- 1 Title: Extraction-free direct PCR from dried serum spots permits HBV genotyping and RAS
- 2 identification by Sanger and minION sequencing
- 3 Running title: Sequencing of hepatitis B virus directly from dried serum spot
- 4 Stuart Astbury^{a,b,c}, Marcia Maria Da Costa Nunes Soares^d, Emmanuel Peprah^e, Barnabas
- 5 King^{b,e}, Ana Carolina Gomes Jardim^f, Jacqueline Farinha Shimizu^f, Paywast Jalal^g, Chiman H
- 6 Saeed^h, Furat T Sabeerⁱ, William L Irving^{b,c,e}, Alexander W Tarr^{b,c,e*}, C Patrick McClure^{b,e}
- 7
- 8 ^a Nottingham Digestive Diseases Centre, School of Medicine, University of Nottingham, UK
- 9 ^b NIHR Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust
- 10 and the University of Nottingham, UK
- 11 ^c MRC/EPSRC Nottingham Molecular Pathology Node, University of Nottingham, UK
- ^d Instituto Adolfo Lutz, Brazilian Ministry of Health, São Paulo, Brazil
- 13 ^e School of Life Sciences, University of Nottingham, UK
- ^f Institute of Biomedical Sciences, Federal University of Uberlândia, Uberlândia, Brazil.
- 15 ^g Biology Department, Faculty of Science, University of Sulaimani, Sulaymaniyah, Iraq
- 16 ^h Medical Research Center, Hawler Medical University, Erbil, Iraq
- 17 ⁱ Central Public Health Laboratory, Erbil, Iraq
- 18 *Corresponding author: <u>alex.tarr@nottingham.ac.uk</u>
- 19 Word count (3,000 limit; excluding abstract, Methods, References, Tables and Figure
- 20 Legends): 2967

21 Abstract

22

23 In order to achieve the commitment made by the World Health Organisation to eliminate 24 viral hepatitis by 2030, it is essential that clinicians can obtain basic sequencing data for 25 hepatitis B virus (HBV) infected patients. While accurate diagnosis of HBV is achievable in 26 most clinical settings, genotyping and identification of resistance-associated substitutions 27 (RAS) present a practical challenge in regions with limited healthcare and biotechnology 28 infrastructure. Here we outline two workflows for generating clinically relevant HBV 29 sequence data directly from dried serum spot (DSS) cards without DNA extraction using 30 either Sanger, or the portable MinION sequencing platforms. Data obtained from the two 31 platforms were highly consistent and allowed determination of HBV genotype and RAS. This 32 is the first demonstration of MinION sequencing from DSS, illustrating the broad utility of this sequencing technology. We demonstrated the clinical application of this technology 33 34 using sera sampled on DSS cards obtained from both Iraq and Brazil. The sample stability provided by DSS cards, combined with the rapid PCR and sequencing protocols will enable 35 36 regional/national centres to provide information relevant to patient management. By 37 providing viable workflows for both the Sanger and MinION sequencing platforms, which 38 vary greatly in the infrastructure and expertise required, we demonstrate that MinION 39 sequencing is a viable method for HBV genotyping in resource-limited settings. These workflows could also be applied to sequencing of other blood borne DNA viruses and 40 bacterial pathogens. 41

42 Abstract word count: 230

43

44

45 Introduction

Hepatitis B virus (HBV) infects 257 million people worldwide and causes 887,000 deaths per 46 47 year, many due to hepatocellular carcinoma (HCC) (1). A recent editorial in Nature described 48 HBV as neglected, particularly in Sub-Saharan Africa, where around 6% of the population are 49 infected and only one-tenth of children are vaccinated (2). There is an urgent need for 50 screening and surveillance tools to assess HBV in low and middle-income countries (3). HBV 51 displays a higher degree of diversity relative to other DNA viruses due to a complex and 52 error prone replication cycle involving RNA intermediates, as such it has a mutation rate of 53 around 1.4-3.2 x 10⁻⁵ mutations/site/year (4). There are many well-characterised mutations 54 across the HBV genome, conferring resistance to therapy or an increase in replication 55 efficiency (polymerase), immune and diagnostic test escape (S/pre-core), or an increase in 56 tumorigenesis (reviewed in (5)). Next generation sequencing (NGS) enables the study of a population of viral genomes within 57 58 a single patient, as opposed to Sanger sequencing, which will theoretically provide a 59 "consensus" sequence of the most abundant template. NGS platforms such as those 60 established by Illumina rely on the use of short reads (max 250bp) which are assembled to from a contiguous sequence. Third generation sequencing platforms such as the Oxford 61 62 Nanopore (ONT) MinION enable sequencing with theoretically no upper limit on read 63 length, meaning entire viral genes or genomes can be sequenced in a single read. The 64 MinION sequencer is also extremely portable and can be powered through a laptop, removing the need for a continuous power supply and enabling sequencing in locations 65 without access to conventional lab facilities. The portable aspect of MinION sequencing has 66 67 already been demonstrated to great effect during the Ebola outbreak in West Africa (6), and

68 in tracking the spread of Zika virus in Brazil (7). Field application of the MinION platform has

been enhanced with recent advances including improved "R9.4" flow cells with increased accuracy and software such as Nanopolish (8), which works with signal-level data from the sequencer allowing generation of more accurate consensus sequences. However, despite the emerging potential of NGS technologies, Sanger sequencing remains the gold standard in clinical applications and represents the most accessible and affordable choice globally.

74

75 We thus aimed to combine both Sanger and MinION sequencing with dried serum spot 76 (DSS) sampling, to develop a method by which HBV can be rapidly sequenced for both 77 genotype as well as potential resistance-associated substitutions (RAS) that can be applied 78 in regions without access to conventional sample storage or a cold chain. As this assay 79 targets the overlapping ORFs containing S and the reverse transcriptase domain of the 80 polymerase gene it can be used to genotype and detect resistance to antiretroviral 81 treatment. HBV genomes are particularly well suited to direct PCR, enabling a clinical 82 sample to be added directly to a PCR reaction with no extraction steps. However, with 83 minor alterations this method can be applied to a wide range of viruses or bacterial 84 pathogens.

