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Abstract

Recent developments in whole-genome mapping approaches for the chromatin interactome (such as
Hi-C) have offered new insights into 3D genome organization. However, our knowledge of the evo-
lutionary patterns of 3D genome structures in mammalian species remains surprisingly limited. In
particular, there are no existing phylogenetic-model based methods to analyze chromatin interactions
as continuous features across different species. Here we develop a new probabilistic model, named
phylogenetic hidden Markov random field (Phylo-HMRF), to identify evolutionary patterns of 3D
genome structures based on multi-species Hi-C data by jointly utilizing spatial constraints among
genomic loci and continuous-trait evolutionary models. The effectiveness of Phylo-HMRF is demon-
strated in both simulation evaluation and application to real Hi-C data. We used Phylo-HMRF to
uncover cross-species 3D genome patterns based on Hi-C data from the same cell type in four pri-
mate species (human, chimpanzee, bonobo, and gorilla). The identified evolutionary patterns of 3D
genome organization correlate with features of genome structure and function, including long-range
interactions, topologically-associating domains (TADs), and replication timing patterns. This work
provides a new framework that utilizes general types of spatial constraints to identify evolutionary
patterns of continuous genomic features and has the potential to reveal the evolutionary principles of
3D genome organization.

Introduction
In humans and other higher eukaryotes, chromosomes are folded and organized in three-dimensional
(3D) space and different chromosomal loci interact with each other (Bonev and Cavalli, 2016; Rowley
and Corces, 2018). Recent developments in whole-genome mapping approaches for the chromatin in-
teractome such as Hi-C (Lieberman-Aiden et al., 2009; Rao et al., 2014) and ChIA-PET (Tang et al.,
2015) have facilitated the identification of genome-wide chromatin organizations comprehensively, re-
vealing important 3D genome features such as loops (Rao et al., 2014; Tang et al., 2015), topologically-
associating domains (TADs) (Dixon et al., 2012; Nora et al., 2012), and A/B compartments (Lieberman-
Aiden et al., 2009). A limited number of attempts have been made to analyze these 3D genome features
across different species. An earlier study using Hi-C showed that the positions of TADs were largely
conserved between human and mouse within syntenic genomic regions (Dixon et al., 2012). Another
study demonstrated that evolutionary changes in TAD structure correspond with the creation or elimina-
tion of CTCF binding sites using relatively low resolution Hi-C data from rhesus macaque, dog, rabbit,
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and mouse (Rudan et al., 2015). More recently, TADs have been shown to have strong conservation
in mammalian evolution with the TADs boundaries under potential negative selections against genome
rearrangements (Lazar et al., 2018; Fudenberg and Pollard, 2019). These previous analyses pointed to
the conservation and changes of 3D genome structure across different species, although a more com-
prehensive characterization of the detailed evolutionary patterns of 3D genome organization remains
unclear. Additionally, as most of the initial comparative analysis of 3D genomes focused primarily on
distantly related organisms, there is limited understanding of how 3D genome features may have evolved
in closely related mammalian species, especially in recent primate evolution which is of particular inter-
est to understand human specific and great-ape specific gene regulations.

On the algorithmic side, existing computational approaches for comparing 3D genome organiza-
tion across multiple species have surprisingly limited capability. Importantly, multi-species functional
genomic data from various high-throughput epigenomic assays (e.g., Hi-C, ChIP-seq, Repli-seq) are
continuous traits in nature. However, such continuous signals are often converted to discrete values to
identify distinctive feature patterns (e.g., presence or absence of TADs) for subsequent comparisons,
which may cause dramatic loss of information of more subtle differences from the original data. Al-
though methods have been developed to quantitatively analyze the strengths of chromatin interactions
from Hi-C data, to the best of our knowledge, there are no existing phylogenetic-model based methods
available to analyze Hi-C data as continuous signals across different species in a genome-wide manner
to uncover evolutionary patterns of 3D genome organization.

We previously developed a method called phylogenetic hidden Markov Gaussian Processes (Phylo-
HMGP) (Yang et al., 2018) to estimate evolutionary patterns given continuous functional genomic data
(e.g., Repli-seq) along the genome from multiple species. Phylo-HMGP considers evolutionary affinities
among species in a hidden Markov model (HMM), utilizing evolutionary constraints and also dependen-
cies along one-dimensional (1D) genome coordinates. However, the HMMs, as used by Phylo-HMGP,
are based on 1D Markov chains, which cannot be simply used to model generalized spatial dependencies
(such as those reflected in Hi-C data) to consider the interactions between nodes in an arbitrary graph.
Therefore, HMM-based methods cannot be directly applied to discovering patterns of higher-order chro-
matin interactions from Hi-C contact matrices, which consist of continuous measurements of contact
frequencies between a pair of genomic loci.

Here, we develop a new probabilistic model, phylogenetic hidden Markov random field (Phylo-
HMRF), which integrates the continuous-trait evolutionary constraints with the hidden Markov random
field (HMRF) model, to capture evolutionary patterns of continuous genomic features across species by
utilizing generalized spatial constraints. We demonstrated the advantage of Phylo-HMRF using sim-
ulation data. In addition, we applied Phylo-HMRF to a new Hi-C dataset from the same cell type
(lymphoblastoid cell) in four primate species (human, chimpanzee, bonobo, and gorilla). Phylo-HMRF
identified different evolutionary patterns of Hi-C contacts across the four species, including both con-
served patterns and lineage-specific patterns. These patterns show strong correlations with long-range
Hi-C interactions, TAD structures, and the evolutionary patterns of DNA replication timing in primate
species. Phylo-HMRF offers an effective model to potentially reveal important evolutionary principles of
3D genome organization. The source code of Phylo-HMRF can be accessed at: https://github.com/ma-
compbio/Phylo-HMRF.

