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Abstract 

 

Prediction of residue-residue distance relationships (e.g. contacts) has become the key direction to advance 

protein tertiary structure prediction since 2014 CASP11 experiment, while deep learning has 

revolutionized the technology for contact and distance distribution prediction since its debut in 2012 

CASP10 experiment. During 2018 CASP13 experiment, we enhanced our MULTICOM protein structure 

prediction system with three major components: contact distance prediction based on deep convolutional 

neural networks, contact distance-driven template-free (ab initio) modeling, and protein model ranking 

empowered by deep learning and contact prediction, in addition to an update of other components such as 

template library, sequence database, and alignment tools. Our experiment demonstrates that contact 

distance prediction and deep learning methods are the key reasons that MULTICOM was ranked 3rd out 

of all 98 predictors in both template-free and template-based protein structure modeling in CASP13. Deep 

convolutional neural network can utilize global information in pairwise residue-residue features such as 

co-evolution scores to substantially improve inter-residue contact distance prediction, which played a 

decisive role in correctly folding some free modeling and hard template-based modeling targets from 

scratch. Deep learning also successfully integrated 1D structural features, 2D contact information, and 3D 

structural quality scores to improve protein model quality assessment, where the contact prediction was 

demonstrated to consistently enhance ranking of protein models for the first time. The success of 

MULTICOM system in the CASP13 experiment clearly shows that protein contact distance prediction 

and model selection driven by powerful deep learning holds the key of solving protein structure prediction 

problem. However, there are still major challenges in accurately predicting protein contact distance when 

there are few homologous sequences to generate co-evolutionary signals, folding proteins from noisy 

contact distances, and ranking models of hard targets. 
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1. Introduction 

 

The major breakthrough in protein structure prediction, particularly template-free (ab initio) prediction, is 

the drastic improvement of the accuracy of residue-residue contact distance prediction in the recent years, 
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leading to the correct folding of some template-free modeling (FM) targets in CASP11 and CASP12 

experiment 1-4. The accurate prediction of inter-residue contacts and distances has become a key 

intermediate step and driving force to predict protein three-dimensional (3D) structure from sequence. 

The breakthrough in contact distance prediction was driven by two key advances: residue-residue co-

evolutionary analysis popularized in 5 and demonstrated in CASP11 and CASP12 experiment 4, 6 and deep 

learning introduced in 7 and enhanced in 8-12.  

 

The co-evolutionary analysis is based on the observation that two amino acids in contact (or spatially close 

according to a distance threshold such as 8Å) must co-evolve in order to maintain the contact relationship 

during evolution, i.e. if one amino acid is mutated to a positively charged residue, the other one must 

change to a negatively charged one to be in contact. A number of co-evolutionary methods of calculating 

direct rather than indirect/accidental correlated mutation scores has been developed and shown to improve 

contact prediction 13-16. Moreover, the co-evolutionary scores can be used as input for machine learning 

methods to further improve contact prediction. Deep learning, the currently most powerful machine 

learning method, was introduced into the field in 2012 and demonstrated as the best method for protein 

contact prediction in 2012 CASP10 experiment 7. Different variants of deep learning methods - 

convolutional neural networks and residual networks - were combined with co-evolutionary features to 

substantially improve contact prediction 8-12. The improved contact prediction led to the significant 

improvement of template-free modeling in CASP12 experiment, in which contact predictions were used 

with different ab initio modeling methods such as fragment assembly and distance geometry to build 

protein structural models from scratch 1.  

 

To prepare for 2018 CASP13 experiment, we focused on enhancing our MULTICOM protein structure 

prediction system 17-19 with our latest development in contact distance prediction empowered by deep 

learning and its application to template-free modeling and protein model ranking 17, 20-22, while having a 

routine update on its other components such as template library, template identification, and template-

based modeling. Our experiment demonstrates that contact distance prediction empowered by the 

advanced deep learning architecture can accurately predict a large number of contacts for some template-

free or hard template-based targets, which are sufficient to fold them correctly by the distance geometry 

and simulated annealing from scratch without using any template or fragment information. Our 

experiment also shows that directly translating predicted contacts into tertiary structures by satisfying 

distance restraints can fold large proteins with complicated topologies better than using contacts indirectly 

to guide traditional fragment assembly approaches. Moreover, we demonstrate that deep learning can 

integrate 1D, 2D and 3D structural features to improve protein model ranking. Particularly, we show that, 

for the first time, improved contact prediction can consistently improve protein model ranking. Therefore, 

contact distance prediction and deep learning are the key driving force that made our MULTICOM 

predictor rank third in the CASP13 experiment in both template-based and template-free modeling. The 

success of  MULTICOM human and server predictors (MULTICOM_CLUSTER, MULTICOM-

CONSTRUCT and MULTICOM-NOVEL) in CASP13 clearly proves that deep learning holds the key for 

protein contact distance prediction and folding, even though there are still significant challenges in 

contact/distance prediction for targets with few homologous sequences, translation of noisy or sparse 

contact distances into 3D models, and selecting a few good protein structural models from a large pool of 

low-quality ones for a hard target.  