85

86

87

88 Methods

89	Samples: Thirty HBV DNA-positive serum samples, with known viral load, were obtained
90	from eight specialized centres in São Paulo State, Brazil, collected between July 2016 and
91	April 2017. Samples varied in virus titre from 6.35 $\times 10^2$ to 8.16 $\times 10^8$ international units
92	(IU)/mL. In addition, 70 serum samples identified as HBV DNA-positive were collected and
93	processed at the Erbil Central Laboratory, Iraq, in 2017. Samples varied in virus titre from 22
94	to 9.4 x 10^8 IU/mL. The initial cohort of samples for sequence determination and primer
95	optimisation were obtained from Nottingham University Hospitals NHS Trust, Nottingham,
96	UK, and were held under ethical approval of the Nottingham Health Science Biobank. All
97	samples were obtained for routine diagnostic investigation and surplus material was used in
98	this study. Serum was stored at -70 $^\circ$ C prior to direct use or spotting in Nottingham and -20
99	°C in Brazil and Iraq.
100	Viral load determination: Viral load in the Brazilian samples was determined by RealTime
100 101	Viral load determination: Viral load in the Brazilian samples was determined by RealTime HBV Amplification Kit (Abbott). In Iraq, DNA was extracted from 200μ l serum using the EZ1
101	HBV Amplification Kit (Abbott). In Iraq, DNA was extracted from 200 μ l serum using the EZ1
101 102	HBV Amplification Kit (Abbott). In Iraq, DNA was extracted from 200µl serum using the EZ1 Virus Mini Kit v2.0 (Qiagen), and viral load determined by Artus HBV PCR kit (Qiagen).
101 102 103	HBV Amplification Kit (Abbott). In Iraq, DNA was extracted from 200μl serum using the EZ1 Virus Mini Kit v2.0 (Qiagen), and viral load determined by Artus HBV PCR kit (Qiagen). Preparation of dried serum spot (DSS) cards: A volume of 25-30 μL serum was spotted onto
101 102 103 104	HBV Amplification Kit (Abbott). In Iraq, DNA was extracted from 200µl serum using the EZ1 Virus Mini Kit v2.0 (Qiagen), and viral load determined by Artus HBV PCR kit (Qiagen). Preparation of dried serum spot (DSS) cards: A volume of 25-30 µL serum was spotted onto a Whatman [®] Protein Saver [™] 903 Card (GE Healthcare), air-dried at room temperature for
101 102 103 104 105	HBV Amplification Kit (Abbott). In Iraq, DNA was extracted from 200µl serum using the EZ1 Virus Mini Kit v2.0 (Qiagen), and viral load determined by Artus HBV PCR kit (Qiagen). Preparation of dried serum spot (DSS) cards: A volume of 25-30 µL serum was spotted onto a Whatman® Protein Saver [™] 903 Card (GE Healthcare), air-dried at room temperature for approximately 2 hours and stored at 4 °C until further use. 25 µL of serum typically
101 102 103 104 105 106	HBV Amplification Kit (Abbott). In Iraq, DNA was extracted from 200µl serum using the EZ1 Virus Mini Kit v2.0 (Qiagen), and viral load determined by Artus HBV PCR kit (Qiagen). Preparation of dried serum spot (DSS) cards: A volume of 25-30 µL serum was spotted onto a Whatman® Protein Saver [™] 903 Card (GE Healthcare), air-dried at room temperature for approximately 2 hours and stored at 4 °C until further use. 25 µL of serum typically saturated the 113.1 mm ² (12 mm diameter) area demarcated on the DSS cards, thus a 3mm
101 102 103 104 105 106 107	HBV Amplification Kit (Abbott). In Iraq, DNA was extracted from 200µl serum using the EZ1 Virus Mini Kit v2.0 (Qiagen), and viral load determined by Artus HBV PCR kit (Qiagen). Preparation of dried serum spot (DSS) cards: A volume of 25-30 µL serum was spotted onto a Whatman® Protein Saver [™] 903 Card (GE Healthcare), air-dried at room temperature for approximately 2 hours and stored at 4 °C until further use. 25 µL of serum typically saturated the 113.1 mm ² (12 mm diameter) area demarcated on the DSS cards, thus a 3mm diameter punch (7.07 mm ² area) represented approximately 1.5 µL of serum. Between each

111 polymerase enzymes were evaluated for this method: Hemo KlenTaq (NEB) and Phusion

112	Blood Direct (Thermo Fisher). Hemo KlenTaq reactions were set up as 25 μ L reactions
113	containing 5 μ L Hemo KlenTaq reaction buffer, 0.2 mM dNTP (Sigma), 2 μ L Hemo KlenTaq
114	enzyme, 0.3 μM of each primer and 2 μL serum. Phusion Blood Direct reactions were also
115	set up as 25 μ L reactions containing 12.5 μ L 2x Phusion Blood Direct mastermix, 0.5 μ M of
116	each primer, 8.5 μL water and $2\mu L$ of serum. DSS reactions were prepared in the same way,
117	with a 3 mm ² punch used in place of serum and the volume adjusted to 25 μL with water.
118	Cycling conditions were as follows, for Phusion Blood Direct: 98 $^\circ$ C for 5 minutes, 55 cycles
119	of [98 °C for 1 second, 50 °C for 5 seconds and 72 °C for 20 seconds/kb], and a final
120	extension at 72 °C for 1 minute. Cycling conditions for Hemo KlenTaq were: 95 °C for 3
121	minutes, 55 cycles of [95 °C for 20 seconds, 50 °C for 30 seconds and 68 °C for 2
122	minutes/kb], and a final extension at 68 $^\circ$ C for 10 minutes. The sensitivity of this assay with
123	different primer pairs was also tested by serially diluting a high viral titre sample (1.2 x 10^7
124	IU/mL) logarithmically down to 1.2×10^1 IU/mL.
125	Initially a well cited primer set (F1 and R1) generating a short amplicon in a conserved
126	genomic sequence towards the end of the S gene (9) was used to probe the maximum
127	sensitivity of direct PCR from serum and DSS derived from the control Nottingham cohort.
128	This primer site is also situated within the RT domain of the polymerase gene, allowing for
129	genotyping and determination of some RAS. A second widely used primer set (F2, F3, R2 and
130	R3; (10)) was subsequently tested to generate larger amplicons and thus greater DNA
131	sequence information. The sets were further tested in a variety of combinations to generate
132	amplicons of intermediate length overlapping in genomic coverage.
133	Sanger sequencing and phylogeny: PCR-positive products were diluted 1:10 with water and
134	couriered at ambient temperature for sequencing by a commercial service (Source

135 Bioscience, Nottingham, UK). Short products were sequenced with F1 primer only, and 136 longer F1/R3 and F3/R1 products were sequenced with both F1 and R1 primers. These reads 137 were assembled to produce a complete contiguous sequence covering PreS2/S. Sequences 138 used for phylogenetic analysis were aligned using MUSCLE in MEGA X (11, 12), and 139 maximum likelihood trees constructed using a General Time Reversible model in MEGA X. 140 Samples containing deletions were excluded from the tree. Sequences were deposited in GenBank under accession numbers MK517481 – MK517524. 141 142 **MinION sequencing library preparation:** Three high titre (>10⁷ IU/mL) samples from both 143 Brazil and Iraq cohorts were selected for sequence analysis. Barcoded samples were 144 prepared for MinION sequencing using a two stage PCR approach and the SQK-LWB001 145 library preparation kit. First round PCR was carried out as above, using 25 µL Hemo KlenTag 146 reactions with 3 mm² punches from DSS. F4 and R4 primers were used as specified in table 147 1. From this reaction, 1 μ L of product was then used as the template for a 50 μ l PCR 148 containing 25 µL 2x LongAmp HotStart Tag master mix, 1.5 µL of barcoded primer mix 149 (supplied by ONT) and 22.5 µL nuclease free water. Products were then prepared according 150 to the SQK-LWB001 kit protocol. Briefly, PCR products were bound to AMPure XP beads 151 (Beckman Coulter) and washed with 70 % ethanol, before eluting in 10 µL 10mM Tris-HCl 152 (pH 8.0) with 50mM NaCl. Cleaned products were then quantified by Qubit using the dsDNA 153 high sensitivity kit (Thermo Fisher). Based on the method developed by Quick et al. (7), 154 amplicons were pooled to achieve a total of 0.3 pM input DNA per MinION flow cell, 155 therefore for 1.3 kb amplicons this equates to ~260 ng total DNA. Following ligation of rapid 156 sequencing adapters, the library was run for 48hrs on a MinION Mk II through a computer 157 running MinKNOW 1.10.16 in Microsoft Windows followed by basecalling using Albacore

158 2.2.2. Adapter-trimmed sequences were uploaded to the NCBI Sequence Read Archive159 under project ID PRJNA521740.