Results

Overview of the Phylo-HMRF model

The overview of the Phylo-HMRF method is shown in Fig. 1. Our goal is to identify different evolu-
tionary patterns of chromatin conformation from multi-species Hi-C data. The input contains the Hi-C
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Figure 1: Overview of Phylo-HMRF. (A) Illustration of the possible evolutionary patterns of chromatin interaction. The Hi-C space is a
combined multi-species Hi-C contact map, which integrates aligned Hi-C contact maps of each species. Each node represents the multi-
species observations of Hi-C contact frequency between a pair of genomic loci, with a hidden state assigned. Nodes with the same color
have the same hidden state and are associated with the same type of evolutionary pattern represented by a parameterized phylogenetic
tree ψi. The parameters of ψi include the selection strengths αi, Brownian motion intensities σi, and the optimal values θi based on the
Ornstein-Uhlenback (OU) process assumption. (B) Illustration of the OU process over a phylogenetic tree with four observed species. Time
axis represents the evolution history. X(t) represents the trait at time t. The trajectories reflect the evolution of the continuous-trait features
in different lineages, where the time points t1, t2, t3 represent the speciation events. (C) A cartoon example of the possible evolutionary
patterns (partitioned with different colors). Phylo-HMRF aims to identify evolutionary Hi-C contact patterns among four primate species in
this work. The four Hi-C contact maps represent the observations from the four species, which are combined into one multi-species Hi-C
map as the input to Phylo-HMRF, as shown in (A). The phylogenetic tree of the four species in this study is on the left. The partitions
with green borders are conserved Hi-C contact patterns. The partitions with red or blue borders represent lineage-specific Hi-C contact
patterns.

contact frequency data from each species. We align the Hi-C contacts in each species to the reference
genome, and obtain a combined multi-species Hi-C contact map based on the reference genome as shown
in Fig. 1A, where each node in the map corresponds to multi-species contact frequencies between the
corresponding pair of genomic loci (Supplementary Methods). Hence each node is associated with a
multi-dimensional feature as the multi-species observation. We also assume that each node has a hid-
den state that represents the evolutionary pattern of Hi-C contacts between the corresponding pair of
genomic loci. Phylo-HMRF estimates the hidden state of each node by considering both spatial depen-
dencies among nodes encoded by an HMRF and the evolutionary dependencies between species in the
phylogeny. The continuous-trait evolutionary models are embedded into the HMRF. Therefore, each
hidden state corresponds to an evolutionary model that is represented by a parameterized phylogenetic
tree. The output of Phylo-HMRF contains the partition of the combined multi-species Hi-C contact map,
where adjacent nodes with the same hidden state are in the same partition. These partitions reflect the
distribution of different evolutionary patterns of Hi-C contact frequencies. As shown in Fig. 1B, Phylo-
HMRF uses the Ornstein-Uhlenbeck (OU) process as the continuous-trait evolutionary model. Fig. 1C is
an illustration of the possible Hi-C evolutionary patterns that Phylo-HMRF aims to uncover across four
primate species in this work.

Note that an evolutionary pattern identified by Phylo-HMRF is associated with the conservation or
variation of the feature of interest across different species. For example, in this study, we may observe
conserved high Hi-C contacts in all the compared species between a specific pair of genomic loci. We
may also observe that strong Hi-C contacts only exist in some of the species between a specific pair
of genomic loci. These different types of feature distribution across species are representative of the
evolutionary patterns that we want to identify as states. In addition, Phylo-HMRF provides a framework
to utilize both general types of spatial dependencies among genomic loci and evolutionary relationships
among species to identify evolutionary patterns from multi-species continuous-trait features. The general
types of spatial dependencies refer to any type of dependencies that can be represented by the edge
connections in a graph.
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Performance evaluation of Phylo-HMRF using simulation

We evaluated the performance of Phylo-HMRF using simulations to demonstrate improvement in iden-
tifying 2D evolutionary feature patterns. We applied Phylo-HMRF to 16 simulated datasets in two sets
of simulations, each of which contains 8 datasets. Suppose the samples in simulated datasets correspond
to nodes in a graph G. Similar to a Hi-C contact map, G has a 2D lattice structure of size n × n, where
each vertex is associated with a sample. The samples thus represent features of vertices in G. For exam-
ple, a sample can represent the interaction intensities between the i-th locus and the j-th locus out of n
genomic loci in multiple species, (1 ≤ i, j ≤ n). We also assume that each sample has a class label, or
hidden state. Each hidden state is associated with an emission probability function and determines the
observed feature of the sample with this state. The hidden states of the samples are assumed to be from
a Markov random field (MRF). Thus, the hidden state of a sample is spatially dependent on the hidden
states of its neighbors in G. In the simulation evaluation, we first simulated the hidden state configu-
rations of the samples by simulating an MRF through Gibbs sampling (Geman and Geman, 1984). We
then simulated the multi-species observations from multi-variate Gaussian distributions with OU model
parameters embedded. The details of the data simulation are in Supplementary Methods.

Based on the simulated datasets, we compared Phylo-HMRF with several other methods, including
the Gaussian-HMRF method (Zhang et al., 2001), the Gaussian mixture model (GMM), and the K-
means clustering method, to infer hidden states of the samples. Each method was run repeatedly for
10 times on each simulated dataset with different random initialization, given the number of hidden
states M = 10. Additionally, we also included two image segmentation methods SLIC (Simple Linear
Iterative Clustering) (Achanta et al., 2012) and Quick Shift (Vedaldi and Soatto, 2008) for comparison
(Supplementary Methods). Both methods have been effectively used in image segmentation applications.
The two methods were also run repeatedly for 10 times each. We adjusted the parameter configurations of
each of the two methods such that the number of output segments is 10. To utilize the image segmentation
methods for state estimation across species, we considered the graph G as an image and considered the
features of each species as one color channel of the image. The average performance of the 10 results
for each method was reported as the final performance of the corresponding method with respect to
different types of evaluation metrics. We evaluated the performance of each method by comparing the
predicted states and ground truth hidden states, using evaluation metrics Normalized Mutual Information
(NMI), Adjusted Mutual Information (AMI), Adjusted Rand Index (ARI), Precision, Recall, and F1