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted February 17, 2019. ; https://doi.org/10.1101/552422doi: bioRxiv preprint 

https://doi.org/10.1101/552422
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

2. Materials and Method 

In this section, we first provide an overview of the MULTICOM server and human prediction system, 

followed with the detailed description of several key new components that we added into the MULTICOM 

system in CASP13, such as the protein contact distance prediction empowered by deep learning, ab initio 

protein structure prediction driven by predicted contact distances, and large-scale protein quality 

assessment enhanced by deep learning and contacts.  

 

2.1 An overview of the MULTICOM system 

 

Figure 1 is an overview of our MULTICOM server and human prediction systems. Once the server 

received a target protein sequence, MULTICOM searched it against protein sequence databases such as 

the non-redundant sequence database to collect its homologous sequences to generate multiple sequence 

alignments, which were used to build sequence profiles such as Position Specific Scoring Matrices (PSSM) 
23 and Hidden Markov models (HMM) 24. The sequence was also used to predict one-dimensional (1D) 

structural features including secondary structure, solvent accessibility, and disorder regions 25-26.  

 

The profile or sequence of the target was searched against the template profile/sequence library by a 

number of sequence alignment tools (e.g., BLAST 27, CSI-BLAST 28, PSI-BLAST 23, COMPASS 29, 

FFAS 30, HHSearch 31, HHblits 24, HMMER 32, Jackhmmer 32, SAM 33, PRC 34, RaptorX 35) to identify 

protein templates whose structures were known and build pairwise target-template sequence alignments. 

DeepSF - a deep learning method of classifying protein sequences into folds was also used to identify 

templates for the target 36. 

 

In parallel to the template identification, the multiple sequence alignments of the target were also used to 

generate co-evolutionary features by CCMpred 14, FreeContact 37 and PSICOV 16, which were used 

together with other sequential and structural features such as predicted secondary structure and solvent 

accessibility as input for DNCON2 8 to predict residue-residue contacts at multiple distance thresholds 

(i.e. 6 Å, 7.5 Å, 8 Å, 8.5 Å and 10 Å).   

 

The target-template sequence alignment was used to identify domain boundaries, i.e. the region of the 

target not aligned with any significantly homologous template was treated as a template-free modeling 

domain, otherwise a template-based domain. The contact prediction for template-free domains was made 

by DNCON2 and combined with the contact prediction of the full-length target. 

 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted February 17, 2019. ; https://doi.org/10.1101/552422doi: bioRxiv preprint 

https://doi.org/10.1101/552422
http://creativecommons.org/licenses/by-nc-nd/4.0/


 
Figure 1. The pipeline of MULTICOM server and human prediction systems.  

 

The pairwise target-template alignments were combined into the multi-template alignments between the 

target and the multiple templates if the structures of the templates were consistent. The alignments and 

the structures of templates were fed into Modeller 38 to build the structural models for the target. Generally, 

more than 100 template-based models were constructed for a target.  

 

In parallel to the template-based modeling, predicted contacts were used with several ab initio modeling 

tools such as CONFOLD2 39, Rosetta 40, UniCon3D 41 and FUSION 42 to build structural models for a 
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template-free target or domain. Both the template-based models and/or template-free models were added 

into a model pool for model ranking.  

 

The MULTICOM human predictor also used all CASP13 server models as input. The incomplete server 

models or highly similar models (e.g., GDT-TS > 0.95) from the same server group were filtered out. The 

side chains of the remaining models were repacked by SCWRL 43 in order to have the consistent side 

chain packing before they were evaluated. If the target was identified as multiple-domain protein, the 

server models were divided into individual domain models.  

 

The structural models from either MULTICOM human predictor or server predictors were compared with 

1D structural features (e.g., predicted secondary structure, solvent accessibility) to generate 1D matching 

scores and with 2D contacts to generate 2D matching scores (i.e., the percentage of predicted contacts 

existing in a model of the target). The models were also assessed by a number of 3D quality assessment 

tools to generate 3D quality scores. The 1D, 2D, and 3D quality scores (features) were used by DeepRank 

- our deep learning-based model quality assessment tool - to predict the accuracy of the models. This 

quality assessment method was also applied to individual domains if a target had multiple domains. It is 

worth noting that our three server predictors used different quality assessment methods for model selection. 

