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Abstract 
Wearable devices provide a means of tracking hand position in relation to the head, but have 
mostly relied on wrist-worn inertial measurement unit sensors and proximity sensors, which are 
inadequate for identifying specific locations. This limits their utility for accurate and precise 
monitoring of behaviors or providing feedback to guide behaviors. A potential clinical application 
is monitoring body-focused repetitive behaviors (BFRBs), recurrent, injurious behaviors directed 
toward the body, such as nail biting and hair pulling, that are often misdiagnosed and 
undertreated. Here, we demonstrate that including thermal sensors achieves higher accuracy in 
position tracking when compared against inertial measurement unit and proximity sensor data 
alone. Our Tingle device distinguished between behaviors from six locations on the head across 
39 adult participants, with high AUROC values (best was back of the head: median (1.0), 
median absolute deviation (0.0); worst was on the cheek: median (0.93), median absolute 
deviation (0.09)). This study presents preliminary evidence of the advantage of including 
thermal sensors for position tracking and the Tingle wearable device’s potential use in a wide 
variety of settings, including BFRB diagnosis and management. 
 
Introduction 
Accurate monitoring of hand position with respect to the head has many potential applications, 
ranging from extended reality and computer gaming to monitoring certain clinical conditions. 
Body-focused repetitive behaviors (BFRBs) represent a class of potentially useful clinical 
applications. BFRBs are associated with a broad range of mental and neurological illnesses 
(e.g., excoriation disorder, trichotillomania, autism, Tourette Syndrome, Parkinson’s Disease)1,2, 
where individuals unintentionally cause physical self-harm through repeated behaviors directed 
toward the body. Common BFRBs include hair pulling, skin picking, and nail biting, and are 
often misdiagnosed and undertreated3. These symptoms affect at least 5% of the population, 
and as many as 70% of those with one BRFB will have another co-occurring BRFB4. 
Developmental factors such as age and intellectual disabilities may limit a patient’s awareness 
of his/her behavior4. BFRBs can cause significant distress, impairment and physical health 
consequences (e.g., pain, disfigurement, infection) and are associated with a sense of 
diminished control over the behavior5,6. As such, it is imperative to establish a reliable means to 
automatically and objectively identify and monitor BFRBs, especially outside of the clinic. 
 
To approximate ecological BFRB monitoring, conventional methods of position tracking rely on 
proximity- and inertial measurement unit (IMU) sensor-based measures to identify the position 
of part of a person's body (such as a hand) relative to another part of the person (such as the 
head). The Keen device, a wearable-based tracking method created by HabitAware7, is one 
such attempt to monitor BFRBs. The Pavlok8, a wrist-worn device which modifies behavior 
based on user-induced shocks and feedback, has also been used for BFRB treatment, though it 
is not specifically designed to do so. Neither of these devices have been the subject of a 
published peer-reviewed study, so it is unclear how well-suited they are for BFRB monitoring or 
treatment. The reliance of the Pavlok and Keen devices on IMU sensors may cause difficulty in 
determining hand position relative to the head because of the lack of head position reference 
data. A two-device approach, most notably the combination of a bracelet and magnetic 
necklace3, has been used to provide an external reference for head position, producing superior 
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results. However, sensitivity to body movement and user discomfort has made a two-device 
approach impractical. 
 
The Tingle is a wrist-worn position tracking device designed by the MATTER Lab that passively 
collects thermal, proximity, and IMU sensor data. The goal of the present study was to assess 
the efficacy of the Tingle in its ability to distinguish between locations of simulated behaviors, 
and whether the thermal sensors in the Tingle yield potentially valuable information that may 
improve BFRB detection and monitoring over proximity and IMU sensor data alone. A long 
short-term memory (LSTM) neural network was trained using these data to detect when the 
user’s hand is near one of six target locations on the head.  
 
Results 
Discriminability. We assessed the degree to which data collected at different locations on the 
head can be distinguished from one another by calculating a “discriminability distance” measure 
between each unique pair of target locations on the head (mouth, nose, cheek, eyebrow, top-
head, back-head). Data from the proximity and IMU sensors were used to calculate this 
distance (see Methods). We repeated this analysis with data from all three sensor types, and 
the addition of thermal sensor data significantly increased the median discriminability distance 
between respective targets, for every target, as shown in Table 1 (Wilcoxon signed-rank test; p-
value << 0.05 for all tests with Bonferroni correction). Across 39 participants, the discriminability 
distance using all three sensors was greatest between the nose and top of the head (median: 
3.32, median absolute deviation: 0.66) and smallest between the nose and cheek (median: 
1.25, median absolute deviation: 0.84). We also estimated the null distribution of discriminability 
distances using permutation testing to shuffle the target labels for each unique pair of targets. 
Wilcoxon signed-rank testing revealed that the median distance value is significantly greater 
across all pairs of targets when using data from all three sensor types than when using 
proximity and IMU sensors (Supplementary Tables 1 and 2).  
 