score (Manning et al., 2008; Vinh et al., 2010) (Supplementary Methods).
The evaluation results are shown in Fig. 2 and Table S1. We found that Phylo-HMRF outforms all

the other methods on different types of evaluation metrics in each simulated dataset in simulation study
I. Phylo-HMRF consistently outperforms Gaussian-HMRF, demonstrating that encoding the evolution
information can improve accuracy. Even though all the multi-species observations are simulated from
Gaussian distribution, using Gaussian distribution alone in inference may not reveal the possible evolu-
tionary dependencies between the species. In addition, both Phylo-HMRF and Gaussian-HMRF show
advantage over GMM and K-means clustering, suggesting that encoding the spatial constraints is also
crucial. Moreover, Phylo-HMRF outperforms the two image segmentation methods SLIC and Quick
Shift in different simulated datasets. The image segmentation methods perform segmentation of the im-
age representation of the cross-species data based on feature similarity and spatial proximity. Regions
that belong to the same evolutionary pattern (e.g., conserved high in Hi-C contacts across species) can be
assigned different labels if they are distant from each other in spatial location, which affects the accuracy
and interpretability of hidden state estimation.

We further performed simulation study II, where we simulated another eight datasets with different
parameter configurations, in order to assess if the advantage of Phylo-HMRF is consistent over varied

4

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted February 19, 2019. ; https://doi.org/10.1101/552505doi: bioRxiv preprint 

https://doi.org/10.1101/552505
http://creativecommons.org/licenses/by-nc-nd/4.0/


NMI AMI ARI F10.
0

0.
2

0.
4

0.
6

0.
8

Simulation Dataset I−1

NMI AMI ARI F10.
0

0.
2

0.
4

0.
6

0.
8

Simulation Dataset I−2

NMI AMI ARI F10.
0

0.
2

0.
4

0.
6

0.
8

Simulation Dataset I−3

NMI AMI ARI F10.
0

0.
2

0.
4

0.
6

0.
8

Simulation Dataset I−4

NMI AMI ARI F10.
0

0.
2

0.
4

0.
6

0.
8

Simulation Dataset I−5

NMI AMI ARI F10.
0

0.
2

0.
4

0.
6

0.
8

Simulation Dataset I−6

NMI AMI ARI F10.
0

0.
2

0.
4

0.
6

0.
8

Simulation Dataset I−7

NMI AMI ARI F10.
0

0.
2

0.
4

0.
6

0.
8

Clustering
GMM
SLIC
Quickshift
Gaussian−HMRF
Phylo−HMRF

Simulation Dataset I−8

Figure 2: Performance evaluation of K-means Clustering, GMM, SLIC, Quick Shift, Gaussian-HMRF, and Phylo-HMRF on eight simulation
datasets in simulation study I with respect to NMI (Normalized Mutual Information), AMI (Adjusted Mutual Information), ARI (Adjusted Rand
Index), and F1 score. The standard error of the results from 10 runs of each method is shown as the error bar, respectively.

simulation parameter settings (Supplementary Methods). The eight sets of simulated hidden states are
shared between simulation studies I and II, while the observable random fields are simulated with differ-
ent parameter settings. We then applied Phylo-HMRF and the other methods to the datasets in simulation
study II and evaluated performance using the same procedure as we used in simutation study I. The evalu-
ation results are shown in Fig. S1. Again we found that Phylo-HMRF consistently outperforms the other
methods across all datasets in simulation study II. Taken together, the simulation evaluation demonstrated
that Phylo-HMRF is able to achieve improved accuracy consistently in estimating evolutionary patterns
of Hi-C contacts in multiple species.

Phylo-HMRF identifies different Hi-C contact patterns across multiple primate species

We applied Phylo-HMRF to a Hi-C dataset from four primate species. We used the Hi-C data in
GM12878 in human from the 4DN data portal. We generated Hi-C data from the lymphoblastoid cells of
three other primate species, including chimpanzee, bonobo, and gorilla. There are 290M, 270M, 240M,
and 290M mapped read pairs for the four primate species, respectively. The genome assemblies used for
the four species are hg38, panTro5, panPan2, and gorGor4, respectively.

We ran Phylo-HMRF on all the syntenic regions on autosomes based on the human genome. We
first identified 92 synteny blocks in 50 kb resolution (i.e., ignoring rearrangements smaller than 50 kb
among the four species) using the method inferCARs (Ma et al., 2006), covering 92.64% of the se-
quenced regions in the human genome (Fig. S2, Supplementary Methods). For example, we identified
9 major synteny blocks on human chromosome 1 among the four species, covering 92.50% of human
chromosome 1 (Fig. 3B). We then applied Phylo-HMRF to perform genome-wide evolutionary pattern
estimation over the multiple synteny blocks across different chromosomes jointly, with each synteny
block represented as a subgraph of G. The number of states is set to be 30 based on estimation from the
results of K-means clustering (Supplementary Methods, Fig. S3).