MULTICOM_CLUSTER ranked models primarily based on pairwise similarity scores between models 

using APOLLO 44, while MULTICOM-CONSTRUCT and MULTICOM-NOVEL selected best five 

models based on our two new deep learning-based model ranking methods (DeepRank and 

DeepRank_avg,  described in details in Section 2.4). 

 

The quality assessment scores were used to rank full-length and/or domain-based models and the top 

ranked models were selected for model combination and refinement. Each top ranked model was 

combined with other similar models in the ranked list to generate a consensus model. If the consensus 

model is not substantially different from the initial model (i.e. GDT-TS > 0.88), it was kept as the final 

model. Otherwise, it was discarded and 3DRefine 45 was used to refine the top ranked model to generate 

a refined final model.  

 

2.2. Deep convolutional neural network for contact distance prediction  

We used DNCON2 to generate the 2D contact map for an input sequence 8. As shown in Figure 2, a target 

sequence was searched against Uniprot20 database (version: 2016_02) by HHblits 24 to collect 

homologous sequences and generate multiple sequence alignments. If there is not a sufficient number of 

homologous sequences (e.g., < 5L sequences; L sequence length), the target was further searched against 

Uniref90 database (released by April 2018) by Jackhmmer 32 to collect more homologous sequences 

whose multiple sequence alignments were combined with the results of HHblits search. The multiple 

sequence alignments were used by CCMPred 14, FreeContact 37, and PSICOV 16 to generate residue-

residue co-evolution features. The pairwise co-evolution features together with other pairwise information 

(e.g. secondary structure, solvent accessibility, and mutual information for each pair of residues) were 

stored in the L×L input matrices (L: sequence length or domain length).  

 

The input feature matrices were used by the first-level convolutional neural networks in DNCON2 to 

predict the contact probability maps (i.e. contact distance distribution) at multiple distance thresholds 6 
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Å, 7.5 Å, 8 Å, 8.5 Å and 10 Å. The distance distribution and the original input matrices were concatenated 

as input for the second-level convolutional neural networks to predict a final contact probability map at 8 

Å distance threshold.   

 
Figure 2. The pipeline of DNCON2 for protein residue-residue contact distance prediction. The input 

volume has 56 channels (matrices) containing various pairwise residue-residue features. 

 

2.3 Contact distance-based ab initio folding 

We used predicted contacts with a pure contact distance-based ab initio modeling tool - CONFOLD2 and 

several fragment-assembly tools to build 3D models for targets or domains without significant templates 

being identified. CONFOLD2 39 used only predicted contacts and secondary structures to build structural 

models without leveraging any other information such as structural fragments (Figure 3). Top x × L 

contacts (x: a ratio ranging from 0.1 to 4; L: length of the protein) ranked by probabilities were used to 

generate distance restraints between 𝐶𝛽  atoms (or 𝐶𝛼  atom for glycine). The predicted secondary 

structures were used to generate torsion angle restraints, atom-atom distance restraints, and hydrogen-

bond restraints 46, which were important for building good local secondary structures in the model. These 

restraints were used by the distance geometry and simulated annealing optimization implemented in CNS 
47 to build tertiary structure models by satisfying the restraints as well as possible. In this round of 

modeling, some local structures, particularly beta-sheets, are often not well formed due to lack of restraints 

or noisy restraints. To remedy the problem, the potential beta-sheets were detected in the models generated 

by the first round of modeling. More angular, hydrogen bond, and atom-atom distance restraints were 

added in order to improve the pairing between the beta strands. Moreover, the contact distance restraints 

that were not realized in the models were removed from the list. The new set of restraints were used by 

the distance geometry again to build 3D models. Usually, a few hundred of models were constructed by 

using different numbers of contact distance restraints (i.e. 0.1L, 0.2L,…., 3.9L, 4L), which were then 

clustered. Top models from the clusters were selected as final models. The key feature of this approach is 
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that contacts play a dominant and direct role in building structural models. If there are a sufficient amount 

of accurate distance restraints, high-quality 3D models can be constructed.  

 

 
Figure 3. Automated contact distance-based ab initio protein structure prediction by CONFOLD2. 