160	MinION sequencing analysis: Basecalled reads were trimmed using Porechop 0.2.3 using
161	high stringency settings (discard_middle andrequire_two_barcodes) and retained when
162	Porechop and Albacore barcode aligners were in agreement. NanoPlot was used to inspect
163	read quality and length, and reads were filtered based on length using NanoFilt (13) to a
164	minimum length of 1200 and maximum length of 1300 nucleotides.
165	Processed reads were used as the input for Canu (v1.7.1) (14), a <i>de novo</i> genome assembler
166	optimised for use with long, error-prone reads. The same reads were subsequently aligned
167	using Minimap2 (15) to their respective consensus sequences generated by Canu and
168	manually inspected using IGV (Broad Institute) to ensure complete coverage and to inspect
169	for significant structural variants. Alignments were further processed using Nanopolish
170	v0.10.2 (8), using the Variants module and thefix-homopolymers function to generate a
171	corrected consensus sequence. A full description of the bioinformatics workflow used is
172	included as supplementary data. As validation Sanger sequences were produced by
173	sequencing amplicons with both F1 and R1 primers, these were used as the "gold standard".
174	Canu and Nanopolish consensus sequences were aligned with their respective Sanger contig
175	using MEGA.

Genotyping and variant calling: For both Sanger and MinION sequence data genotypes
were determined using the web-based tool HBV geno2pheno (16). Known HBV treatment
resistance and immune escape variants were screened using the hepatitis B virus database
(HBVdb (17)). Mutations against the genotype consensus reference sequences used in
geno2pheno that were not flagged as clinically significant are provided in supplementary

- table 1. For samples sequenced by MinION potential intra-host variants were screened for
- 182 by aligning sequencing reads to the corresponding nanopolished consensus sequence for
- 183 each sample and using the *variants* module within Nanopolish, with 0.1 set as the minimum
- 184 frequency required to call a SNP.

186 Results

- **187** Primer analysis for PCR amplification of HBV from DSS.
- 188

189 Initially we assessed three previously described primer sets for amplification of regions of 190 the HBV genome using Hemo KlenTaq polymerase. A known HBV-positive serum sample 191 with viral load >10⁷ IU/mL was diluted 10-fold and spotted onto DSS cards. Using direct PCR of punched-out discs from these cards, HBV amplicons were obtained using all the primer 192 193 pairs analysed (table 2). Amplification of the smallest product, using primers F1 and R1, was 194 the most sensitive approach, amplifying a product from a sample containing as little as 1×1 10³ IU/mL. Larger products (over 700 bp) were achieved using these primers in combination 195 196 with the F3 and R3 primers down to 10^4 IU/mL. Subsequent investigation demonstrated that 197 PCR amplification using Phusion Blood Direct polymerase allowed for increased sensitivity 198 when amplifying small products, down to 600 IU/mL but gave little improvement in 199 sensitivity when amplifying larger products (data not shown). Sanger sequencing direct from DSS 200 201 202 Following this assessment, primer pairs F1/R1, F1/R3 and F3/R1 (figure 1) were used with 203 Phusion Blood Direct polymerase for the analysis of 30 HBV-positive serum samples of 204 defined viral load isolated in Brazil (table 3). Limited treatment information was available for 205 some of the samples. Amplicons were achieved for all but 3 samples using the F1/R1 primer 206 pair. The amplicon generated by this primer pair (281 bp) was sufficient to enable virus 207 genotyping and limited detection of escape mutants by conventional Sanger sequencing. 208 The 27 successfully genotyped samples divided into subtypes as follows: seven A1, two A2, 209 one B1, two D1, two D2, nine D3, one F1 and three F2 (table 3).

210 It was not clear why three of the samples could not be amplified using the F1/R1 primer 211 pair, but it is likely due in part to lower viral load as all three had viral loads of $^{2}1 \times 10^{3} - 1 \times 10^{3}$ 212 10⁴ IU/mL (table 3). As the genotypes of these samples had not been previously determined 213 it was not possible to confirm whether the primer pair had a lower sensitivity for some 214 genotypes. 215 Successful amplification of the larger products using primer pairs F1/R3 and F3/R1 appeared 216 to be associated with viral load (table 3). Both primer pairs were able to generate amplicons 217 from samples of viral load >10⁶ IU/mL. F3/R1 displayed a higher sensitivity for genotype D samples as amplicons were achieved for samples Br13 and Br16 (viral loads 5.99 x10⁵ and 218 219 2.58 x10⁵ IU/mL, respectively), although no amplicon was obtained for the higher viral load 220 sample Br12 (9.41 x 10^5 IU/mL).

221 Genotyping and RAS characterisation

222

223 The amplicon produced from the F1/R3 primers permitted Sanger sequencing across aa 169 224 to aa 250 of the reverse transcriptase (RT) domain of the Pol gene (figure 1, highlighted in 225 red), allowing identification of resistance associated substitutions (RAS). A restricted section 226 of this crucial RT RAS region can be sequenced with the amplicons produced from the other 227 two primer pairs. Of those samples for which an amplicon was obtained, two samples 228 contained known polymerase RAS. The dominant sequence amplified for Br3 contained 229 V173L, L180M and M204V, which in isolation or combination confer resistance to 230 lamivudine, entecavir and telbivudine. The predominant sequence in sample Br9 only 231 contained the V173L mutation which, in isolation, is not associated directly with resistance 232 to any of the clinically approved polymerase inhibitors.

233	Having refined the workflow for HBV genotyping and RAS-typing by Sanger sequencing from
234	DSS of samples with known viral load, we applied it to a second sample set to assess the
235	broader application of the workflow. Seventy serum samples isolated from HBV-positive
236	patients in the Kurdistan Region of Iraq were processed onto DSS cards and shipped to the
237	UK for analysis. Amplicons were obtained for 11 of the 70 samples and Sanger sequencing
238	revealed they were all genotype D (table 4). Although successful amplification correlated
239	with higher viral load (figure 2), the sensitivity of the amplification PCR for these samples
240	was markedly lower compared to the Brazilian cohort. It is not clear why it was possible to
241	generate amplicons for two Iraqi DSS samples of comparatively low viral load (1.15 x 10^4 and
242	2.58 x 10^2 IU/mL), or why three high viral load samples could not be amplified (2.28 x 10^8 ,
243	1.60×10^7 and 1.42×10^7 IU/mL).
244	While no RT RAS were detected, three samples contained known sAg immune escape
245	mutants, demonstrating that this process can provide clinically relevant sequence
246	information from poorly characterised samples.
247	Samples from both cohorts demonstrated clustering by genotype when plotted on a
248	maximum likelihood tree with respective genotype references from GenBank (figure 3).
249	MinION sequencing direct from DSS
250 251	Having obtained clinically relevant sequence data by Sanger sequencing from DSS, we
252	investigated whether comparable data could be obtained using MinION sequencing. Three
253	samples each were selected from the Brazilian and Iraqi cohorts (Br1, Br2 and Br3; Iq2, Iq3
254	and Iq4), that had been successfully amplified with all three primer pairs. Amplicons of
255	1,274 bp were generated using primers F4 and R4, which were analysed in parallel by
256	Nanopore sequencing. A total of 185,349 raw reads were obtained for the 6 samples,

257	ranging from 23869 to 41392 per barcode. Following adapter trimming and further filtering
258	of erroneously long and short reads these counts ranged from 7676 to 11832 per barcode
259	(table 5). A summary of raw sequencing reads acquired over time, and average quality score
260	per read over time is included in figure 4.
261	
262	Accurate consensus sequences generated by MinION Nanopore sequencing
263	Consensus sequences were assembled using Canu. Following assembly, the only errors
264	observed were single base deletions within homopolymers. These ranged from 5 to 12
265	deletions within the total amplicon (table 6). Following a single round of Nanopolish all
266	sequences were identical to their Sanger counterparts. Workflows for the two sequencing
267	procedures are shown in figure 5. Upon receipt of samples it is feasible to obtain accurate
268	sequences either by Sanger or MinION within 1-2 days.