Phylo-HMRF identified both conserved and lineage-specific evolutionary patterns of Hi-C contact
frequencies across the four primate species. We further categorized the 30 estimated hidden states into 13
groups which show higher-level distinctiveness of heterogeneous evolutionary patterns (Supplementary
Methods). Four of the groups represent conserved or weakly conserved cross-species patterns in Hi-C
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Figure 3: Evolutionary patterns of Hi-C contact frequency estimated by Phylo-HMRF. (A) Representative states from the 13 groups of
evolutionary patterns. One state from each group is presented. The boxplots show the normalized cross-species Hi-C contact frequency
distributions of the four species in the corresponding states with outliers removed. (B) Cross-species Hi-C contact frequency states
identified in synteny block 8 on chromosome 1, in comparison with the Hi-C contact maps of the four primate species. First row: Locations
of the nine identified synteny blocks on chromosome 1. Second row: Cross-species Hi-C contact frequency states identified by Phylo-
HMRF. The black arrows point to two examples of identified gorilla-specific low Hi-C contact frequency state (NC-gor low, purple color) in
the combined Hi-C contact map. Third and fourth rows: Hi-C contact maps of the four primate species in this synteny block, with signal
scale displayed at the bottom. Darker color in the Hi-C contact map represents lower contact frequency. The white arrows point to the
corresponding locations of the two examples of identified gorilla-specific low contact state. (C) Cross-species Hi-C contact frequency states
identified in synteny block 3 on chromosome 2. First row: Locations of the four identified synteny blocks on chromosome 2. Second row:
Cross-species Hi-C contact frequency states identified by Phylo-HMRF. The black arrow points to one example of identified bonobo-specific
low Hi-C contact state (NC-pyg low, green color) in the combined Hi-C contact map. The white arrow points to the corresponding location
of the example of identified bonobo-specific low state in the Hi-C contact maps of the four species.

contact frequency, which are conserved high in Hi-C contact frequency (C-high), conserved middle-
level (C-mid), conserved low (C-low), and weakly conserved middle-level (WC). The four groups cover
51.14% of all the nodes in the cross-species Hi-C maps of the synteny blocks. Nine of the groups corre-
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spond to non-conserved evolutionary patterns in Hi-C contacts, where eight exhibit lineage-specific pat-
terns. Specifically, the nine groups are human-specific high in Hi-C contact frequency (NC-hom high),
human-specific low (NC-hom low), chimpanzee-specific high (NC-pan high), chimpanzee-specific low
(NC-pan low), bonobo-specific high (NC-pyg high), bonobo-specific low (NC-pyg low), gorilla-specific
high (NC-gor high), gorilla-specific low (NC-gor low) and non-conserved (NC). Examples of the rep-
resentative estimated states from each of the 13 groups are shown in Fig. 3A. Hi-C contact frequency
distributions of multiple species in all 30 estimated states are shown in Fig. S4.

In Fig. 3B and Fig. 3C, as examples we show the estimated states in synteny block 8 on chromosome 1
and in synteny block 3 on chromosome 2, along with the input Hi-C contact maps of the four species. The
rotated upper triangular matrix as shown in the second row of Fig. 3B or Fig. 3C represents the estimated
hidden states of the graph G of the HMRF in Hi-C data comparison in the corresponding synteny block,
which is of the same size as the multi-species Hi-C contact maps in this synteny block. Each vertex
in G corresponds to a pair of genomic loci in the Hi-C contact map. The hidden state configuration is
visualized as an image, where different colors represent different estimated hidden states. Adjacent nodes
that are assigned to the same hidden state form a contiguous segment in the image. Therefore, based on
the estimated states, G is partitioned, reflecting different cross-species Hi-C contact patterns. In Fig. 3B,
we found that there are two gorilla-specific low Hi-C contact patterns near the diagonal area, which are
colored in purple. These two regions correspond to the gorilla-specific low Hi-C states that appear in the
state-distance plots of synteny block 8 on chromosome 1 in Fig. S5. In Fig. 3C, we observed that there is
a bonobo-specific low Hi-C contact frequency pattern detected near the diagonal area, which is colored
in green. By comparing the estimated hidden states to the corresponding Hi-C contact maps of the four
species, we found that the estimated states accurately reflect what can be observed in Hi-C contact maps
in different species.

Next we compared the distributions of evolutionary patterns of Hi-C contacts over changing dis-
tances between a pair of genomic loci in each synteny block. We consider that Hi-C contacts over short
genomic loci distances are local Hi-C contacts (genomic loci distance <3Mb), and Hi-C contacts over
large distances represent longer-range contacts. Short genomic loci distances correspond to an area near
the diagonal of the Hi-C contact map. The state-distance plots across the synteny blocks on all the auto-
somes are shown in Fig. 4A. We observed that C-high, C-mid, and WC states are the predominant states
around the diagonal area when the genomic loci distance is within the range of around 2.5 Mb (black
arrow in Fig. 4A). This suggests that the majority of the local Hi-C contact patterns and the associated
genome structures are likely to be conserved across difference species. At large genomic loci distances,
which corresponds to the off-diagonal area in the Hi-C contact map, the C-low and non-conserved states
have much larger percentages as expected. We also found that the distribution over genomic loci distance
varies across different lineage-specific states. For single synteny blocks, the state-distance plots of the
major synteny blocks on chromosome 1 and chromosome 2 are shown in Fig. S5 and Fig. S6 as exam-
ples. Overall, we found that there are similar enrichment patterns of states within a short distance range
across the synteny blocks, while different blocks also exhibit varied trends of how evolutionary patterns
are distributed at different genomic loci distances. We also observed that the lineage-specific states are
distributed unevenly among the synteny blocks, showing occurrences either in local Hi-C contacts or
long-range Hi-C contacts.

Together these results demonstrate the effectiveness of Phylo-HMRF to identify evolutionary patterns
of Hi-C contacts across different species in a phylogeny.