 

As an alternative, we also used predicted contacts as distance or contact restraints with three fragment 

assembly methods – Rosetta 40, UniCon3D 41, and FUSION 42 to build models. Contacts were used as a 

part of the energy function of these methods to guide the assembly of protein structure. Rosetta used the 

structure fragments drawn from a fragment library to assemble the structure, while UniCon3D and 

FUSION used hidden Markov models to generate conformations for fragments of variable length. In 

contrast to the CONFOLD approach 39, 46, extra information such as fragments and energy terms is used 

in this kind of approach, in which contacts only play an indirect or auxiliary role in structural modeling. 

Therefore, the fragment assembly approach may fail if its conformation sampling cannot generate correct 

topologies, which often happens for relatively larger proteins with complicated topologies, even though 

there is a good amount of accurately predicted contacts. To assist the fragment-assembly with contacts, 

we selected top L/5 predicted contacts of short-range, medium-range and long-range, which were 

translated into the distance constraints between pairs of Cβ − Cβ as additional energy terms. Rosetta and 

FUSION used the bounded potential for a distance d, which is defined as follows: 

𝑓(𝑑) =  

{
 
 

 
 (

𝑑−𝑙𝑏

𝑠𝑑
)2                                    for 𝑑 < 𝑙𝑏                                            

       0                                           for 𝑙𝑏 < 𝑑 ≤ 𝑢𝑏                                    

(
𝑑−𝑢𝑏

𝑠𝑑
)2                                     for 𝑢𝑏 < 𝑑 ≤ 𝑢𝑏 +  0.5 ∗ 𝑠𝑑           

1

𝑠𝑑
(𝑑 − (𝑢𝑏 + 0.5 ∗ 𝑠𝑑) + (

0.5∗𝑠𝑑

𝑠𝑑
)
2

          for 𝑑 > 𝑢𝑏 + 0.5 ∗ 𝑠𝑑

with sd = 0.5 

The parameters “lb” and “ub” are lower and upper bounds for atom-atom distance, which had been 

optimized and set to 3.5 Å and 8 Å in our experiment. Unicon3D adopted a square well function with 

the exponential decay to account for the contact distance energy and is defined as: 
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𝑓(𝑑) =  {

−𝑃                                                    if 𝑑 < 𝑑0

−𝑃 ∗ 𝑒−(𝑑−𝑑0)
2
+ 𝑃 ∗ 

𝑑 − 𝑑0
𝑑

    if 𝑑 >  𝑑0
     with d0 = 8 Å 

, where P is the predicted contact probability for a pair of atoms. In CASP13, the contact-based ab initio 

structure prediction was run for up to two days to generate decoys for model selection. 

 

2.4 Protein model ranking by DeepRank integrating 1D, 2D and 3D features 

To select most accurate models from a set of predicted structures, we developed a deep learning-based 

quality assessment (QA) method, DeepRank, by integrating multiple QA methods and contact predictions 

for predicting the global quality of models. Given a pool of models, it first generated one-dimensional 

(1D) features representing the similarity between the secondary structure and solvent accessibility 

predicted from the protein sequence by SSPro 25 and the ones parsed from each protein model by DSSP 
48. The percentage of inter-residue contacts (i.e. top L/5 short-range, medium-range and long-range 

contacts, respectively) predicted by DNCON2 8 existing in a model was used as 2D contact features. It 

also generated 3D quality scores for each model by using 9 single-model QA methods (i.e. SBROD 49, 

OPUS_PSP 50, RF_CB_SRS_OD 51, Rwplus 52, DeepQA 22, ProQ2 53, ProQ3 54, Dope 55 and Voronota 56) 

as well as three multi-model QA methods (i.e. APOLLO 44, Pcons 57, and ModFOLDclust2 58). These 

features were used by two-level neural networks to predict the quality scores of the models (Figure 4). In 

the first level, all the 1D, 2D and 3D quality features were fed into 10 pre-trained neural networks to 

predict the quality (GDT-TS score) of each model. These networks were trained on the models of CASP8-

11 experiments and rigorously benchmarked on the CASP12 targets. Ten pre-trained neural networks were 

obtained from 10-fold cross-validations. All the input features of each model were fed into the 10 trained 

networks to generate 10 quality scores. In the second level, the 10 predicted quality scores and the initial 

input features were used together by another deep neural network to predict the final quality score. The 

details of the network configuration are reported in supplemental Table S5. This method was also blindly 

tested as ‘MULTICOM_CLUSTER’ in the CASP13 quality assessment category and ranked as one of the 

best predictors in selecting models and estimating the absolute error. We also developed a simplified 

DeepRank method (called DeepRank_avg) by averaging the predictions from the 10 trained networks in 

the first level as the final quality score. 
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Figure 4. The workflow of deep learning-based model quality assessment with contacts (DeepRank).  