269

270 Detection of minor variants with minION

271 A number of putative minor variants were detected by aligning minION reads with the 272 consensus sequence, the majority of which were filtered out by Nanopolish. Of the 273 remaining variants samples Br1, Br2, Iq1, Iq3 and Iq4 contained sequences with the P217L 274 polymorphism in sAg in around 18% of reads, which is associated with immune escape. Iq3 275 also contained a L109P mutant in sAg in 16% of sequencing reads, associated with increased 276 hydrophobicity. However, comparison with Sanger sequencing showed that neither of these 277 base changes were visible as minor peaks on the electropherogram of the corresponding 278 samples.

279			
280			
281			
282			
283			
284			
285			
286			

287 Discussion

288

HBV has the capacity to exist in a host as a population of closely related viruses (18). While 289 290 not displaying the extreme variability associated with RNA viruses, error-prone reverse 291 transcription facilitates rapid adaptation to the host environment. As a consequence, 292 resistance to antiviral therapies is common. Methods to both genotype and characterise 293 RAS in parts of the world without access to conventional laboratory and sequencing facilities 294 would be clinically beneficial. These techniques may become increasingly important in 295 places such as sub-Saharan Africa, where antiretroviral programmes are in place for HIV 296 treatment but HBV prevalence and development of resistance to drugs such as lamivudine is 297 not accounted for (19, 20). As HIV mortality decreases and life expectancy increases, the development of chronic liver disease due to HBV infection will be of increasing concern. 298 299 We have demonstrated that clinically useful HBV sequence data can be obtained from DSS, 300 with a lower-limit of detection of approximately 600 IU/mL, using a relatively cost-effective 301 method that requires no cold chain. Several of the RAS detected in this cohort are clinically 302 significant. The Y100C mutant in the S region of HBsAg has been linked to false negative/low HBsAg tests (21), and appears to be common in our Brazilian cohort, being present in 5/10 303 304 genotype A samples. More significantly, as it targets the RT domain of Pol, this method 305 allows characterisation of drug resistance markers, which is potentially valuable in countries 306 where prescription of drugs known to select for HBV resistance is common. The V173L, 307 L180M and M204V RAS detected in the polymerase gene indicate resistance to the nucleoside analogues lamivudine and entecavir. 308 309 Although our original methodology removed the need for a cold chain and required only

310 basic or mobile laboratory facilities, a Sanger sequencer (or access to a sequencer-equipped

311 laboratory to where DSS/amplicons can be shipped) was still required. We therefore aimed 312 to combine our DSS method with nanopore sequencing, increasing portability and to 313 provide a method that can be rapidly deployed in resource-poor settings. 314 NGS datasets were successfully generated for all of the six of the samples tested. All 315 samples demonstrated the characteristic error profile associated with nanopore 316 sequencing, with frequent indels in homopolymers of 3 bases or more (22). In all cases 317 these miscalls were removed using Nanopolish. These errors, which occur when voltage 318 signal remains constant across homopolymer templates passing through the nanopore, will 319 potentially become less of an issue with improved software interpolation or the 320 development of new protein nanopores. In all cases the data was sufficiently accurate that 321 the assembly generated by Canu, including indels, could be used to reliably and quickly 322 genotype without any further processing, and with subsequent processing in Nanopolish 323 produced sequences that were 100% identical to the sequence reads generated by Sanger 324 sequencing. This method is therefore of use in situations where Sanger sequencing is 325 unavailable and illustrates the utility of the MinION as a portable sequencer to determine 326 the consensus of a virus population. 327 Sanger sequencing of HBV enables characterisation of a consensus sequence of theoretically

the most abundant nucleotide at each position in a viral sequence within a sample.
Inspection of minor peaks on the electropherogram allows detection of minor sequence
variants, down to a prevalence of around 20%, dependent on sample quality. As has been
previously shown with HBV, next generation sequencing approaches allow characterisation
of minor variants at a lower threshold (23-25). This information is potentially clinically
useful, enabling earlier detection of resistant viruses, informing selection of appropriate

334	treatment regimens. Accurately determining these minor variants with NGS is
335	methodologically difficult, as low concentrations of viral template often necessitate the use
336	of PCR before sequencing. This may introduce bias from a range of sources. A recent
337	investigation (26) suggested that if PCR primers are well designed an amplicon sequencing
338	approach can be as reliable as unbiased metagenomic sequencing. However, the authors
339	highlighted that in its current level of development, MinION sequencing is not appropriate
340	for discovering novel, low-level intra-host sequence variants due to the high false-discovery
341	rate. In our data, we applied a conservative variant calling approach by aligning all sequence
342	reads to the consensus followed by variant calling using Nanopolish.
343	Sequencing HIV from dried blood spots using 454 pyrosequencing previously showed almost
344	complete concordance with Sanger (27), but discrepancies appeared when characterising
345	minor variants, particularly in low titre samples (28). Further experiments using more
346	appropriate variant calling workflows, and a side-by-side comparison of DSS, direct serum
347	and DNA extract would be required to study the potential effect of storing DSS samples on
348	measures of diversity. The majority of candidate variants in our data were filtered out using
349	Nanopolish, suggesting they could be false-positives caused by sequencer error. A variant
350	that remained unfiltered was present in 5 of 6 samples (and therefore was not genotype
351	specific), the mutation, P217L in S has previously been linked to diagnostic escape (29). The
352	other minor variant, L109P in S, was present in a single sample (Iq1), and has been linked to
353	an increase in hydrophobicity (30), but the significance of this phenotype has not been
354	determined.
355	The MinION sequencing protocol described here followed the manufacturer's

355 The MinION sequencing protocol described here followed the manufacturer's

356 recommended protocol, using the standard 48-hour script in order to maximise read depth.

357 As demonstrated elsewhere (31), an alternative approach is to run the MinION for a shorter 358 amount of time, flush the flow cell and add different samples. Larger barcode kits (up to 96) 359 and custom barcodes can also be used. With this assay, setup can be adjusted to favour 360 either assay throughput or read depth, prioritizing rapid consensus sequence generation or 361 interrogation of intra-sample diversity. The metrics produced by the sequencer as shown in figure 4 can aid in this optimisation and be used to determine the optimum timepoint to 362 363 stop a sequencing run and add more samples, in order to ensure efficient use of resources. 364 Based on current prices, and after an initial outlay on basic lab equipment (PCR machine, 365 pipettes), we estimate that accurate sequence data with the MinION could be obtained for 366 as little as 20 GBP per sample. In comparison, a single Sanger read across the region studied 367 in this paper will cost ~4 GBP, with larger regions requiring at least 2 reads for complete 368 coverage.

369

370 One limitation of this method is the amount of template input required for successful 371 amplification; obtaining long amplicons (in this case ~1247 bp) suitable for MinION 372 sequencing required serum spots generated from samples with viral titre of at least 10⁶-10⁷ 373 IU/mL. As expected, successful amplification was inversely correlated with viral load, making 374 assays which involve amplifying all or most of S in a single amplicon only applicable to high 375 titre samples. The combination of F4/R4 primers was chosen to take advantage of the long 376 reads available with MinION sequencing. Increased sensitivity could be achieved using a 377 PCR-tiling approach of two or more amplicons that are pooled before sequencing (as 378 demonstrated with the much larger Zika genome (7)), or by scaling up reaction mixtures and 379 using more DSS per reaction.