Hi-C evolutionary patterns correlate with DNA replication timing patterns

We next compared the predicted states from Phylo-HMRF with other features of genome structure and
function. We previously reported evolutionary patterns of DNA replication timing (RT) using Repli-seq
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Figure 4: Comparison between the evolutionary states of Hi-C contacts estimated by Phylo-HMRF and other features of genome structure
and function. (A) Global state-distance plots show the enrichment of different evolutionary patterns at different distances between genomic
loci across synteny blocks on all autosomes. The black arrow points to the distance range around 2.5Mb where C-high and C-mid are the
predominant states. (B) The percentage of paired genomic loci that is conserved in RT in five Hi-C contact evolutionary pattern groups.
The top panel shows the distributions of TAD sizes, aligned with the axis of the genomic loci distance. The first black arrow points to the
position of the first observed changing point on the Matched-RT state fraction curve for the C-high state and for the C-mid state. The second
black arrow points to the position of 2.5MB, where the trend change is observed in the state-distance plot as shown in (A). (C) Distributions
of distance between the boundaries of all the identified local conserved high Hi-C contact patterns and the nearest TAD boundaries for
both Arrowhead TADs and DI TADs. (D) Comparison between the boundaries of local conserved high Hi-C contact patterns and the TAD
boundaries in synteny block 8 on chromosome 1. Several potential long-range conserved TAD interaction patterns are shown with yellow
solid lines as borders.

of multiple primate species (Yang et al., 2018). We identified 5 groups of RT evolutionary states, which
are conserved early in RT (E), weakly conserved early (WE), conserved late (L), weakly conserved late
(WL), and non-conserved (NC). For each pair of genomic loci with estimated Hi-C states, we examined
the RT state composition of the corresponding two genomic loci. If the paired genomic loci share similar
conserved RT states, i.e., both are E/WE or both are L/WL, we annotated this pair as conserved in RT
(C), otherwise we annotated it as non-conserved in RT. We then computed the percentage of contact loci
that have the conserved RT states in the C-high, C-mid, WC, C-low, and NC Hi-C states identified by
Phylo-HMRF over a range of different distances (0-10Mb). The results are shown in Fig. 4B. Notably, it
is clear that C-high, C-mid, and WC Hi-C contacts patterns have higher enrichment of genome contacts
with conserved RT patterns than the NC group over most of the distance ranges. The percentage is
particularly high in the C-high state for genomic loci that are less than 4 Mb apart. This suggests that the
conserved high Hi-C contact states are strongly correlated with those genomic loci pairs that both have
consistent conserved RT patterns across species. We further explored potential connections between the
features and the curves observed in Fig. 4B with known chromatin structure patterns such as TADs. We
considered the TADs in GM12878 in human called using the Arrowhead method (Rao et al., 2014) and
the Directionality Index (DI) method (Dixon et al., 2012), which are named Arrowhead TAD and DI
TAD, respectively. The average sizes of Arrowhead TADs and DI TADs are around 1Mb and 0.6Mb,
respectively. As shown in Fig. 4B, there is a changing point around 1MB in the distance axis on the
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Matched-RT state fraction curve both for the C-high state and for the C-mid state, which approximately
matches the average size of TADs. This implies that the identified evolutionary patterns of local high
Hi-C contacts and the evolutionary patterns of RT states may be constrained by the TADs structures.

Hi-C evolutionary patterns correlate with TADs

TADs are important higher-order genome organization features revealed by Hi-C (Dixon et al., 2012).
Here we focus on the diagonal of the Hi-C contact maps that reflect local Hi-C contact patterns across
species. For segments of estimated Hi-C states on the diagonal, we used windows that could match the
segments to detect the block patterns (Supplementary Methods). We identified 2,793 block patterns on
the diagonals of the Hi-C contact maps of all the synteny blocks on all chromosomes.

We compared the boundaries of the diagonal blocks detected from the states predicted by Phylo-
HMRF with TADs boundaries called using Arrowhead and DI, respectively. For each boundary of every
identified diagonal block, we calculated the distance between the block boundary and the nearest TAD
boundary. We then computed the percentages of the diagonal blocks whose distance to the nearest
TAD boundaries fall in different distance ranges. Since the Hi-C contact frequency was measured at a
resolution of 50Kb in this study, the boundaries of the diagonal blocks detected from the estimated states
are all at 50Kb resolution. The distance between a diagonal block boundary and a nearest TAD boundary
is calculated in increments of 50Kb (one genome bin) accordingly. We also estimated the empirical
distributions of the distances between boundaries of a possible diagonal block and a nearest TAD by
randomly shuffling the identified diagonal blocks (Supplementary Methods).

We observed that the distance between the boundaries of the identified diagonal blocks and the near-
est TADs are significantly more enriched in the distance intervals that represent relatively small distances
(e.g., [0,50Kb] and (50Kb,100Kb]) than expected (Fig. 4C). Specifically, 55.60% of the identified diag-
onal block boundaries are matched by an Arrowhead TAD boundary with the distance less than 2 bins,
which is significantly higher than the corresponding expected percentage 36.08% observed from the em-
pirical distribution (empirical p-value<2e-03). Similarly, the percentages of the identified diagonal block
boundaries that are matched by a DI TAD boundary within 1 bin or 2 bins are significantly higher than
the expected percentages (empirical p-value<1e-03). In contrast, the percentage of the diagonal block
boundaries with distance to a nearest TAD boundary larger than 4 bins are significantly smaller than
expected (empirical p-value<1e-03).

For example, we identified 34 blocks along the diagonal of the Hi-C map of synteny block 8 on chro-
mosome 1 from the estimated Hi-C evolutionary states based on Phylo-HMRF. The identified blocks are
all C-high states, which are shown with white borders in Fig. 4D. We observed that the block boundaries
show high consistency with the TAD boundaries (Fig. 4D). Specifically, 70.77% of the block boundaries
match an Arrowhead TAD boundary or a DI TAD boundary within 2 bins. The capability of Phylo-
HMRF in detecting TAD boundaries without using a TAD calling algorithm implies that TADs are an
important type of units of genome organization evolution. The result also reflects the accuracy of Phylo-
HMRF in estimating Hi-C evolutionary patterns.

Furthermore, we observed C-mid and WC states in off-diagonal area of the Hi-C contact map,
which potentially correspond to the long-range interactions between two TADs that are conserved across
species. Five examples of the potentially conserved long-range TADs interactions are shown in Fig. 4D
(highlighted in yellow borders).

