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Summary 

A long-standing controversy persists in psycholinguistic research regarding the way 

phonemes are coded in human auditory cortex during speech perception. The motor theory of 

speech perception [1, 2] describes phoneme perception in terms of the articulatory gestures that 

generate it. According to this theory, the objects of speech perception are the intended phonetic 

gestures of the speaker, such as, ‘lip rounding’, or ‘jaw raising’. Alternatively, auditory theories 

argue that phonetic processing depends directly on properties of the auditory system [3-6]. 

According to this view, listeners identify spectro-temporal patterns in phoneme waveforms and 

match them with stored abstract acoustic representations. Here we recorded spiking activity in 

the auditory cortex (superior temporal gyrus; STG) from six neurosurgical patients who performed 

a listening task with phoneme stimuli. Using a Naïve-Bayes model, we show that single-cell 

responses to phonemes are governed by articulatory features that have acoustic correlates 

(manner-of-articulation) and organized according to sonority, with two main clusters for sonorants 

and obstruents. Using the same set of phonemes, we further find that ‘neural similarity’ (i.e. the 

similarity of evoked spiking activity between pairs of phonemes), is comparable to the ‘perceptual 

similarity’ (i.e. how much the pair of phonemes sound similar) based on perceptual confusion 

assessed behaviorally in healthy subjects. Thus phonemes that were perceptually similar, also 

had similar neural responses. Our findings establish that phonemes are encoded according to 

manner-of-articulation, supporting the auditory theories of perception, and that the perceptual 

representation of phonemes can be reflected by the activity of single neurons in STG.    
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Results  

How are phonemes encoded in human auditory cortex during speech perception? 

Numerous neuroimaging studies [7-14] report activation in regions that are selective to speech, 

over non-phonemic contrasts. Findings describe a hierarchical organization of regions in the 

temporal lobe from primary auditory and early posterior auditory areas processing low-level 

auditory features, to the anterior, ventral Superior Temporal Gyrus (STG) and Superior Temporal 

Sulcus (STS), processing higher-level phonemic features. Invasive electrophysiological 

recordings in humans [15] showed that waveforms reconstruction from local field potentials in the 

lateral STG is highest for spectro-temporal fluctuations critical for speech intelligibility, suggesting 

that speech acoustic parameters are encoded in this region. More recently using electro-

corticogram (ECoG), Mesgarani et al. [16] showed that in the STG, high-gamma activity (75-150 

Hz) in response to auditory presentation of phonemes is clustered according to phonetic features 

such as sonority, nasality and stridency, which remarkably are the same distinctive features 

defined by linguists [17]. According to linguistic theories, phonemes are described according to 

sub-phonemic features that distinct them or can be shared by them. At the neural level, phonemes 

with common ‘manner-of-articulation’ (i.e., spectro-temporal patterns, such as stridents /szʃ/) 

evoked more invariant responses than phonemes with common ‘place-of-articulation’ (such as, 

alveolars /tdszn/) – the phonetic gestures of the speaker. This representational structure of 

phonemes is also supported by scalp EEG recordings [18]. Nonetheless, electrical activity 

recorded by EEG or ECoG grids reflects average responses of large neuronal populations, and 

is therefore limited in providing insights into activity patterns of single neurons.  

 

Basic characteristics of the neural responses 

Here, we recorded spiking activity from a total of 41 units in six patients implanted with 

intracranial depth electrodes, while they listened to a variety of phonemes (See STAR Methods). 

Of the 41 units, 14 exhibited significant increases in firing rate following stimulus onset and were 

taken for further analysis (see STAR Methods and Table S1). Figure 1 depicts rasters and peri-

stimulus time histograms (PSTH) plots of spiking activity from one unit in left STG of one patient. 

In most neurons, increases in firing rate were observed ~180ms following stimulus onset, likely 

due to conductance delays until the signal reaches STG. Some responses contained two activity 

peaks (e.g., the PSTHs of /b p d s/ in Figure 1) which may be a result of the structure of the 

stimuli—a consonant followed by the vowel.  