 

3. Results and Discussions 

3.1 Performance of MULTICOM human and server predictors in CASP13 

We evaluate the performance of MULTICOM methods on 104 “all groups” domains that were used in 

CASP13 official evaluation. Based on the official domain definition of CASP13, the 104 domains were 

classified into 31 free-modeling (FM) domains, 40 template-based easy (TBM-easy) domains, 21 

template-hard (TBM-hard) domains, and 12 FM-TBM domains.  

Figure 5 shows the performance of MULTICOM human predictor and our three server predictors based 

on the TM-score metric 59. According to the evaluation, as shown in Figure 5(A), MULTICOM human 

predictor outperforms the three server predictors and MULTICOM-CONSTRUCT ranked better than 

MULTICOM_CLUSTER, followed with MULTICOM-NOVEL in terms of averaged TM-score on 104 

domains. On all the domains, the average TM-score of MULTICOM is 0.69, significantly higher than 

0.59 of MULTICOM-CONSTRUCT (difference = 0.1; P-value = 4.478E-14), whereas the difference 

between the two on template-based easy domain (i.e. 0.04) is much smaller and on template-free domains 

(i.e. 0.19) is much larger. Figure 5(B) shows the performance of four predictors on the 40 TBM-easy 

domains. MULTICOM-CONSTRUCT and MULTICOM-NOVEL achieved higher TM-score than 

MULTICOM_CLUSTER. The major difference among the three servers is the QA methods employed for 

model selection. The three QA methods: DeepRank, DeepRank_avg and APOLLO (a pairwise model 

comparison method) were used in the MULTICOM_CONSTRUCT, MULTICOM-NOVEL and 

MULTICOM_CLUSTER, respectively. As shown in supplemental Figure S5, DeepRank has the higher 

capability of model selection than APOLLO. Especially for the template-based targets, DeepRank has a 

much lower loss (GDT-TS score 0.039) compared to the APOLLO’s loss (0.059) in model selection. The 

better ability of model selection in template-based targets led to better tertiary structure prediction for 

MULTICOM-CONSTRUCT (∑GDT-TS = 75.83) than MULTICOM_CLUSTER (∑GDT-TS = 72.91) 
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as shown in supplemental Figure S2. Figure 5(C) reports the results of the four predictors on the 31 free-

modeling domains. MULTICOM human predictor successfully predicted correct fold for 17 out of 31 

domains (TM-score > 0.5).  

Supplemental Figure S1 compares MULTICOM with other top ranked CASP13 groups. MULTICOM 

(group number: ‘089’) is consistently ranked among the top three predictors according to all metrics on 

the three domain sets. For instance, it is ranked no. 3 according to z-score on all 104 domains. Figure S2 

shows the performance of our three MULTICOM server predictors and other top ranked server groups on 

the 112 “all groups” and “server only” domains. MULTICOM-CONSTRUCT ranked 7th among all server 

groups on all the targets, followed by MULTICOM_CLUSTER and MULTICOM-NOVEL. The 

performance of the global and local quality metrics defined by GDT-TS 59, and LDDT score 60 are also 

summarized in Figure S3 and Figure S4. 
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Figure 5. Evaluation of four MULTICOM predictors. The methods are ranked by average TM-score of 

the first (i.e. TS1) submitted models. (A) on 104 domains (Left plot: TM_scores of MULTICOM, 

MULTICOM_CLUSTER, MULTICOM-NOVEL models versus TM_scores of MULTICOM-

CONSTRUCT models; Right plot: mean and variation of the TM-scores of the models of the four 

methods). (B) on 40 template-based (TBM-easy) domains. (C) on 31 template-free (FM) domains.  

 

3.2 Performance of DeepRank and individual QA methods used by MULTICOM 

 

To assess how well the model ranking component of MULTICOM predictors worked, we evaluate the 

results of DeepRank and the individual QA methods used by DeepRank on the CASP13 targets. The loss 

of each QA method on the 74 CASP13 “all group” full-length targets whose experimental structures are 

available was calculated and visualized in Figure 6 (A). The loss is defined as the difference between the 

GDT-TS score of the top selected model by each method and the GDT-TS score of the best model of the 

target. The lower average loss represents the better capability of a QA method for model selection. 24 QA 

methods are categorized into four groups, including (1) our deep learning integration of diverse quality 

assessment methods (DeepRank), (2) 3 contact match scores, (3) 3 clustering-based methods, and (4) 17 

single-model QA methods. The results show that DeepRank had the lower average loss (0.052) than other 

individual QA methods on all 74 all-group targets. Figure 6 (B) plots the GDT-TS scores at the 100-point 

scale of the top models selected by each individual QA method and DeepRank against the GDT-TS scores 

of MULTICOM’s first submitted models. The fitted curve for each method is highlighted in different 

colors. The larger area under the curve represents the better overall accuracy of model selection. The 

analysis shows that DeepRank achieves higher GDT-TS scores (Avg. GDT = 54.90 at 100-point scale, i.e. 