Taken together, our results suggest that TADs are important 3D genome organization features in
genome evolution in primate species. In addition, the evolutionary changes of intra-TAD interactions
(i.e., local contacts) and inter-TAD interactions (i.e., long-range contacts) can be uncovered effectively
by Phylo-HMRF.
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Discussion
In this work, we developed Phylo-HMRF, a continuous-trait probabilistic model that provides a new
framework to utilize spatial dependencies among genomic loci in 3D space to identify evolutionary pat-
terns of Hi-C contacts across different species in a phylogeny. We applied Phylo-HMRF to analyze Hi-C
data from the lymphoblastoid cells in four primate species (human, chimpanzee, bonobo, and gorilla).
Phylo-HMRF is able to identify different genome-wide cross-species Hi-C contact patterns, including
conserved and lineage-specific patterns in both local interactions and long-range interactions. The iden-
tified evolutionary patterns of 3D genome structure have strong correlation with other types of genomic
structural and functional features such as TADs and DNA replication timing. From a methodology
standpoint, Phylo-HMRF is a flexible framework that can also be applied to other types of multi-species
continuous-trait features where there are 2D or 3D spatial dependencies for the features among the ge-
nomic loci. Overall, through a proof-of-principle application, we demonstrate that Phylo-HMRF is a
promising new method to effectively uncover detailed evolutionary patterns of 3D genome organization
based on Hi-C across multiple species.

There are several aspects where our method can be improved. First, model selection methods such
as the utilization of the AIC and BIC criterion (Akaike, 1973; Schwarz et al., 1978) may help select the
number of states more automatically. Second, Phylo-HMRF has only been applied to synteny blocks
across species at the moment and does not explicitly model the chromatin conformation differences due
to large-scale genome rearrangements in evolution. It will be an important next step to model genome
rearrangements and genome organization evolution in an integrative manner. Third, to study a larger
number of more distantly related species, we may face several challenges. As the number of model
parameters and feature dimensions increase linearly with the tree size, both the computation demand
increases and the model is exposed to a higher possibility of local minima and overfitting especially
for a smaller sample size of multi-species feature observations. There will also be more potential mis-
alignments among genomes of distantly related species, resulting in fewer available samples. It will be
useful to incorporate more efficient parameter regularization which is compatible with the evolutionary
models in the optimization part of Phylo-HMRF, and to develop imputation methods for the missing
observations in multi-species genomic data, especially in large-scale phylogenetic trees. Fourth, we
assume that all the phylogenetic trees associated with different hidden states share the same topology
in our current Phylo-HMRF model. Incorporating inference of varied tree topologies (Friedman et al.,
2002) will make Phylo-HMRF much more general.

To fully understand 3D genome organization evolution, it will be crucial to explore the underlying
mechanisms of the different evolutionary patterns in 3D genome structure across species, e.g., in concert
with the evolution of particular types of DNA sequence features that play key roles in the formation
and maintenance of genome architecture and function (Sima et al., 2018; Choudhary et al., 2018; Zhang
et al., 2019), which may in turn inform us about the principles of 3D genome organization. For example,
we previously showed that more conserved CTCF motifs in mammalian evolution (considering motif
turnover) are more likely to be involved in CTCF mediated chromatin loops (Zhang et al., 2018). Our
Phylo-HMRF model has the potential to serve as a generic analytic framework to connect different
evolutionary patterns of chromatin interaction with the evolution of genome sequence and function.
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Methods

Overall framework of Phylo-HMRF for cross-species comparison of Hi-C data

We assume that a two-dimensional Hi-C contact map is given in each species, where each entry of the
map represents the contact frequency between the corresponding two genomic loci. We use the human
genome as the reference and align the contact pairs of genomic loci of the other species to the human
genome. As a consequence, Hi-C contact maps of the other species are equivalently aligned to the human
genome to be comparable. In this study, we compare the multi-species Hi-C contact frequencies in the
syntenic regions genome-wide (synteny blocks were identified based on inferCARs (Ma et al., 2006)), in
order to focus on the 3D genome changes that are not resulted from large-scale genome rearrangements.
We then obtain a multi-species contact map I ∈ Rn×n×d, where n is the number of loci in the studied
region on the reference genome, and d is the number of the species. I can be represented by a graph
G = (V ,E), where V and E represent the set of nodes and the set of edges, respectively. Each node
corresponds to a position in I, i.e., the contact between a pair of genomic loci. The number of nodes is
N = n × n. We also denote V as the set of indices of the nodes in G, i.e., V = {1, · · · , N}. The i-th
node is associated with a random variable Xi ∈ Rd representing the multi-species observations on this
node, i ∈ V . The k-th element of Xi (k = 1, · · · , d) is the aligned contact frequency measurement of the
k-th species between the corresponding two genomic loci. If two positions in the multi-species contact
map are adjacent, there is an edge between the corresponding nodes in G.

Using an HMRF model, we assume that each node in G is also associated with a random variable
Yi ∈ S = {1, · · · ,M}, representing the unknown hidden state of this node, i ∈ V . S is the set of hidden
states. For each configuration of Y , Xi follows a conditional probability distribution p(xi|yi), which
is the emission probability distribution, and X = {Xi}i∈V is the observable random field or emitted
random field. The hidden state Yi reflects different evolutionary patterns of chromatin contact frequency
across species, e.g., some regions in I may exhibit conserved high (or low) contact frequency across
species, while some may have lineage-specific high or low contact frequency. The spatial information is
embedded in the MRF with the constraints on the hidden states of neighboring nodes. The neighboring
nodes are expected to be more likely to have similar hidden states.