To identify time periods for which the neural response is most informative with respect to 

phoneme identity, we defined a ‘response window’ — the time window for which spiking activity 

is most separable across phonemes. To that end, we defined a separability index based on the 

ratio of spike-count variability across trials of different phonemes and trials in which a single 

phoneme was presented. Spike counts were calculated in 200ms windows, and the separability 

index was calculated in the range of -100ms to +500ms relative to stimulus onset in steps of 1ms. 

Figure 2A shows the average of the separability index across all units. The center of the most 

informative time window is around 180ms after stimulus onset and was used in subsequent 

analysis (similar to [19]; Changing the time window for calculating spike counts in the range of 

100-300ms instead of 200ms did not substantially change the profile of the separability index). 

This time period is similar to the P2 component during phonemic and non-phonemic processing 
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reported in EEG studies, with activity that peaks at a similar range of time delays from sound 

onset [8]. 

 

The functional organization of phonemes 

To examine whether neural responses in STG are functionally clustered, we represented 

each phoneme as a vector of firing-rate values. To capture the temporal dynamics of the neural 

response, each phoneme was represented by mean firing rates across trials in four 50ms 

consecutive bins [16, 19, 20] in the response window (79ms-279ms, see Figure 2) for all fourteen 

units, giving 56 dimensions in total.  

Next, we applied principal component analysis (PCA) to project the neural representation 

to a lower dimensional space, spanned by two principal components of the data. We found that 

the sonorant and obstruent phonemes have relatively distinct neural representations, as each 

group encompasses a different region of the plane (Figure 3A). Based on Euclidean distances 

among the neural representations of the phonemes, we generated a similarity matrix among the 

phonemes (Figure 3B, top panel) and performed an unsupervised hierarchical clustering on the 

similarity matrix. We found a central cluster of obstruents (except for /k/, and including /e/), 

separated from most sonorants - the vowels /a o i u/ and nasal approximants /n m l j/ (Figure 3B, 

bottom panel). In addition, the obstruent cluster is further divided into a sub-cluster containing all 

stridents /s ʃ z ʒ/. These results point to a functional organization based on manner-of-articulation 

features, since clustering tends to separate obstruents from sonorants, and to group strident 

phonemes together. Therefore our next analysis focused on quantifying and comparing response 

invariances to manner- and place-of-articulation features directly, using a Naïve Bayes model for 

spike generation (see STAR Methods for details). If manner is a more dominant organizing 

principle than place, we expect the model to achieve better decoding performance for manner- 

compared to place-of-articulation features. The confusion errors made by the model are also 

informative regarding the functional organization of phonemes — higher confusion rate between 

two classes indicates higher similarity between their neural representations. If manner is a more 

dominant dimension at the single-cell level, we expect to observe lower confusion rates of the 

model among phonemes with different manners of articulation and higher confusion rates among 

phonemes that share the same manner of articulations.  
We examined the performance of the model on two multi-class classifications, for each of 

the two cases: manner- and place-of-articulation features. For each classification, we labeled the 

phonemes according to the corresponding phonological features. For manner, we label /a e i o u/ 

as ’vowel’, /n m l j/ as ’nasal-approximant’, /f v s z ʃ ʒ / as ’fricative’, /b d g p k/ as ’plosives’; and 

for place-of-articulation, /b p f v m/ as ’labial’, /t d s z n/ as ’alveolar’, /ʃ ʒ/ as palatal and /k g/ as 

velar. We then generated a confusion matrix per classification according to the inferences of the 

model. Figure 4 shows the significant mean posterior distribution for all phonological features (p 

< 0.05; t-test compared to chance level), organized in a confusion matrix. Classification according 

to manner-of-articulation (Figure 4A) resulted in a diagonal structure with higher values on the 

diagonal, compared to the place-of-articulation classification (Figure 4B). We quantified the extent 

to which each matrix is diagonal by computing the ratio between the mean of diagonal values and 

the mean of non-diagonal values. We found a significant difference between the two matrices 

(manner = 2.89±0.43, place = 1.22±0.49, p < 0.001; t-test).  
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To establish the dominance of manner-of-articulation features in distinguishing phonemes, 

we performed a third classification task. For each phonological feature (e.g., [nasal]), we labeled 

all phonemes as either + or - ([+nasal] or [-nasal] respectively), and calculated the area under 

curve (AUC) value for each binary classification. Figure 4C depicts AUC values for all 

phonological features in descending order. AUC values in all four manner-of-articulation features 

are significant (p<0.05; compared to chance level, AUC = 0.5) whereas for place-of-articulation, 

only the labial feature is significantly above chance level. 

