG 

procedure. 

 

Supplemental Data 

Supplemental Data include 21 figures and 2 tables. 
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FIGURES 

Figure 1. Power comparisons of SCANG and the corresponding sliding window 
procedures for continuous trait analysis  
Empirical power was evaluated by the causal variants detection rate and the signal region 

detection rate defined in the simulation section.  Both criteria were calculated at the 

genome-wise/family-wise type I error α = 0.05. We simulated 10% of the rare variants 

within random 3 kb-6 kb regions to be causal. We set for continuous phenotypes the 

maximum effect size equal to 0.774 for variants with MAF = 5 × 10−5 and let the effect 

sizes decrease with MAFs 𝛽𝛽𝑗𝑗 = 𝑐𝑐| 𝑙𝑙𝑙𝑙𝑙𝑙10 𝑀𝑀𝑀𝑀𝐹𝐹𝑗𝑗 |. The coefficients for the causal variants 

were all positive. The causal variants detection rate (left panel) is the proportion of 

detected causal variants in 2,000 simulated whole genome data sets, where a causal 

variant is called detected if it is in one of the detected signal regions. The signal region 

detection rate (right panel) is the proportion of detected signal regions in 2,000 simulated 

whole genome data sets, where a signal region is called detected if it is overlapped with 

one of the detected signal regions. For each configuration, the total sample sizes 

considered were 2,500, 5,000 and 10,000. For each setting, six methods were compared: 

SCANG and sliding window procedures using SKAT(1,25) and Burden(1,1), where the 

searching window lengths were equal to 3 kb, 4 kb, 5 kb, 6 kb and 7 kb. SKAT(1,25) and 

Burden(1,1) are denoted by S(1,25) and B(1,1),  and the corresponding SCANG methods 

are denoted by SCANG-S(1,25) and SCANG-B(1,1), where the two numbers in the 

parentheses are the values (𝑎𝑎1,𝑎𝑎2) of the weight function beta(MAF, 𝑎𝑎1, 𝑎𝑎2). For SCANG, 

the range of search window lengths was set by the numbers of variants in searching 

windows between the 1%st percentile of the numbers of variants of all 3 kb sliding windows 

and the 99%th percentile of the numbers of variants of all 7 kb sliding windows.  
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Figure 2. Power comparison of SCANG-O, SCANG-S(1,1), SCANG-S(1,25), SCANG-
B(1,1) and SCANG-B(1,25) for continuous trait analysis  

SKAT(𝑎𝑎1,𝑎𝑎2 ) and Burden(𝑎𝑎1,𝑎𝑎2 ) are denoted by S(𝑎𝑎1,𝑎𝑎2 ) and B(𝑎𝑎1,𝑎𝑎2 ),  and the 

corresponding SCANG methods are denoted by SCANG-S(𝑎𝑎1,𝑎𝑎2) and SCANG-B(𝑎𝑎1,𝑎𝑎2). 

The two numbers in the parentheses are the values (𝑎𝑎1,𝑎𝑎2) of the weight function 

beta(MAF, 𝑎𝑎1, 𝑎𝑎2). Empirical power was evaluated by the causal variants detection rate 

and the signal region detection rate and both criteria were calculated at the genome-

wise/family-wise type I error α = 0.05. We simulated 10% and 40% of the rare variants 

within random 3 kb-6 kb regions to be causal. We set for continuous phenotypes with the 

maximum effect size equal to 0.774 and 0.237 for variants with MAF = 5 × 10−5 when 10% 

and 40% causal variants, respectively, and let the effect sizes decrease with MAFs 𝛽𝛽𝑗𝑗 =

𝑐𝑐| 𝑙𝑙𝑙𝑙𝑙𝑙10 𝑀𝑀𝑀𝑀𝐹𝐹𝑗𝑗 | . The coefficients for the causal variants were all positive. The causal 

variants detection rate is the proportion of detected causal variants in 2,000 simulated 

data sets, where a causal variant is called detected if it is in one of the detected signal 

regions. The signal region detection rate is the proportion of detected signal regions in 

2,000 simulated data sets, where a signal region is called detected if it is overlapped with 

one of the detected signal regions. The range of search window lengths was set by the 

numbers of variants in searching windows between the 1%st percentile of the numbers of 

variants of all 3 kb sliding windows and the 99%th percentile of the numbers of variants of 

all 7 kb sliding windows. For each configuration, the total sample sizes considered were 

2,500, 5,000 and 10,000.  (A) Causal variants detection rate when 10% causal variants. 

(B) Causal variants detection rate when 40% causal variants. (C) Signal region detection 

rate when 10% causal variants. (D)  Signal region detection rate when 40% causal variants. 
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Figure 3. Genetic landscape of the windows significantly associated with Lp(a) 
levels on chromosome 6q25.3-6q26 among African Americans in the ARIC Whole 
Genome Sequencing Study (n=1,860) 

Five methods were compared: SCANG and 4kb sliding window procedures using 

SKAT(1,25) and Burden(1,1) (denoted by S(1,25) and B(1,1) respectively), with the 

corresponding SCANG methods denoted by SCANG-S(1,25) and SCANG-B(1,1), and 

SCANG-O, which used the proposed omnibus test that aggregated SKAT(1,1), 

SKAT(1,25), Burden(1,1) and Burden(1,25) using ACAT in the SCANG framework. The 

two numbers in the parentheses are the values (𝑎𝑎1,𝑎𝑎2) of the weight function beta(MAF, 