Phylo-HMRF estimates the evolutionary patterns by inferring the hidden states y = {yi}i∈V from
the observations x = {xi}i∈V , using the assumption that there are spatial dependencies between adjacent
nodes in the graph G. In Phylo-HMRF, each hidden state Yi = l is associated with a phylogenetic model
ψl. We therefore define the Phylo-HMRF model as h = (S, ψ, β), where S is the set of states, ψ is the
set of phylogenetic models associated with the states, and β contains the pairwise potential parameters,
respectively. Suppose X(l) = (X

(l)
1 , · · · , X(l)

d ) represent the values of leaf nodes of the phylogenetic tree
associated with the l-th phylogenetic model ψl, l = 1, · · · ,M . The emission probability of each state is
p(X|ψl), which is determined by the phylogenetic model underlying this state. The joint probability of
the graph G is:

p(y,x) = p(x|y)p(y) =
1

Z

∏
i∈V

p(xi|yi)
∏

(i,j)∈E

f(yi, yj;xi, xj) (1)

where Z is the normalization constant, p(xi|yi) is the emission probability function, which measures the
probability that the local observation is generated from a certain hidden state, and f(·) is the compatibility
function which measures the consistency of hidden states between the neighboring nodes. The joint
probability can be transformed into the energy function by taking the negative logarithm of the joint
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probability. In this work, given the observations across species, the energy function can be defined as:

E(y|x,Θ) =
∑
i∈V

U(xi, yi,Θ) +
∑
ij∈E

V (yi, yj;xi, xj), (2)

where U(xi, yi) is the unary potential function encoding local compatibility between observations and
hidden states with model parameters Θ, and V (yi, yj) is the pairwise potential function encoding neigh-
borhood information, respectively. We have that f(yi, yj;xi, xj) ∝ exp (−V (yi, yj;xi, xj)). If we take
into consideration the effect of the difference between features of neighboring nodes on the pairwise
potential, V (yi, yj;xi, xj) and the compatibility function f(·) will depend not only on the labels of the
neighboring nodes, but also on their features or observations. We minimize the energy function to esti-
mate the hidden states y. By minimizing the energy function we maximize the joint probability of the
graph equivalently. As the model parameters Θ are unknown, we estimate y and Θ simultaneously. The
objective function is:

{y∗,Θ∗} = arg min
y,Θ

E(y|x,Θ). (3)

Phylo-HMRF model with Ornstein-Uhlenbeck process

Ornstein-Uhlenbeck process assumptions
In Phylo-HMRF, we model the continuous traits with the Ornstein-Uhlenbeck (OU) process. The OU
process is a stochastic Gaussian process that extends the Brownian motion (Felsenstein, 1985; Pagel,
1999; Freckleton, 2012) with the trend towards equilibrium around optimal values (Hansen, 1997; Butler
and King, 2004; Hansen et al., 2008). The OU process has been recently used to model the evolution
of genomic features (Rohlfs et al., 2013; Brawand et al., 2011; Naval-Sánchez et al., 2015; Chen et al.,
2019; Yang et al., 2018). In our previous work (Yang et al., 2018), we found that the OU process has
clear advantages in performance as compared to the simpler Brownian motion model. Therefore, we
utilize the OU processes to realize the phylogenetic models in Phylo-HMRF.

For the observation of a lineage X̂i, the OU process can be represented as the following (Hansen,
1997; Butler and King, 2004):

d(X̂i(t)) = α[θi(t)− X̂i(t)]dt+ σdBi(t), (4)

where X̂i(t) represents the observation of X̂i at time point t, Bi(t) represents the Brownian motion, and
α, θi and σ are parameters that represent the selection strength, the optimal value and the fluctuation
intensity of Brownian motion, respectively.

For multi-species observations, based on the model assumptions of the OU process, the expectation,
variance, and covariance of the observations of species can be computed given the phylogenetic tree.
Suppose that Xp is the ancestor of species Xi, and Xa is the common ancestor of species Xi and Xj . We
have (Butler and King, 2004; Rohlfs et al., 2013):

E(Xi) = E(Xp)e
−αitip + θi(1− e−αitip), (5)

Cov(Xi, Xj) = Var(Xa) exp
(
−Σk∈lijαktk − Σk∈ljiαktk

)
, (6)

Var(Xi) =
σ2
i

2αi
(1− e−2αitip) + Var(Xp)e

−2αitip . (7)

where tip, tk represent evolution time along corresponding branches in the phylogenetic tree, respectively.
In the Phylo-HMRF model h = (S, ψ, β), ψl is defined as ψl = (θl, αl, σl, τl, bl), 1 ≤ l ≤ M , where
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θl, αl, σl denote the optimal values, the selection strengths, and the Brownian motion intensities of the
corresponding OU model, respectively, and τl, bl represent the topology of the phylogenetic tree, the
branch lengths, respectively. M is the number of states. We assume that the phylogenetic tree topology
is identical across different states. For the phylogenetic tree of a hidden state, we allow varied selection
strengths and Brownian motion intensities along different branches and varied optimal values at the
interior nodes or leaf nodes. Thus each branch is assigned a selection strength and a Brownian motion
intensity, and each node is assigned an optimal value as parameters. Suppose there are r branches in
the tree. We have θl ∈ Rr+1, αl, σl ∈ Rr

+, where values in αl and σl are non-negative. According to
the actual problem studied, ψl can be specialized to different evolutionary models. We focus on the OU
processes in this work.

Model parameter estimation and hidden states inference
We use the Expectation-Maximization (EM) algorithm (Dempster et al., 1977; Zhang et al., 2001) for
parameter estimation in our model. Zhang et al. (2001) developed the HMRF-EM algorithm where EM
is adapted to estimate a HMRF model with several justified assumptions and approximations, including
the pseudo-likelihood assumption (Geman and Graffigne, 1986) and mean-field approximation (Celeux
et al., 2003; Zhang, 1992). The original HMRF-EM algorithm uses the multivariate Gaussian distribution
as the emission probability function of a hidden state. The main difference is that in our method we use
the OU processes to model the emission probability in the HMRF. Also, we utilize the Graph Cuts
algorithm (Adelson and Bergen, 1991; Boykov et al., 2001) for hidden state estimation given estimates
of model parameters.