 

A comparison between neural and behavioral similarity 

Finally, we directly compared neural and perceptual similarities of phonemes. 

Traditionally, perceptual phoneme similarity is estimated using behavioral tasks, assuming that 

confusion between two phonemes is correlated with perceptual similarity [21-23]. We tested 

whether phoneme similarity, as estimated in a previous behavioral task [24], is reflected in neural 

activity in the STG during listening to the same set of phoneme stimuli. To that end, we generated 

one behavioral and one neural similarity matrix. The behavioral similarity matrix is estimated from 

confusion errors made by thirty-two healthy human subjects, and the neural similarity matrix is 

derived from the neural representations of the STG responses obtained in the neurosurgical 

subjects (see STAR Methods). Since behavioral tasks are limited in generating confusions 

between consonants and vowels, we focused on the confusion between consonant phonemes 

only (averaged across subjects). We found a significant correlation between the behavioral and 

the neural similarity matrices (Figure 4D; ρ = 0.45, p< 10-3, Spearman correlation). This finding 

suggests that perceptual similarity observed in behavioral tasks can be represented at the level 

of spiking activity of small population of neurons in STG. 

 

Discussion 
Auditory theories argue that phonetic processing depends directly on properties of the 

auditory system [3-6]. That is, listeners identify patterns in phoneme waveforms and match them 

with stored abstract acoustic representations. For example, vowels are characterized by a roughly 

bimodal spectra and sibilant fricatives by high-frequency energy. This view is consistent with early 

observations from language acquisition. During language development, manner-of-articulation 

distinctions are acquired early during childhood, compared to the place-of-articulation ones [25, 

26]. Since manner-of-articulation but not place-of-articulation features have identifiable acoustic 

correlates, this finding is consistent with auditory theories. 
Alternatively, the motor theory of speech perception [1, 2] describes phoneme perception 

in terms of the articulatory gestures that generate it. For example, the phoneme [m] consists of a 

labial stop gesture combined with a velum lowering gesture. The motor theory arose from an early 

observation that phoneme percepts are invariant across different contexts [2, 27]. In the case of 

co-articulation, several gestures overlap in time, which may cause the acoustic waveform of the 

same intended gesture to be significantly different than when it is pronounced in isolation. 

Therefore, a particular gesture can be represented by different acoustic waveforms in different 

phonemic contexts. Additional variation exists in the acoustic signal due to inter-speaker 

variability. This considerable variability led the supporters of the motor theory to propose that the 

objects of speech perception are not to be found in acoustics.  
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Recently, this controversy has been addressed by studies in neuroscience using invasive 

electrophysiological recordings. This type of recordings provide a precious glimpse into the neural 

representations of linguistic entities, such as the objects of speech perception, with high temporal 

resolution and spatial localization compared to non-invasive recording techniques. Invasive 

techniques can record extracellular electrical activity either at the level of local field potentials 

(LFPs), or at the level of action potentials generated by single cells [28]. ECoG research of speech 

perception shows that the organization of phonemes can significantly differ across brain regions 

and tasks, depending on whether speech is being produced or perceived [29, 30]. Bouchard et 

al. [29] showed that during production, phonemes in the ventral sensory-motor cortex (vSMC) are 

predominantly organized by place-of-articulation features (e.g., labial, alveolar, velar and glottal), 

while during listening, the organization was found to be dominated by manner features [30]. The 

same studies also showed that the dominant organizing feature in the STG during perception is 

also manner-of-articulation. Furthermore, Pasley et al. [15] showed that speech waveforms can 

be reconstructed from LFPs in the lateral STG, suggesting that encoded information in this region 

is mainly acoustic. Finally, a recent study [16] focused on characterizing the organization of 

phonemes in the STG and found that the dominant distinctive features are manner-of-articulation 

that contribute most for phoneme classification. Taken together, these findings in STG support 

the auditory view of speech perception over motor theories. 