380	The workflow described in figure 6 is intended as a starting point for a diagnostic workflow,
381	but, as indicated above, this method can be modified at each point to address specific
382	clinical questions with different pathogens. In our application, dried serum spots were
383	studied based on available samples, but the modified <i>Taq</i> enzymes used are suitable for use
384	with whole blood, plasma or serum added directly to the PCR reaction. There is also the
385	potential to apply this approach to other viruses where high-throughput testing is desired,
386	for example improving existing workflows for cytomegalovirus (32).
387	
388	In summary, we describe two approaches for rapid genotyping and RAS detection in
389	hepatitis B virus, which are applicable in resource-limited settings and require little existing
390	infrastructure. The results presented here demonstrate the utility of direct PCR enzymes
391	and DSS together in a clinical context. To our knowledge this has not been previously
392	described. We have also demonstrated, for the first time, that nanopore sequencing can be
393	applied directly to samples amplified from serum spots. Reliable sequence data was
394	generated using the MinION sequencer, removing the need for reliance on laboratory
395	infrastructure. Although accurate consensus sequences can be generated, it is likely that
396	both the software and hardware associated with nanopore sequencing will require
397	improvement before this method will find routine use for detecting minor variants within a
398	virus population.
399	
400	
401	
402	
403	

404 Funding

405

- 406 Funding was provided by the Nottingham Molecular Pathology Node (MRC/EPSRC grant
- 407 MR/N005953/1) and the National Institute for Health Research (NIHR) Nottingham
- 408 Biomedical Research Centre.

409

- 410 Author contributions
- 411
- 412 CPM, AWT, WLI and SA designed the experiments; MMCNS, ACGJ, JFS, PJ, CHS and FTS

413 provided samples and associated clinical data and prepared DSS cards; SA, EP and CPM

414 carried out the experimental work; SA carried out nanopore sequencing and associated

415 bioinformatics; SA, BK, AWT and CPM analysed the data and drafted the manuscript; all

416 authors edited the manuscript.

417 Tables

Primer	This	$S_{aquance}(\Gamma', 2')$	LIDV ganama
Primer	THIS	Sequence (5'-3')	HBV genome
name	study		position*
Outer plus (9)	F1	GATGTGTCTGCGGCGTTTTA	376 - 395
Outer minus ⁽⁹⁾	R1	CTGAGGCCCACTCCCATAGG	656-637
HBVP ⁽¹⁰⁾	F2	TCATCCTCAGGCCATGCAGT	3198-3217
HBVM ⁽¹⁰⁾	R2	GACACATTTCCAATCAATNGG	989-970
HBVZ ⁽¹⁰⁾	F3	AGCCCTCAGGCTCAGGGCATA	3085-3105
HBV3 ⁽¹⁰⁾	R3	CGTTGCCKDGCAACSGGGTAAAGG	1163-1140
HBVZ-ONT	F4	TTTCTGTTGGTGCTGATATTGCAGCCCTCAGGCTCAGGGCATA	3085-3105
HBV3-ONT	R4	ACTTGCCTGTCGCTCTATCTTCCGTTGCCKDGCAACSGGGTAAAGG	1163-1140

Table 1: Primers used for the amplification of HBV. F4 and R4 primers contain 22 bp

423 sequences at the 5' end for MinION library preparation PCR. *Numbering based upon

424 HBVdb genotype A master strain X02763 (17).

	Primer pair								
IU/mL HBV	F1+R1 (281 bp)	F2+R2 (1,013 bp)	F1+R2 (614 bp)	F2+R1 (680 bp)	F1+R3 (788 bp)	F3+R1 (793 bp)			
1.2 x 10 ⁷	+	+	+	+	+	+			
1.2 x 10 ⁶	+	+	+	+	+	+			
1.2 x 10 ⁵	+	+	+	+	+	+			
1.2 x 10 ⁴	+		+	+	+	+			
1.2 x 10 ³	+				+	+			
1.2 x 10 ²									
1.2 x 10 ¹									

- 429 Table 2: HBV amplification success using different primer combinations. HBV amplicon
- 430 sizes at different viral loads from DSS using a serially diluted high-titre HBV-positive sample.
- 431 Predicted amplicon size (in base pairs) is noted below primer pairing in brackets. +, indicates
- 432 successful amplification or single discrete band following analysis by agarose gel
- 433 electrophoresis.
- 434

Sample	Viral load (IU/mL)	Therapy	F1+R1 product	Genotype	F1+R3 product	RT domain RAS	F3+R1 product	sAg escape mutants
Br1	816,483,772	No treatment	Y	A1	Y	-	Y	Y100C
Br2	389,547,123	Peg-IFN	Y	A1	Y	-	Y	Y100C
Br3	241,145,063	TDF, 3TC	Y	D2	Y	V173L, L180M M204V	Y	-
Br4	33,875,365	TDF, 3TC, EFV	Y	A1	Y	-	Y	Y100C
Br5	21,807,740	No treatment	Y	D3			Y	-
Br6	6,219,005	TDF	Y	D3	Y	-	Y	-
Br7	5,843,310	No treatment	Y	A1	Y	-	Y	Y100C
Br8	5,217,998	nd	Y	D3	Y	-	Y	-
Br9	3,166,098	TDF	Y	F2	Y	V173L		-
Br10	692,965	nd	Y	A2				
Br11	193,271	TDF	Y	F2				
Br12	94,152	nd	Y	D3				
Br13	59,927	TDF	Y	D3			Y	
Br14	43,005	TDF, 3TC	Y	A1				Y100C
Br15	35,672	TDF	Y	A1				
Br16	25,791	TDF	Y	D2			Y	
Br17	17,280	nd	Y	F1				
Br18	16,697	nd	Y	D3				
Br19	12,446	3TC	Y	D3				
Br20	12,196	No treatment	Y	D1				
Br21	10,058	TDF	Y	F2				
Br22	7,199	TDF		ng				
Br23	6,208	No treatment	Y	D3				
Br24	4,091	TDF	Y	B1				
Br25	2,884	Peg-IFN	Y	A1				
Br26	2,431	No treatment	Y	D1				
Br27	2,262	No treatment	Y	A2				
Br28	1,069	nd		ng				
Br29	1,046	No treatment		ng				
Br30	635	No treatment	Y	D3				

435

Table 3: Amplification of S/Pol gene from DSS of HBV-positive samples from Brazil,

436 allowing genotyping and characterisation of RAS, is dependent on viral load. Clinically

437 significant RAS in the reverse transcriptase (RT) domain of the Polymerase open reading

438 frame (ORF) are noted. TDF, tenofovir; 3TC, lamivudine; EFV, efavirenz; nd, no treatment

data available; ng, not genotyped. Blank fields for primer pair products indicate no amplicon

440 was generated.

441 442

Sample	Viral load (IU/mL)	F1+R1 product	Genotype	F1+R3 product	RT domain RAS	F3+R1 product	sAg escape mutants
lq1	745,867,080	Y	D1	Y	-	Y	-
lq2	480,199,200	Y	D1	Y	-	Y	-
lq3	369,094,710	Y	D1	Y	-	Y	-
lq4	361,383,300	Y	D1	Y	-	Y	-
lq5	330,190,500	Y	D1	Y	-	Y	-
lq6	17,996,700	Y	D1	Y	-		P120S
lq7	12,637,111	Y	D1	Y	-	Y	P120S
lq8	3,393,900	Y	D3	Y	-		
lq9	1,843,350	Y	D1	Y	-		G145R
lq10	11,514	Y	D1	Y	-		Q101H, Y143H
lq11	258	Y	D1	Y	-		

443 Table 4. Amplification of S/Pol gene from DSS of HBV-positive samples in Iraq cohort.

444 Amplicons were generated from 11 of 71 DSS samples collected in the Kurdistan Region of

445 Iraq. Clinically significant RAS in the reverse transcriptase (RT) domain of the Polymerase

446 open reading frame (ORF) are noted.