Let Θ be the model parameters. Suppose Θg is the current estimate of model parameters. The EM
algorithm aims to maximize the expectation of the complete-data log likelihood, which is defined as the
Q function: Q(Θ,Θg) = E[log p(x,y|Θ)|x,Θg]. Using pseudo-likelihood approximation (Geman and
Graffigne, 1986) and mean-field approximation (Celeux et al., 2003; Zhang, 1992), the Q function is
derived as (details in Supplementary Methods):

Q(Θ,Θg) =
M∑
l=1

∑
i∈V

p(yi = l|xi,Θg) log p(xi|yi = l,Θ) +
∑
i∈V

M∑
l=1

p(yi = l|xi,Θg) log p(yi = l|ygNi
,Θ),

(8)

where the two parts of the Q function encode the unary potential and the pairwise potential of the HMRF
of G, respectively. p(yi = l|xi,Θg) is posterior probability of each sample assigned to a hidden state
given the current model parameter estimates. Using the Markov property of HMRF (Zhang et al., 2001),
we have:

p(yi = l|xi,Θg) =
p(xi|yi = l,Θg)p(yi = l|ygNi

)∑M
l=1 p(xi|yi = l,Θg)p(yi = l|ygNi

)
, (9)

where Ni denotes the set of nodes that are neighbors of node i in G. We calculate p(xi|yi,Θg) based on
the OU process assumption (Supplementary Methods).

Let V (yi, yj) be the pairwise potential on a pair of adjacent nodes (yi, yj). We have:

p(yi = l|ygNi
) =

1

Z
exp

(
−
∑
j∈Ni

V (l, ygj )

)
, (10)

where Z is the normalization constant. We can adopt different definitions of the pairwise potential
V (yi, yj) (Supplementary Methods). The definition we use takes into consideration the difference be-

13

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted February 19, 2019. ; https://doi.org/10.1101/552505doi: bioRxiv preprint 

https://doi.org/10.1101/552505
http://creativecommons.org/licenses/by-nc-nd/4.0/


tween features of the adjacent vertices in imposing the penalty on inconsistent states of the neighbors:

V (yi, yj) = β0I(yi 6= yj) exp

(
−β1
‖xi − xj‖2

2

‖xi‖2‖xj‖2

)
, (11)

where β0, β1 are predefined adjustable regularization coefficients. Based on the definition of the pairwise
potential, p(yi = l|ygNi

) does not depend on the OU model parameters.
Let L(Θ(l)) = −

∑
i∈V w

(l)
i log p(xi|yi = l,Θ), w(l)

i = p(yi = l|xi,Θg). We perform parameter
estimation for each of the possible states. In each Maximization-step (M-step), the objective function of
a given state l is defined as (details in Supplementary Methods):

min
Θ(l)

1

N
log |Σ(l)

Θ |
∑
i∈V

w
(l)
i + tr

(
[Σ

(l)
Θ ]−1S̃

(l)
Θ

)
+ λ‖Θ(l)‖2

2, (12)

where S̃(l)
Θ = 1

N

∑
i∈V

w
(l)
i

(
xi − µ(l)

Θ

)(
xi − µ(l)

Θ

)T
, w(l)

i is defined as above, Θ(l) represents the phy-

logenetic model parameters associated with state l, and λ is the regularization coefficient of the l2-
norm regularization that is used to reduce overfitting of model (Supplementary Methods). We have that
Θ(l) = {θl, αl, σl}, where θl, αl, σl represent the optimal values, the selection strengths, and the Brow-
nian motion intensities of the phylogenetic tree model associated with hidden state l, respectively. As
described previously, the OU model of state l is ψl = (θl, αl, σl, τl, bl), 1 ≤ l ≤ M . We assume that
τl is given. If the branch lengths bl are unknown, we perform the transformation that α̃l,v = αl,vβl,v,
σ̃2
l,v = σ2

l,vβl,v to present the combined effect of the branch length and the selection or Brownian motion
parameters along this branch. Here βl,v represents the length of the branch from the parent of node v
to node v in the phylogenetic tree of state l. Then Θ(l) = {θl, α̃l, σ̃l}, where α̃l, σ̃l are the transformed
selection strengths and the transformed Brownian motion intensities, respectively.

In Phylo-HMRF, the overall steps of the OU-model embedded HMRF-EM algorithm is as follows.
1. Initialize the model parameter. We perform K-means clustering on the samples. The clustering

results are used to assign initial hidden states to the samples. For each cluster, we estimate the OU
model parameters using Maximum Likelihood Estimation (MLE) (Supplementary Methods). The
estimated model parameters are used as initialization of the OU model parameters for each hidden
state.

2. Estimate the hidden states given current parameter estimates. We seek an approximate solution to
the optimization problem

ŷ = arg min
y∈SN

{U(x|y) + U(y)}, (13)

where U(x|y) and U(y) are the total unary potential and total pairwise potential of G, respectively.
3. Calculate posterior probability distribution. In each Expectation-step (E-step), given the current

estimated model parameters Θg and the estimated state configuration in the previous step, we
compute p(yi = l|xi,Θg) using Eq. (9, 10).

4. Estimate model parameters by solving the optimization problem with OU models embedded. In
each M-step, we solve the MLE problem in (12) to update the parameters {ψl}Ml=1.

5. Repeat step 2-4 until convergence is reached or the maximum number of iterations is reached.
In Phylo-HMRF, given the current estimated model parameters, we use the Graph Cuts algorithm

to estimate the hidden states in Step 2 (Supplementary Methods). Graph Cuts algorithms seek to ap-
proximate solutions to an energy minimization problem by solving a max-flow/min-cut problem in a
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graph (Boykov et al., 2001; Boykov and Kolmogorov, 2004). Graph Cuts algorithms have been effec-
tively used in image segmentation applications. Studies have shown that for binary image segmentation,
finding a min-cut is equivalent to finding the maximum of posterior p(y|x) (Boykov et al., 2001). For
multiple labels, the multi-labeling problem can be converted to a sequence of binary-labeling problem
by α-expansion or α-β swap algorithms (Boykov et al., 2001). The solution is an approximate solution
in the multi-labeling problem that has been shown to be a strongly probable local minima (Boykov et al.,
2001).
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