So far, most evidence from intracranial studies was based on neural recordings reflecting 

activity of large populations of neurons, thus leaving open the question regarding the 

representation of phonemes at the single-unit level. To address this, we recorded neural activity 

from six patients during a listening task in which vowels and consonant-vowel syllables were 

aurally presented. Previous single-cell studies on phonetic processing revealed that STG neurons 

are tuned to subsets of phonemes [19, 31]. Here we directly inquired whether in STG (a) the 

organization of phoneme representation at the level of single-cell activity is dominated by manner 

or by the place-of-articulation; and (b) perceptual representation of phonemes at the behavioral 

level matches the neural representation at the cellular level.  
The structure of the neural representations of phonemes in relatively small population of 

neurons demonstrated a separation between sonorant and obstruent phonemes, in agreement 

with previous ECoG studies [16]. The sonorant-obstruent distinction can be described with 

acoustic properties but not with motor properties, as sonorants have a clear acoustic marker of 

resonance, with regular patterns in their waveform, whereas sonorant and obstruent involve 

varied articulations. We also found that most of the sonorant and obstruent phonemes cluster 

separately, and that strident fricatives form a sub-cluster of the obstruent one. These findings 

point to a functional organization based on acoustic cues. First sonorants are highly resonant and 

have identifiable formant structure compared to obstruents. Second, stridents have a clear 

acoustic footprint, characterized by high intensity and high-frequency energy. Moreover, using a 

probabilistic classifier, we found that manner-of-articulation features explain differences in neural 

activity better then place-of-articulation features. Taken together, we provide first evidence that 

spiking activity of few cells encode phonemes according to sub-phonemic features that have 

acoustic correlates, thus providing additional support to auditory theories of speech perception. 
Remarkably, spiking activity from relatively small number of neurons reflected similarities 

derived from behavioral results, based on phoneme-confusion experiments using the same set of 

stimuli. The distinct neural representation of nasal and approximant features with respect to other 
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feature classes, corresponded to their relatively distinct perceptual saliency. These results 

suggest that the perceptual representation of phonemes can be observed at the level of single 

neurons.  

In sum, our results provide first evidence that the organization of speech perception in 

single STG neurons is more compatible with auditory theories than motor theories and suggest 

that activity of single neurons might drive perceptual representation of phonemes during behavior. 
 

STAR Methods 
Patients and electrophysiological recording 

Data was collected from six patients with pharmacologically intractable epilepsy, implanted with 

intracranial depth electrodes to identify seizure focus for potential surgical treatment [28]. Subjects 

were recruited from two centers (UCLA/Tel-Aviv). Electrode location was based solely on clinical 

criteria. Each electrode terminated in a set of nine 40- µm platinum–iridium microwires [32]—eight 

active recording wires, referenced to the ninth. Signals from these microwires were recorded at 

40 kHz using a 64-channel acquisition system. Before surgery each patient underwent placement 

of a stereotactic headframe, and then a detailed MR image was obtained using a spoiled-gradient 

sequence, followed by cerebral angiography. Both anatomical and angiography images were 

transmitted to a workstation in the operating room, and surgical planning was then performed, 

with selection of appropriate temporal and extra-temporal targets and appropriate trajectories 

based on clinical criteria. To verify electrode position, CT scans following electrode implantation 

were co-registered to the preoperative MRI using Vitrea® (Vital Images Inc.). The patients 

provided written informed consent to participate in the experiments. The study was approved by 

and conformed to the guidelines of the Medical Institutional Review Board at UCLA and the Tel-

Aviv Sourasky Medical Center (Ichilov hospital). 
 