0.549 at 1-point scale) for model selection than the clustering-based method APOLLO (Avg. GDT = 53.31 

at 100-point scale, i.e. 0.5331 at 1-point scale), and also outperforms all other QA methods.  

 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted February 17, 2019. ; https://doi.org/10.1101/552422doi: bioRxiv preprint 

https://doi.org/10.1101/552422
http://creativecommons.org/licenses/by-nc-nd/4.0/


 
Figure 6. Comparison of DeepRank with individual QA methods used in MULTICOM predictors. (A) 

The box plot of loss of each method. Here the loss is measure at 1-point scale (i.e. the highest/perfect 

GDT-TS score = 1). (B) The GDT-TS score at the 100-point scale of the top models selected by each 

individual QA method and DeepRank is plotted against the GDT-TS score of MULTICOM’s first 

submitted models for 74 “all group” full-length targets. The curve for each method is fitted by the second-

degree polynomial regression function. The area under the curve for each method is calculated and shown 

on the top left. The larger area indicates the better capacity of model selection. 

 

Prior to CASP13, we assessed how much the deep learning and contact prediction improved the quality 

assessment in CASP12 dataset. After the quality scores were generated using individual QA methods, two 

baseline combination strategies (e.g., the average score of raw feature scores and Z-scores respectively) 

were compared with the deep learning. Supplemental Table S2 shows that the Z-score based consensus 
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worked better than the average score consensus, while the deep neural network of integrating all features 

except contacts further reduced the loss from 0.064 of the z-score based consensus to 0.054. Furthermore, 

the deep learning with contact features performed best (correlation = 0.853 and loss = 0.048), and the 

improvement was significant compared to the averaging approach (loss = 0.067) according to the P-value 

(0.007751). The improvement is also consistent with the results in the blind CASP13 experiment 

(supplemental Table S3). The average loss of the deep learning with contacts is 0.051 on the 74 CASP13 

targets, lower than 0.059 of the deep learning without contacts that is lower than both the average score 

consensus and z-score consensus. This further validated the deep learning and contact prediction’s positive 

contribution to model selection. 

 

Figure 7 illustrates how MULTICOM estimated the quality of models for a TBM-hard target T0966 and 

predicted the final structure. Figure 7(A) visualized the distribution of the GDT-TS scores of 146 server 

models for this target. It is a bimodal distribution, where the GDT-TS scores of major models are centered 

around 0.1 and 0.5. Figure 7(B) is the plot of the true GDT-TS scores of models against their predicted 

ranking by DeepRank. It successfully ranked the model with highest GDT-TS score (0.6103) as No.1 

(Figure 7(D)). MULTICOM generated a refined model by combining the top 1 selected model with the 

other top ranked models, which had a GDT-TS score of 0.6113 (Figure 7(E)). The ranking of individual 

QA methods for this target is shown in Figure S9. The other three such successful cases for DeepRank 

are also reported in Figures S7, S8 and S10. 

 

To assess how contact predictions can help model ranking, we evaluated DeepRank with/without contact 

features on targets with low contact prediction precision and ones with high contact prediction precision, 

respectively (Figure S6). The consistent, significant improvement in model selection has been observed 

when the contact prediction of short-range, medium-range, and long-range has high precision (precision > 

0.5). However, the less accurate contact prediction led to the slightly worse performance on model 

selection than not using contact prediction.  
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Figure 7. Tertiary structure prediction for T0966. (A) The distribution of GDT-TS scores of 146 server 

models. (B) The plot of the true GDT-TS scores of models against their predicted ranking by MULTICOM. 

The point highlighted in red is the top model selected by DeepRank. (C) The native structure of target 

T0966 (PDB code: 5w6l). (D) The top selected model. (E) The final first MULTICOM model (TS1). 

 

3.3 Comparison of different contact-based ab initio modeling methods on FM targets 

 

To evaluate how predicted contact distances improved template-free modeling, we collected the top 5 

models predicted by five ab initio modeling methods (CONFOLD2, RosettaCon – Rosetta with contacts, 

UniCon3D with contacts, FUSION with contacts, and Rosetta without contacts) for all domains that 

MULTICOM considered them as “hard”. Figure 8 shows that the GDT-TS scores of the ab initio models 

generally increase as the accuracy of contact prediction becomes higher for each method. This upward 

trend is most significant for CONFOLD2 and the correlation between the contact accuracy and the GDT-

TS score of CONFOLD2 models is 0.578. This is expected because CONFOLD2 is the only pure contact 

distance-driven modeling method in the group and contact distances play a direct and dominant role in its 

modeling, while they only play an indirect role in the other three modeling methods assisted by contact 

predictions. 