447

Sample	Raw reads	Adapter trimming	Length filtered
Br1	24105	13320	11272
Br2	23868	12640	10309
Br3	41392	14702	11832
lq2	27860	11654	9572
lq3	27478	12445	7676
lq4	40646	13539	8979

448 Table 5. MinION sequencing yields. Raw reads are those assigned barcodes by Albacore

before any further quality control. Adapter trimmed reads are those exceeding a mean

450 Phred score of 7 and processed by Porechop. Length filtered reads were processed by

451 NanoFilt.

452

Sample	Mismatches between Canu assembly and Sanger	Mismatches between Nanopolish consensus and Sanger
Br1	5	0
Br2	6	0
Br3	5	0
lq2	9	0
lq3	12	0
lq4	6	0

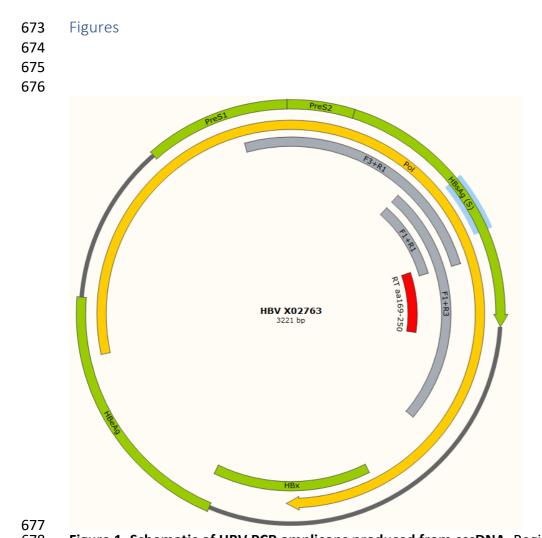
- **Table 6:** Agreement between minION sequenced samples and Sanger across the 1,274bp
- 455 region studied.

459	Supplementary data
460	
461	Bioinformatics workflow
462	
463	Following basecalling using Albacore, the "pass" folder (reads exceeding a mean Phred score
464	of 7) was used as the input for Porechop as follows:
465	or 7) was used as the input for Forechop as follows.
466	porechop -i source directorydiscard middlerequire two barcodes
467	porechop -r source_unectoryuiscuru_inituiterequire_two_burcoues
467	Filtering based on length was carried out in NanaFilt.
	Filtering based on length was carried out in NanoFilt:
469	est usuda fasta lugua sfilt 1200 usudanath 1200 usuda filtanad fasta
470	cat reads.fastq nanofilt -l 1200maxlength 1300 > reads.filtered.fastq
471	
472	Downsampled, filtered FASTQ files for each sample were then used as the input for Canu:
473	
474	./canunanopore-raw reads.filtered.fastq genomeSize=1300 stopOnReadQuality=false -d
475	canu_out -p sample-ID
476	
477	This generates several candidate contigs, the contig with the highest number of reads used
478	was verified using BLAST and taken forwards to the next step.
479	
480	Reads were then aligned in Minimap2 to their respective contig generated using Canu:
481	
482	minimap2 -ax map-ont canu_contig.fasta reads.filtered.fastq samtools view -bS -
483	samtools sort -o sample.minimap.sorted.bam
484	
485	This alignment was then used to generate a polished consensus sequence using Nanopolish.
486	First the reads are indexed to match every read in the .fastq file with its corresponding raw
487	fast5 file (the original output of the minION sequencer):
488	
489	nanopolish index -d fast5_directory -s sequencing_summary.txt reads.filtered.fastq
490	
491	The alignment, reference contig and fastq for each sample were then used as the input for
492	Nanopolish:
493	
494	nanopolish variantsconsensusfix-homopolymers -b sample.minimap.sorted.bam -g
495	canu_contig.fasta -r reads.filtered.fastq -o sample.polished.consensus.vcf
496	cuna_contig.justa i reaus.jntereu.justą o sumpte.ponsneu.consensus.vej
497	This consensus .vcf file was then converted to standard .fasta format:
498	
498 499	nanonalish usf2fasta, a sanu, sontia fasta sample polished sonsonsus usf>
	nanopolish vcf2fasta -g canu_contig.fasta sample.polished.consensus.vcf >
500	sample.polished.consensus.fasta
501	
502	The output consensus sequence can then be checked against the original Canu contig, as
503	well as a Sanger contig from the same sample if available. These sequences can also be used
504	for genotyping and resistance typing against established reference sequences.
505	

Intra-sample variants can be determined by aligning all reads to the Nanopolished consensus sequence or Sanger contig and using the variants function within Nanopolish to generate a .vcf file: nanopolish variants -b alignment.sorted.bam -g consensus.fasta -r sample.fastq -o variants.vcf --min-candidate-frequency 0.1 --ploidy 1

ID	Genotype	sAg mutants	Pol mutants	
Br1	A1	Y100C, S207N	D7N, N122H, M129L, W153R, V163I, I253V, V278I, M336L, V341P	
Br2	A1	Y100C, S207N	D7N, N122H, M129L, W153R, V163I, I253V, V278I, M336L	
Br3	D2	T118A, E164D, I195M	Y45H, H126R, V173L, H126R, V173L, L180M, M204V, K270R	
Br4	A1	G44E, Y100C, S207N	N122H, M129L, W153R, V163I, I253V, V278I, M336L	
Br5	D3	Т127Р	F122L, Q130P, Y135S	
Br6	D3	Т127Р	F122L, Q130P, Y135S, S176R	
Br7	A1	Y100C	S117P, N122H, M129L, W153R, V163I	
Br8	D3	l110L, G112N, S114P, T125M	N118T, R120K, I121F, F122A, N123D, Q130P, Y135N, S176R	
Br9	F2		N123D, M129L, S137T, V173L	
Br10	A2		D7A, I53V	
Br11	F2		N123D, M129L, S137T, S176R	
Br12	D3	T127P, Y134N	F122L, H124N, Q130P, Y135S, V142E, S176R	
Br13	D3	Т127Р	F122L, Q130P, Y135S	
Br14	A1	Y100C	N122H, N123D, M129L, W153R, V163I	
Br15	A1	Y100C	N122H, M129L, W153R, V163I, S176R	
Br16	D2	T118A, R122K, T127P, A128V, G159A, F161I	N118D, H126R, Y135S, Q149K, K168E, I169N, S176R	
Br17	F1	\$140T	N123D, M129L, S173T, F148Y, L151F	
Br18	D3	Т127Р	F122L, Q130P, Y135S	
Br19	D3	Т127Р	F122L, Q130P, Y135S	
Br20	D1			
Br21	F2	\$140T	N123D, M129L, S173T, F148Y, S176R	
Br22	ng			
Br23	D3	Т127Р	F122L, Q130P, Y135S, S176R	
Br24	B1		N124D, N131D, S176R	
Br25	A1	Y100C	N122H, Y126H, M129L, W153R, V163I	
Br26	D1	F93L, T127P	L102I, V112A, Y135S, S176R	
Br27	A2	T114S	N122I, D134N, W153R, S176R	
Br28	ng			
Br29	ng			
Br30	D3	G119A, C124S, T127P, Q129E, Y143N, P135T, G145E, T148S, I152L, P153T	L115V, F122L, T128S, Q130P, L132Q, D134H, Y135S, S137*, V142E, S143Y, H156Q, H160S, P161H, S176R	
lq1	D1	Т127Р	S109P, Y135S	
lq2	D1	Т127Р	Y135S	
lq3	D1	Т127Р	Y135S	
lq4	D1	Т127Р	Y135S	
lq5	D1	Т127Р	M129L, Y135S, S176R	
lq6	D1	Q101H, P120S, T127P	T128I, M129L, Y135S, S176R	
lq7	D1	P120S, T127P	T128I, Y135S, S176R	
lq8	D3	Т127Р	Y135S	
lq9	D1	S114A, T125M, G145R	F122R, H124N, Q130P, N131D, R153Q, S176R	
lq10	D1	Q101H, T127P, Y134H, T140I	M129L, Y135S, V142A, S176R	
lq11	D1	Т127Р	Y135S, S176R	