Stimuli and behavioral task 

Stimuli were constructed of either consonant-vowel (CV) pairs, or vowels /a e i ou/ presented in 

isolation. The consonants in the CV syllables were according to the list in table S2, and the vowel 

was set to /a/ in order to reduce effects on the preceding consonant. Patients were presented with 

12 repetitions from each CV pair or vowel, 4 from each speaker, in a random order (ISI = 1 

second). The patients were instructed to listen carefully to the syllables. All stimuli were recorded 

in an anechoic chamber with a RØDE NT2-A microphone and a Metric Halo MIO2882 audio 

interface, at a sampling rate of 44.1kHz. Stimuli were generated by two male and one female 

Hebrew speakers. The total number of stimuli was 63 (21 phonemes * 3 speakers). Since some 

patients were native English speakers and some were native Hebrew speakers, we chose 

phoneme stimuli that are approximately similar across English and Hebrew (verified in a 

perceptual task with native English speakers; see Phoneme perception experiment). Length and 

pitch (by semi-tone intervals) were compared across recorded tokens to choose the most highly 

comparable stimulus-types. This was done by looking at differences in timeline arrangement, 

using built-in pitch tracker in a commercial software (Logic Pro X). Further cleaning of noise 

residues in high resolution mode was done using Waves X-Noise software. Figure S1 shows an 

example of the waveform of the syllable /ʃa/ (top), with the corresponding spectrogram (bottom), 

articulated by one of the male speakers. 
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Phoneme perception pretest 

To test the extent to which the subset of phoneme stimuli used in the experiment is indeed similar 

across English and Hebrew speakers, we performed a phoneme perception experiment. Eighteen 

native English speakers (age range 18.2-35, 12 females; monolingual) sat in front of a screen 

with headphones and listened to the phoneme stimuli used in the study. After each phoneme, 

subjects were presented with 21 phonemes on the screen and were asked to select the phonemes 

they heard. In addition, they were asked to rate their level of confidence in the phoneme selection. 

Order of played phonemes and options on the screen were randomized across subjects.  Subjects 

identified the phonemes with 79% accuracy (p<0.05; t-test compared to chance level) and high 

confidence levels (9.2/10 averaged across subjects). Therefore, it is unlikely that differences in 

native language affected the rest of the results. 
 

Data preprocessing 

To detect spiking activity, the data was band-pass filtered offline between 300 and 3000 Hz and 

spike sorting was performed using WaveClus [33], similar to previous publications [20, 34]. This 

process yields for each detected neuron a vector of time stamps (1ms resolution) during which 

spikes occurred. To assess responsiveness of each neuron to the phonemes, we computed a t-

test between the spike-count distribution before stimulus onset (-500-0ms) and after (0-500ms). 

Neurons with statistically-significant responses (p<0.05) were included in subsequent analyses. 
 

Similarity of neural and behavioral responses 

To test whether similarity of phonemes at the behavioral level corresponds with similarity of 

population spiking activity in STG, we compared two phoneme similarity matrices - a behavioral 

and a neural one. The behavioral similarity is calculated from phoneme confusability according 

to: 

 

(1)                                 𝐵𝑆𝑖𝑗 =
𝑝𝑖𝑗+𝑝𝑗𝑖

𝑝𝑖𝑖+𝑝𝑗𝑗
   

 

where 𝑝𝑖𝑗 is the proportion of times that phoneme i was called phoneme j. 𝑝𝑖𝑖 is the hit rate for 

phoneme i. Thus, 𝐵𝑆𝑖𝑗is low, if subjects frequently confused phoneme i with phoneme j (high 

similarity). 

The neural similarity is based on spiking activity in the following way: first, we z-scored the spike-

count activity in the response window across all responsive neurons. Then, for each pair of 

phonemes i and j, we calculated the Euclidean distance 𝑑𝑖𝑗[18], and neural similarity was defined 

according to the following (monotonic) function 𝑁𝑆𝑖𝑗 = exp(-𝑑𝑖𝑗).  

Finally, we performed Spearman rank correlation between the two matrices. The result is 

therefore not affected by the exact shape of the function. 