𝑎𝑎1, 𝑎𝑎2),   A dot means that the sliding window at this location is significant using the method 

that the color of the dot represents. 
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TABLES 
Table 1. Genome-wise/family-wise empirical type I error rates from simulation 
studies using SCANG-B(1,1), SCANG-B(1,25), SCANG-S(1,1) , SCANG-S(1,25) and 
SCANG-O at the genome-wide/family-wise significance level of α=0.05 and 0.01  

SKAT(1,25) and Burden(1,1) are denoted by S(1,25) and B(1,1),  and the corresponding 

SCANG methods are denoted by SCANG-S(1,25) and SCANG-B(1,1), the two numbers 

in the parentheses are the values (𝑎𝑎1,𝑎𝑎2) of the weight function beta(MAF, 𝑎𝑎1, 𝑎𝑎2),  The 

total sample size n was 2,500, 5,000 and 10,000. The smallest number of variants in 

searching windows was set as  𝐿𝐿𝑚𝑚𝑚𝑚𝑚𝑚 = 45, 50, 70 for n = 2,500, 5,000, 10,000, and the 

corresponding largest number of variants in searching windows was set as 𝐿𝐿𝑚𝑚𝑚𝑚𝑚𝑚 = 185, 

200, 250. Each cell represents the empirical type I error rate estimate that was calculated 

as the proportion of p-values less than α under the null hypothesis based on 104 replicates. 

 

  Continuous Traits Binary Traits 
Total Sample Size Size n=2500 n=5000 n=10000 n=2500 n=5000 n=10000 
SCANG-B(1,1) 0.05 0.0473 0.0484 0.0477 0.0485 0.0506 0.0502 
 0.01 0.0100 0.0095 0.0093 0.0097 0.0091 0.0109 
SCANG-B(1,25) 0.05 0.0474 0.0478 0.0464 0.0476 0.0470 0.0499 
 0.01 0.0092 0.0092 0.0093 0.0099 0.0095 0.0103 
SCANG-S(1,1) 0.05 0.0460 0.0487 0.0471 0.0441 0.0475 0.0465 
 0.01 0.0092 0.0086 0.0090 0.0095 0.0102 0.0082 
SCANG-S(1,25) 0.05 0.0467 0.0473 0.0489 0.0379 0.0476 0.0456 
 0.01 0.0081 0.0097 0.0104 0.0066 0.0093 0.0088 
SCANG-O 0.05 0.0461 0.0469 0.0474 0.0450 0.0497 0.0499 
 0.01 0.0092 0.0088 0.0091 0.0087 0.0094 0.0105 
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Table 2. Set-based p-values of the significant regions detected by SCANG and two 
sliding windows indexed by variants rs41290120 on chromosome 19 in European 
Americans of the ARIC Whole Genome Sequencing Study (n=1,705) 
The two numbers in the parentheses are the The two numbers in the parentheses are the 

values (𝑎𝑎1,𝑎𝑎2) of the weight function beta(MAF, 𝑎𝑎1, 𝑎𝑎2).  The physical positions of the 

windows are based on build hg19. 

 
Method Start Pos. 

(bp) 
End Pos. 
(bp) 

Region 
Size (bp) 

SKAT 
(1,25) 

SKAT 
(1,1) 

Burden 
(1,25) 

Burden 
(1,1) 

Omnibus 

SCANG 45,382,398 45,387,034 4,637 4.0 × 10-5 3.3 × 10-10 2.0 × 10-2 1.3 × 10-4 1.3 × 10-9 
Sliding Window 45,378,778 45,382,777 4,000 6.6 × 10-6 1.2 × 10-8 9.6 × 10-1 1.3 × 10-1 4.7 × 10-8 
Sliding Window 45,380,778 45,384,777 4,000 9.2 × 10-7 1.2 × 10-8 9.0 × 10-2 8.3 × 10-4 4.5 × 10-8 

 
 
 
 
 
Table 3. Replication of the significant regions detected by SCANG and two sliding 
windows indexed by variants rs41290120 on chromosome 19 in African Americans 
of the ARIC Whole Genome Sequencing Study (n=1,860) 

The two numbers in the parentheses are the The two numbers in the parentheses are the 

values (𝑎𝑎1,𝑎𝑎2) of the weight function beta(MAF, 𝑎𝑎1 , 𝑎𝑎2) .  The physical positions of 

windows are based on build hg19. 

 
Method Start Pos. 

(bp) 
End Pos. 
(bp) 

Region 
Size (bp) 

SKAT 
(1,25) 

SKAT 
(1,1) 

Burden 
(1,25) 

Burden 
(1,1) 

Omnibus 

SCANG 45,382,398 45,387,034 4,637 1.2 × 10-4 2.3 × 10-4 2.2 × 10-3 5.3 × 10-4 2.7 × 10-4 
Sliding Window 45,378,778 45,382,777 4,000 1.6 × 10-3 2.5 × 10-3 1.4 × 10-2 5.3 × 10-3 3.1 × 10-3 
Sliding Window 45,380,778 45,384,777 4,000 5.0 × 10-2 4.6 × 10-2 9.1 × 10-1 8.9 × 10-1 1.6 × 10-1 
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