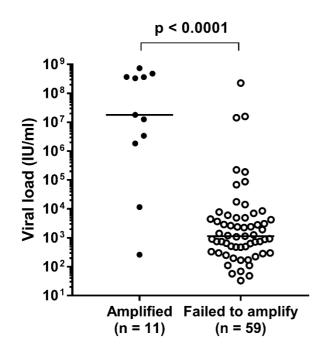
553 Supplementary table 1: Mutations vs consensus reference sequences determined from


554 Sanger sequencing in geno2pheno.

563 References

- WHO. 18 July 2018 2018. Hepatitis B virus Fact sheet, on World Health
 Organisation. <u>http://www.who.int/en/news-room/fact-sheets/detail/hepatitis-b</u>.
 Accessed
- Graber-Stiehl I. 2018. The silent epidemic killing more people than HIV, malaria or
 TB. Nature 564:24.
- 569 3. Lemoine M, Eholie S, Lacombe K. 2015. Reducing the neglected burden of viral
 570 hepatitis in Africa: strategies for a global approach. J Hepatol 62:469-76.
- Lazarevic I. 2014. Clinical implications of hepatitis B virus mutations: recent advances. World J Gastroenterol 20:7653-64.
- 573 5. Lapinski TW, Pogorzelska J, Flisiak R. 2012. HBV mutations and their clinical 574 significance. Adv Med Sci 57:18-22.
- 575 Quick J, Loman NJ, Duraffour S, Simpson JT, Severi E, Cowley L, Bore JA, Koundouno 6. 576 R, Dudas G, Mikhail A, Ouedraogo N, Afrough B, Bah A, Baum JH, Becker-Ziaja B, 577 Boettcher JP, Cabeza-Cabrerizo M, Camino-Sanchez A, Carter LL, Doerrbecker J, 578 Enkirch T, Dorival IGG, Hetzelt N, Hinzmann J, Holm T, Kafetzopoulou LE, Koropogui 579 M, Kosgey A, Kuisma E, Logue CH, Mazzarelli A, Meisel S, Mertens M, Michel J, 580 Ngabo D, Nitzsche K, Pallash E, Patrono LV, Portmann J, Repits JG, Rickett NY, Sachse 581 A, Singethan K, Vitoriano I, Yemanaberhan RL, Zekeng EG, Trina R, Bello A, Sall AA, 582 Faye O, et al. 2016. Real-time, portable genome sequencing for Ebola surveillance. 583 Nature 530:228-232.
- Quick J, Grubaugh ND, Pullan ST, Claro IM, Smith AD, Gangavarapu K, Oliveira G,
 Robles-Sikisaka R, Rogers TF, Beutler NA, Burton DR, Lewis-Ximenez LL, de Jesus JG,
 Giovanetti M, Hill SC, Black A, Bedford T, Carroll MW, Nunes M, Alcantara LC, Jr.,
 Sabino EC, Baylis SA, Faria NR, Loose M, Simpson JT, Pybus OG, Andersen KG, Loman
 NJ. 2017. Multiplex PCR method for MinION and Illumina sequencing of Zika and
 other virus genomes directly from clinical samples. Nat Protoc 12:1261-1276.
- 5908.Loman NJ, Quick J, Simpson JT. 2015. A complete bacterial genome assembled de591novo using only nanopore sequencing data. Nat Methods 12:733-5.
- Brechtbuehl K, Whalley SA, Dusheiko GM, Saunders NA. 2001. A rapid real-time
 quantitative polymerase chain reaction for hepatitis B virus. J Virol Methods 93:105 13.
- 595 10. PHE. 2007. Hepatitis B (HBV): Genotyping protocol, *on* Public Health England.
 596 <u>https://www.gov.uk/government/publications/hepatitis-b-hbv-genotyping-protocol</u>.
 597 Accessed 30 Oct 2007.
- 59811.Kumar S, Stecher G, Li M, Knyaz C, Tamura K. 2018. MEGA X: Molecular Evolutionary599Genetics Analysis across Computing Platforms. Mol Biol Evol 35:1547-1549.
- Edgar RC. 2004. MUSCLE: multiple sequence alignment with high accuracy and high
 throughput. Nucleic Acids Research 32:1792-1797.
- 602 13. De Coster W, D'Hert S, Schultz DT, Cruts M, Van Broeckhoven C. 2018. NanoPack:
 603 visualizing and processing long-read sequencing data. Bioinformatics 34:2666-2669.
- Koren S, Walenz BP, Berlin K, Miller JR, Bergman NH, Phillippy AM. 2017. Canu:
 scalable and accurate long-read assembly via adaptive k-mer weighting and repeat
 separation. Genome Res 27:722-736.
- Li H. Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics
 doi:10.1093/bioinformatics/bty191.

609 16. Beggel B, Neumann-Fraune M, Doring M, Lawyer G, Kaiser R, Verheyen J, Lengauer T. 610 2012. Genotyping hepatitis B virus dual infections using population-based sequence 611 data. J Gen Virol 93:1899-907. 612 17. Hayer J, Jadeau F, Deléage G, Kay A, Zoulim F, Combet C. 2013. HBVdb: a knowledge 613 database for Hepatitis B Virus. Nucleic Acids Research 41:D566-D570. 614 McNaughton AL, D'Arienzo V, Ansari MA, Lumley SF, Littlejohn M, Revill P, 18. 615 McKeating JA, Matthews PC. 2019. Insights From Deep Sequencing of the HBV 616 Genome-Unique, Tiny, and Misunderstood. Gastroenterology 156:384-399. 617 19. Barth RE, Huijgen Q, Taljaard J, Hoepelman AI. 2010. Hepatitis B/C and HIV in sub-618 Saharan Africa: an association between highly prevalent infectious diseases. A 619 systematic review and meta-analysis. Int J Infect Dis 14:e1024-31. 620 Matthews PC, Geretti AM, Goulder PJ, Klenerman P. 2014. Epidemiology and impact 20. 621 of HIV coinfection with hepatitis B and hepatitis C viruses in Sub-Saharan Africa. J 622 Clin Virol 61:20-33. 623 21. Martin CM, Welge JA, Rouster SD, Shata MT, Sherman KE, Blackard JT. 2012. 624 Mutations Associated with Occult Hepatitis B Virus Infection Result in Decreased 625 Surface Antigen Expression In Vitro. J Viral Hepat 19:716-23. 626 22. Sárközy P, Molnár V, Fogl D, Szalai C, Antal P. 2017. Beyond Homopolymer Errors: a 627 Systematic Investigation of Nanopore-based DNA Sequencing Characteristics Using 628 HLA-DQA2. Periodica Polytechnica Electrical Engineering and Computer Science 629 61:231-237. 630 23. Cao L, Wu C, Shi H, Gong Z, Zhang E, Wang H, Zhao K, Liu S, Li S, Gao X, Wang Y, Pei R, Lu M, Chen X. 2014. Coexistence of hepatitis B virus guasispecies enhances viral 631 replication and the ability to induce host antibody and cellular immune responses. J 632 633 Virol 88:8656-66. 634 24. Liu F, Chen L, Yu DM, Deng L, Chen R, Jiang Y, Chen L, Huang SY, Yu JL, Gong QM, 635 Zhang XX. 2011. Evolutionary patterns of hepatitis B virus quasispecies under 636 different selective pressures: correlation with antiviral efficacy. Gut 60:1269-77. 637 25. Margeridon-Thermet S, Shulman NS, Ahmed A, Shahriar R, Liu T, Wang C, Holmes SP, 638 Babrzadeh F, Gharizadeh B, Hanczaruk B, Simen BB, Egholm M, Shafer RW. 2009. Ultra-deep pyrosequencing of hepatitis B virus quasispecies from nucleoside and 639 640 nucleotide reverse-transcriptase inhibitor (NRTI)-treated patients and NRTI-naive 641 patients. The Journal of infectious diseases 199:1275-1285. 642 26. Grubaugh ND, Gangavarapu K, Quick J, Matteson NL, De Jesus JG, Main BJ, Tan AL, 643 Paul LM, Brackney DE, Grewal S, Gurfield N, Van Rompay KKA, Isern S, Michael SF, 644 Coffey LL, Loman NJ, Andersen KG. 2019. An amplicon-based sequencing framework 645 for accurately measuring intrahost virus diversity using PrimalSeq and iVar. Genome 646 Biol 20:8. 647 Ji H, Li Y, Graham M, Liang BB, Pilon R, Tyson S, Peters G, Tyler S, Merks H, 27. 648 Bertagnolio S, Soto-Ramirez L, Sandstrom P, Brooks J. 2011. Next-generation 649 sequencing of dried blood spot specimens: a novel approach to HIV drug-resistance 650 surveillance. Antivir Ther 16:871-8. 651 Ji H, Li Y, Liang B, Pilon R, MacPherson P, Bergeron M, Kim J, Graham M, Van 28. 652 Domselaar G, Sandstrom P, Brooks J. 2013. Pyrosequencing dried blood spots reveals 653 differences in HIV drug resistance between treatment naive and experienced 654 patients. PLoS One 8:e56170.