 

Naïve Bayes model 

We modeled the observed spike counts from all units assuming that the number of spikes 

follows a Poisson distribution. Formally, when observed spike-count xi in unit i follows a Poisson 
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distribution xi ∼ Poisson(λi), the probability of observing k spikes in a time bin, generated by the 

unit in response to the presentation of stimulus type s, is: 
 

            (2)                               𝑝(𝑥𝑖|𝑠) = 𝑒−𝜆𝑖,𝑠
𝜆𝑖,𝑠
𝑘

𝑘!
                                                                  

 

where λi,s is the firing rate of unit i in response to stimulus type s. We modeled the joint spiking 

activity across units using a Naïve Bayes model. Given a stimulus type (a phoneme or a 

phonological feature), we assumed that the observed spike counts across units are independent 

of each other, enabling a simple factorization of the joint probability of stimulus and responses. 

Formally, the probability of observing a spike-count pattern x ∈ Nn across units in response to the 

presentation of a stimulus type s is: 

 

            (3)                   𝑝(𝑥|𝑠) = ∏ 𝑝(𝑥𝑖|𝑠) =
𝑛
𝑖=1 ∏ 𝑒−𝜆𝑖,𝑠

𝜆
𝑖,𝑠

𝑘𝑖

𝑘𝑖!
𝑛
𝑖=1                                                                                     

 

where ki is the number of observed spikes in unit i, and n is the number of units. Random 

downsampling of the majority classes was performed, in a 5-fold cross-validation procedure. That 

is, splitting the samples of each class into a training and a test-set according to a 80%-20% ratio, 

respectively. 

 

Parameter estimation 

The parameter estimation of the model is as follow. We estimate the firing rate parameters λi,s 

from the training data using maximum likelihood. That is, for each stimulus type s and unit i, we 

find the firing-rate parameter λi,s that maximizes the likelihood of observing the spike counts in the 

training-set trials: ∏ 𝑒−𝜆𝑖,𝑠𝑡∊𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔−𝑠𝑒𝑡

𝜆
𝑖,𝑠

𝑘𝑖
𝑡

𝑘𝑖
𝑡!

, where ki t is the number of observed spikes in unit I in 

trial t. For the Poisson distribution, as in this case, the maximum-likelihood estimator can be 

shown to be equal to the mean spike-count. 
 

Inference 

Having estimated all firing-rate parameters λi,s, we now describe inference in the model. Given an 

observed activity pattern across all units xt, we infer for each trial t in the test-set the most probable 

stimulus types. Using Bayes rule, the posterior distribution is: 
 

       (4)                                          𝑝(𝑠|𝑥𝑡) ∝ 𝑝(𝑥𝑡|𝑠)𝑝(𝑠) = ∏ 𝑒−𝜆𝑖,𝑠
𝜆
𝑖,𝑠

𝑘𝑖

𝑘𝑖!

𝑛
𝑖=1 𝑝(𝑠)                                           

 

where p(s) is the prior probability of the stimulus type, which was set as uniform. The mode of the 

posterior distribution indicates the most probable stimulus type given the firing pattern across 

units. 
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Model evaluation 

The model is evaluated by comparing the predictions of the model from the inference stage and 

the ground-truth labels. For binary classification tasks, we use the area under the curve (AUC) as 

a measure for model performance, with posterior probabilities as scores. For multi-class 

classification, the full posterior distribution provides additional information compared to its mere 

mode. For each stimulus type, we calculate the average posterior distribution across all trials in 

the test set, and use this to construct for each classification task a confusion matrix, in which rows 

correspond to average posterior distributions. In all cases, statistical significance is determined 

from the distribution of values across test sets. 
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Figures 

 
Figure 1. Rasters and Peri-Stimulus Time Histogram plots for one example unit, from patient 3. 