The average GDT-TS score and TM-score were also calculated for each method on the free-modeling 

targets. The models generated by RosettaCon has the highest average GDT-TS score of 0.376 and 

CONFOLD2 has the second highest average score of 0.356, followed by Rosetta, FUSION, and 
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UniCon3D. It is interesting to note that CONFOLD2 started to work better than RosettaCon when top L/5 

contact predictions reached a high accuracy (e.g. ~80%). When the accuracy of contact prediction was 

lower, RosettaCon worked somewhat better than CONFOLD2 probably because the extra structural 

fragment information and its advanced energy function made some difference. The comparison of 

RosettaCon and Rosetta shows a 15.3% increase of GDT-TS score by using contact distance restraints, 

demonstrating that predicted contacts can significantly improve the fragment-assembly modeling.  

 

Figure 9 show a successful ab initio modeling example (a domain of target T1000) for which no 

significant templates were identified. For the FM domain of T1000 (residues 282-523), the accuracy of 

top L/5 predicted contacts is 100%, top L 79% and top 2L 50%. CONFOLD2 successfully built a 

complicated 𝛼-helix+𝛽-sheet+𝛼-helix model for the domain with TM-score of 0.8 and GDT-TS of 0.64, 

while RosettaCon failed to generate a correct topology (i.e. TM-score = 0.33 < 0.5 threshold). This 

example shows that the pure contact distance driven method such as CONFOLD2 can build high-quality 

structural models of complicated topology for large domains if a sufficient number of accurate contact 

predictions are provided.  

 

 
Figure 8. The modeling performance of contact-based ab initio modeling methods versus the predicted 

contact accuracy (L/5 contacts) in CASP13. Each point represents the modeling accuracy in terms of 

GDT-TS score versus the accuracy of predicted contacts for a method. The colors represent different 

modeling methods. Rosetta without contacts (purple) was included for comparison. The averaged GDT-

TS score and TM-score of five methods on the all CASP13 targets are summarized in the top-right table. 
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Figure 9. An example of successful contact-driven ab initio modeling by CONFOLD2 for a domain of 

T1000 (residues: 282-523). (A) The comparison of the predicted contact map (red, upper triangle) with 

the true contact map of the native structure (blue). For clear comparison, only the upper triangle of the 

predicted contact map is shown. The accuracy of predicted contacts is reported at the top of the map. (B) 

The comparison of contact map derived from CONFOLD2 model (red) with the true contact map (blue). 

(C) The comparison of contact map derived from RossetaCon model (red) with the true contact map (blue). 

(D) The top L/5 contacts visualized in the native structure.  (E) The superposition of CONFOLD2 model 

(purple) and the native structure (green). The TM-score and GDT-TS score of the model is shown under 

the model. (F) The superposition of RosettaCon model (red) and the native structure (green).  

 

3.4 Impact of domain parsing on structure prediction and model ranking  

 

Protein domain identification is an important component in the MULTICOM predictors. When a target 

protein sequence was searched against a template library, the domain regions that were homologous to 

templates were marked as “template-based” and modeled by the template-based modeling protocol. The 

unmarked regions were modeled by the contact distance-based ab initio modeling methods. The domain 

models were evaluated using the three QA methods and top models were assembled into full-length 

structures as final predictions. For the human predictor, the domain boundaries might be re-analyzed by 

taking the structural information of top ranked server models into account. We assessed the impact of 

domain parsing on the structure prediction of the CASP13 targets that were predicted as multi-domain 

proteins. The final predicted models of these multi-domain targets and the models without domain parsing 

were evaluated and compared according to the official domain definitions of CASP13. Among the 90 

CASP13 targets, 31 targets were modeled as multi-domain by MULTICOM server predictors and 19 

targets by MULTICOM human predictor. Supplemental Table S6 reports the scores of the models using 
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or not using domain parsing.  For the server predictors, the performance of structure prediction was 

substantially improved in terms of GDT-TS, TM-score and RMSD after the domain-based modeling was 

applied. For the human predictor, the quality of final predictions was also slightly improved when domain 

information was considered. And almost all the improvement is significant.  