Neural Network. [The same data as above were used in this analysis.] To assess the ability of 
the Tingle to differentiate a hand’s position between target locations on the head, an LSTM 
neural network9 was trained to identify data as on-target (on the correct one of the six targets on 
the head) or off-target (on one of the remaining five targets, or off of the body). The LSTM 
network performed this binary classification task for each of the six target regions on the head. 
This analysis was conducted twice, once without and once with data from the Tingle’s thermal 
sensors. Accuracy was evaluated using the area under receiver operating curve (AUROC) 
values, an aggregate measure of specificity and sensitivity10, as well as confusion matrices for 
each binary classification task. Our results shown in Figure 1D demonstrate that the addition of 
thermal sensor data improves the ability to distinguish between six positions on the head, and 
does so with median AUROC values > 0.90 for all target locations (Supplementary Table 3). 
Confusion matrices were assessed for class imbalances in prediction accuracy, but none were 
identified (Figure 1E).  
 
A general (participant-independent) classifier with the same neural network architecture was 
also trained using the aggregate data from all participants but one, and then tested on the 
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remaining participant. This leave-one-out approach was applied to create and test 39 general 
classifiers. All generalized classification accuracy measures were below the median value 
across individuals but with median AUROC values > 0.80 for all but one (cheek [.75]) target 
location, as shown in Supplementary Table 3.  
 
Discussion 
In this study, we tested whether thermal sensor data improved the Tingle device’s ability to 
distinguish between a hand’s position at different locations on the head, for use in detection of a 
wide range of behaviors, including clinically relevant BFRBs. This investigation was a 
prerequisite to future studies relevant to distinguishing clinically relevant gestures (BFBRs) from 
activities of daily living (non-BFRBs). Adding thermal data collected from the Tingle wrist-worn 
device significantly increased the discriminability distance between targets, and significantly 
increased the accuracy of a binary classifier based on an LSTM neural network. With thermal 
data, LSTM neural network model performance has a high degree of accuracy and is 
comparable across all targets. Without thermal data, the results are more variable, and some 
classifiers failed to predict any data samples as on-target, resulting in the worst performance 
AUROC values of 0.5. The general classifier showed promising accuracy measures, 
demonstrating its potential as a pre-trained model for BFRB detection without individual training.  
 
This study demonstrates that thermal data detected by the Tingle wrist-worn device can help to 
accurately distinguish between hand locations with respect to the wearer's head in a controlled 
setting. This has dramatic consequences for use in different types of hand movement training, in 
navigation of virtual environments, and in monitoring and mitigating repetitive, compulsive 
behaviors. In an effort to help guide behaviors, the Tingle can provide haptic feedback (a 
“tingle”) during detection of a target location. We envision use of thermal sensors in devices like 
the Tingle helping to train, navigate, and interact in a wide variety of settings. 
 
Methods 
Data Collection. 39 healthy adult employees of the Child Mind Institute or Child Mind Medical 
Practice were recruited on a volunteer basis. Participants provided written consent with approval 
from Chesapeake IRB. 
 
Participants were asked to simulate a series of repetitive behaviors, rotating their elbow in a 
circular motion while their hand was in a fixed position on one of six target locations on the 
head. Each of the six behaviors was performed for approximately fifteen seconds at a single 
location on the same side of the head as the dominant hand (the hand wearing the device). 
Data were collected during each behavior with a sampling rate for this study ranging from 5-7 
Hz, which is dynamically adjusted to minimize power consumption. Rotating the elbow provided 
different orientation information, simulating different approaches to each target location. A web 
interface designed for data collection (CW) was used by two researchers (JJS and JCC) 
throughout the experiment. The researchers independently pressed a button on the interface to 
indicate that the participant’s hand was near the correct location on the head. Data were marked 
as on-target when both researchers pressed the button during a simulated behavior. Data from 

.CC-BY-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted February 21, 2019. ; https://doi.org/10.1101/552174doi: bioRxiv preprint 

https://doi.org/10.1101/552174
http://creativecommons.org/licenses/by-nd/4.0/


off the body were also collected to incorporate information about environmental conditions into 
the LSTM network.  
 
Sensors. The Tingle (designed and fabricated by CW) includes a (Kionix KX126) 
accelerometer11, a (STMicroelectronics VL6180X Time-of-Flight Ranging Sensor ) proximity 
sensor12, and four (Melexis MLX90615) thermopiles13.  
 