Consonants are grouped into three groups: plosives, fricatives and nasal-approximant. (A) Voiced 

(left) and unvoiced (right) plosives. (B) Voiced (left) and unvoiced (right) fricatives. (C) nasal-

approximant (left) and affricate (right) phoneme. (D) Vowel rasters are embedded in approximate 

locations in the formant space. 
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Figure 2. (A) Response window. The between-phoneme to within-phoneme variability ratio of the 

spike-count, for a running window of 200ms (calculated between -100ms to 500ms relative to 

stimulus onset in steps of 1ms), averaged across responsive units (error bars represent SEM 

across units). Ticks on the abscissa represent the center of the time window. Response window 

(79ms-279ms, shaded area) had the maximal value of phoneme separability index. (B) Mean 

firing rates for all units in response to all phoneme stimuli. Color scale represents mean firing-

rates for each unit in the response window. 
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Figure 3. (A) Neural representations of phonemes along the first two principal components of the 

data. Colors: sonorant phonemes (red), obstruent phonemes (blue). (B) Hierarchical clustering. 

Top panel depicts the similarity matrix based on the neural population responses (to enhance 

color contrasts, diagonal values were manually set to zero). Similarity metric is based on 

Euclidean distances among the neural representations of the phonemes (see STAR Methods). 

Colors: sonorant phonemes (red), obstruent phonemes (blue). Bottom panel depicts hierarchical 

clustering of the same data. 
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Figure 4. (A) Confusion matrix among manner-of-articulation features of consonants: plosives, 

fricatives, nasals, approximants and vowels. (B) Confusion among place-of-articulation features 

of consonants: labial, alveolar, palatal, velar, glottal (chance level = 0.25). (C) AUC values for 

each binary feature, e.g., [+nasal] vs. [-nasal], [+labial] vs. [-labial]. AUC values were determined 

from the posterior probabilities of the Naïve-Bayes model and phoneme identities of the test 

samples; Error-bars are calculated across test sets. (D) A comparison between neural and 

behavioral similarity. Each dot represents a pair of phonemes, X-axis values represent perceptual 

phoneme similarity, estimated based on confusion rates among phonemes stimuli, which were 

collected in a behavioral experiment with healthy participants [24]. Yaxis values represent neural 

similarity from patient data (see STAR Methods). The Spearman correlation between the 

behavioral and neural similarities is ρ = 0.45 (p<0.001). 
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Figure S1. An example of the waveform (top) and the corresponding spectrogram (bottom) of the 

phoneme /ʃa/, articulated by one of the male speakers. 
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Supplemental Information 

Supplementary Tables 

 

 Left STG Right STG 

Patient1 

 

No units recorded Responsive: 3 multi-unit 

Not Responsive: None 

Patient2 

 

Responsive: 1 single-unit; 1 multi-unit 

Not Responsive: 1 single-unit; 4 multi-unit 

No units recorded 

Patient3 

 

Responsive: 1 multi-unit 

Not Responsive: 1 single-unit; 2 multi-unit 

No units recorded 

Patient4 

 

No units recorded Responsive: 2 multi-units; 3 single-units 

Not Responsive: None 

Patient5 

 

Responsive: None 

Not Responsive: 2 single unit; 2 multi-unit 

Responsive: 1 multi-unit 

Not Responsive: 6 multi-unit 

Patient6 

 

No units recorded Responsive: 2 single-unit 

Not Responsive: 4 single-unit; 9 multi-unit 

 

Table S1. Recording details. Distribution of recorded spiking activity in STG across hemispheres 

and patients (total responsive STG units = 14). 
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  a e o i u n m l j f v s z ʃ ʒ p b t d k g 

 Sonorant + + + + + + + + + - - - - - - - - - - - - 

 Vowel + + + + + - - - - - - - - - - - - - - - - 

M
a

n
n

e
r 

Nasal - - - - - + + - - - - - - - - - - - - - - 

Approximant - - - - - - - + + - - - - - - - - - - - - 

Fricative - - - - - - - - - + + + + + + - - - - - - 

Plosive - - - - - - - - - - - - - - - + + + + + + 

P
la

c
e
 

Labial - - - - - - + - - + + - - - - + + - - - - 

Coronal - - - - - - - + - - - + + + + - - + + - - 

Dorsal - - - - - - - - + - - - - - - - - - - + + 

Alveolar - - - - - + - + - - - + + - - - - + + - - 

Palatal - - - - - - - - + - - - - + + - - - - - - 

Velar - - - - - - - - - - - - - - - - - - - + + 

 

Table S2. Stimuli details. List of phonemes included in the experiment and their features. 
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