- Weinberger KM, Bauer T, Bohm S, Jilg W. 2000. High genetic variability of the groupspecific a-determinant of hepatitis B virus surface antigen (HBsAg) and the
 corresponding fragment of the viral polymerase in chronic virus carriers lacking
 detectable HBsAg in serum. J Gen Virol 81:1165-74.
- Baclig MO, Alvarez MR, Gopez-Cervantes J, Natividad FF. 2014. Unique surface gene
 variants of hepatitis B virus isolated from patients in the Philippines. J Med Virol
 86:209-16.
- Mbala-Kingebeni P, Villabona-Arenas CJ, Vidal N, Likofata J, Nsio-Mbeta J, MakialaMandanda S, Mukadi D, Mukadi P, Kumakamba C, Djokolo B, Ayouba A, Delaporte E,
 Peeters M, Muyembe Tamfum JJ, Ahuka-Mundeke S. 2019. Rapid Confirmation of
 the Zaire Ebola Virus in the Outbreak of the Equateur Province in the Democratic
 Republic of Congo: Implications for Public Health Interventions. Clin Infect Dis
 68:330-333.
- Koontz D, Dollard S, Cordovado S. 2019. Evaluation of rapid and sensitive DNA
 extraction methods for detection of cytomegalovirus in dried blood spots. Journal of
 Virological Methods 265:117-120.
- 671
- 672

678 Figure 1. Schematic of HBV PCR amplicons produced from cccDNA. Regions covered by PCR amplicons detailed in Table 2 are shown in grey. Overlapping ORFs in the HBV genome 679 680 (genotype A reference isolate X02763) are shown in green or yellow (polymerase gene). 681 Genome is represented as linear for clarity. F1+R1 amplicon is sufficient for genotyping and limited detection of sAg escape mutants. The region of the reverse transcriptase domain 682 683 (RT) in which resistance associated substitutions (RAS) arise (aa169 – 250), shown in red, is 684 encompassed by the F1+R3 amplicon. The region in which known surface antigen (HBsAg) 685 immune/diagnostic escape mutants arise (aa100 – 147), highlighted in blue, is covered by all 686 three amplicons.

687

689

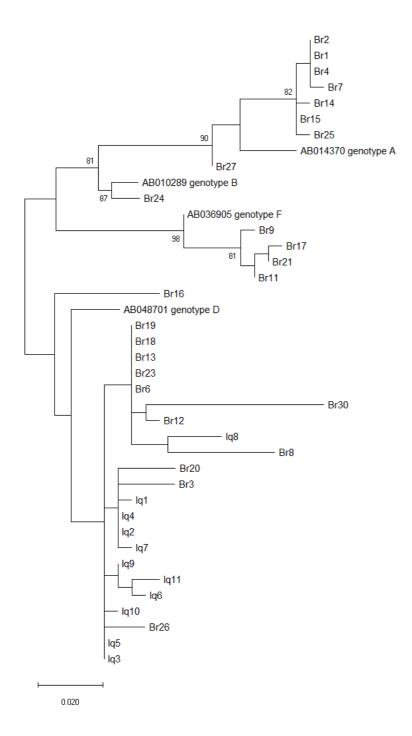


Figure 2. HBV viral load of DSS from Iraq. Successful PCR amplification of HBV-positive DSS

692 samples from Iraq is associated with higher viral load (Mann-Whitney U test). Number of

693 samples in each group (n) is shown. PCRs for samples which failed to amplify were

694 performed at least 3 times.

696

697 Figure 3: Maximum likelihood (ML) tree constructed from F1+R1 PCR amplicon (240bp).

- 698 The ML tree was inferred using a general time reversible model within MEGA X (11).
- 699 Statistical robustness was assessed using bootstrap resampling of 1,000 pseudoreplicates,
- and the tree with the highest log-likelihood is shown.

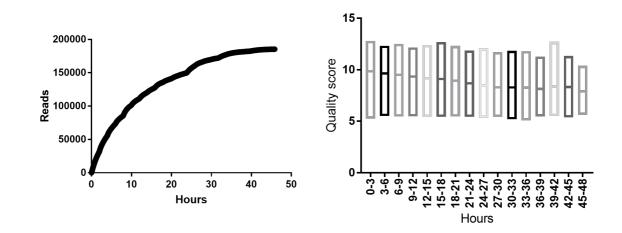
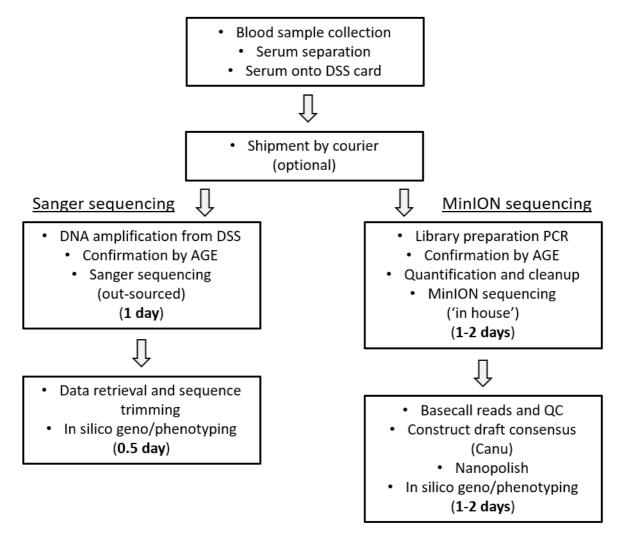



Figure 4. Metrics from MinION sequencing run. Both plots were generated from raw reads
 assigned barcodes by Albacore without further filtering. Quality scores are standard Phred
 scores produced by Albacore during basecalling, data is presented as mean Phred score per
 read with min and max.

Workflow for sequencing from DSS

⁷¹¹

Figure 5. Schematic of the sequencing workflows. The typical number of days taken for 712 each aspect of the workflow is noted. The length of time given to the 'shipment by courier' 713 714 and Sanger sequencing steps are relevant to this study but may be omitted, or vary 715 significantly, depending upon the given laboratory and infrastructure situation. 1 day is 716 suggested as the minimum amount of time for MinION library preparation, sample clean up 717 and enough sequencing time to generate a reliable consensus. Sequencing to a greater 718 depth will add more sequencing and subsequent compute time. Sanger sequencing in 719 Nottingham is provided by a commercial service with sample collection and over-night

- 720 sequencing and data return. DSS, dried serum spot; AGE, agarose gel electrophoresis; QC,
- 721 quality control.
- 722
- 723