 

3.5 What went right?  

 

In CASP13, a main progress was to apply contact distance prediction and deep learning to improve ab 

initio modeling. Predicted contacts were successfully utilized to guide ab initio structure modeling for 

several hard targets that could never be modeled correctly before. Supplemental Figure S11 shows the 

models and scores of nine hard targets that were folded into correct topology when the predicted contacts 

generated by DNCON2 were rather accurate. Remarkably, a pure contact distance-driven modeling 

method – CONFOLD2 can correctly predict complex folds of large domains if a sufficient amount of 

accurate contact distance predictions is provided. Furthermore, the inter-residue distance distribution 

predicted by DNCON2 (e.g. 6 Å, 7.5 Å, 8 Å, 8.5 Å and 10 Å) is valuable for structure prediction, 

demonstrated by the fact that it helped improve the accuracy of final top L/5 contact predictions from 

57.11% to 61.97% on CASP13 targets (supplemental Figure S12).  

 

Another main progress is that MULTICOM performed better in ranking the models in CASP13 than in 

CASP12 due to the application of deep learning and contact prediction. MULTICOM successfully 

selected models that are identical or close to the best models for 28 targets (see the distribution of loss of 

model selection for all the targets and two good examples in supplemental Figure S13).  

 

Moreover, we successfully tested a new heuristic method to apply domain-based contact predictions to 

validate multi-domain template-based models. One such example is T0996, a challenging template-based 

modeling target due to its very large size and very weak homology with existing templates (Figure 10). 

It was recognized by CASP13 as hard template-based target because only several weak partial templates 

(e.g. PDB code: 5UW2, chain A) could be detected. MULTICOM server predictors successfully divided 

T0996 into 7 domains and the predicted domain boundaries were largely accurate compared to the official 

domain definition. Each domain region was modeled through MULTICOM domain-based modeling 

pipeline. After the domain models were assembled, the full-length structural model was evaluated by the 

predicted contacts using ConEva 61. The contacts in the model matched well with the contacts predicted 

by DNCON2 domain by domain, confirming that both domain parsing and structure modeling was largely 

correct (Figure 10). This contact-based validation approach was applied to all CASP13 targets during 

CASP13, providing a complementary validation for structure modeling.  
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Figure 10. The successful modeling of a large multi-domain target T0996 and the contact-based validation. 

The contacts (red) predicted by DNCON2 match with the contacts (blue) in the template-based models 

domain by domain. 

 

3.6 What went wrong?  

 

Despite the significant progress of MULTICOM in CASP13, it has its several limitations. The first 

limitation is in contact distance prediction. DNCON2 sometime failed to generate a sufficient amount of 

accurate contact predictions to predict correct folds. The problem is particularly severe when the number 

of effective homologous sequences for a target is small (see supplemental Figure S14 for an example – 

T0998). One possible reason is that it did not use a metagenomics sequence database 62 that contains 

sequences not present in the non-redundant protein sequence database and the latest HHblits database 24 

to collect homologous sequences. Another possible reason is the convolutional architecture used by 

DNCON2 is not deep enough in comparison with some other approaches 10, 12, 63. The second limitation is 

that only the coarse distance restraints derived from binary contacts at 8 Å threshold were used with 

CONFOLD2 for ab initio modeling, without taking advantage of the more detailed distance distribution 

spanning multiple distance thresholds predicted by DNCON2, which limited its capability to build quality 

models 64.  

 

The third limitation is that the deep learning-based quality assessment failed on some targets. As shown 

in supplemental Figure S13 (B), DeepRank method performed poorly with loss > 0.1 on 14 “all groups” 

targets. The failed rankings are summarized in supplemental Table S4 and Figure S15-S28. The results 

show that its performance was worse on the free-modeling targets or hard-template targets than on other 

targets. A possible reason is that a large portion of low-quality models in the pool and less accurate features 

of measuring model quality (e.g. contact predictions) for the hard targets hinders the performance of the 

deep learning ranking. 
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4. Conclusion and Future Work 

 

Our CASP13 results demonstrate that residue-residue contact prediction, more generally distance 

prediction, is the key direction to advance protein structure prediction, particularly ab initio prediction, 

and deep learning is the key technology to solve it.  Not only do accurate contact distance prediction and 

deep learning enhance ab initio structure folding, but also model ranking for both template-based and free 

modeling. In the future, we will develop more advanced deep learning methods to directly predict real-

value distances between residues and/or classify them into much finer intervals than DNCON2 currently 

does. The more detailed distance predictions will be used to more accurately fold proteins by the distance 

geometry 39, 46, simulated annealing and advanced gradient descent optimization 65-66 as well as to rank 

protein models.  
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