Data Analysis. We de-identified participant data by labeling each participant with a unique index, 
and z-scaled all data prior to analysis. To determine the discriminability between pairs of target 
locations on the head, we calculated the median values from the proximity and IMU sensors for 
a given target location, and computed the Euclidean distance between the pair of vectors of 
median values corresponding to each pair of target locations. For instance, we isolated data 
collected near the nose and near the cheek. A vector representing the nose contained the 
median of the proximity sensor values and median of the IMU sensor values, and a vector 
representing the cheek contained corresponding median values from the same two sensors in 
the new location. The resulting pair of vectors was used to calculate the Euclidean distance; this 
calculation was repeated for each unique pair of target locations on the head. We then 
constructed a sampling distribution of the distance measure for each of the target pairs by 
randomly shuffling the target labels (e.g., nose and cheek) 1,000 times and calculating the 
Euclidean distance between vectors derived from the proximity and IMU sensors. The median 
Euclidean distance derived from the permutation test was used to provide a baseline measure 
of the discriminability distance. We conducted a Wilcoxon signed-rank test across each of the 
target pairs using the median values from the sampling distribution and the original distance 
values (without shuffled labels). We repeated both analyses after including thermal data, by 
extending the vectors to include median values from the four thermal sensors. To directly 
compare the discriminability distance between measurements without and with thermal sensor 
data, we conducted a Wilcoxon signed-rank test across each of the target pairs. Effect sizes 
were determined by calculating the median difference between data without and with thermal 
information, then dividing by the median absolute deviation. A three-layer LSTM neural network 
was trained in Python using the Keras neural network library. The inputs of the LSTM network 
consist of the z-centered data from the sensors and do not include any additional features. The 
first two layers consisted of 50 nodes each and the second included a dropout rate of 0.20 to 
reduce the risk of overfitting. The third layer consisted of a single node using a sigmoid 
activation function for binary classification. We created training and testing sets with a test size 
of 25% of the data available. We computed AUROC values and confusion matrices as 
measures of accuracy at the participant and group level for each of the six target locations on 
the head.   
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Table Legends 
 
Table 1 | Discriminability distance measures, p-values and effect sizes from paired t-tests for 
the Tingle with no thermal sensor data and with thermal sensor data (median ± MAD) 

Target pair Discriminability 
distance: 
no thermal 

Discriminability 
distance:  
yes thermal 

p-value Effect size 

Mouth - Nose 2.11 ± 1.08 3.06 ± 1.04 1.29e-13 0.90          

Mouth - Cheek 2.30 ± 0.44 3.07 ± 0.94 4.91e-12 1.07 

Mouth - Eyebrow 1.67 ± 1.08 2.61 ± 0.75 3.05e-11 0.97 

Mouth - Top-head 2.32 ± 0.66  2.94 ± 0.48 3.03e-12 0.76 

Mouth - Back-head 2.59 ± 0.57 3.31 ± 0.47 4.35e-12 1.26 

Nose - Cheek 0.49 ± 0.46 1.25 ± 0.84 3.06e-09 0.82 

Nose - Eyebrow 0.85 ± 0.90 2.17 ± 0.84 1.00e-11 1.22 

Nose - Top-head 2.19 ± 0.91 3.27 ± 0.91 5.52e-13 1.06 

Nose - Back-head 2.12 ± 1.12 3.32 ± 0.66 9.07e-09 1.18 

Cheek - Eyebrow 0.77 ± 0.81 2.23 ± 1.32 5.50e-12 1.13 

Cheek - Top-head 2.18 ± 0.67 3.22 ± 0.96 6.01e-15 1.00 

Cheek - Back-head 1.63 ± 1.12 3.01 ± 0.72 2.83e-11 1.09 

Eyebrow - Top-head 1.91 ± 1.01 2.71 ± 0.91 4.09e-09 0.65 

Eyebrow - Back-head 2.33 ± 0.78 3.01 ± 0.77  1.30e-11 0.78 

Top-head - Back-head 2.11 ± 0.90 2.88 ± 0.50 1.13e-13 1.00 
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Supplementary Table 1 | Discriminability distance distribution and p-values from Wilcoxon 
signed-rank tests for the Tingle with no thermal sensor data between the sampling distribution 
and original distance (median ± MAD) 

Target pair Discriminability 
distance: 
Shuffled labels 

Discriminability 
distance:  
True labels 

p-value Effect size 

Mouth - Nose 0.16 ± 0.07 2.11 ± 1.08 3.50e-07 3.37 

Mouth - Cheek 0.17 ± 0.10 2.30 ± 0.44 3.57e-08 3.02 

Mouth - Eyebrow 0.16 ± 0.04 1.67 ± 1.08 7.59e-08 2.71 

Mouth - Top-head 0.15 ± 0.06 2.32 ± 0.66 4.16e-08 2.63 

Mouth - Back-head 0.23 ± 0.11 2.59 ± 0.57 3.57e-08 1.40 

Nose - Cheek 0.09 ± 0.08 0.49 ± 0.46 4.29e-06 1.71 

Nose - Eyebrow 0.11 ± 0.06 0.85 ± 0.90 5.91e-06 2.41 

Nose - Top-head 0.22 ± 0.22 2.19 ± 0.91 2.45e-07 1.38 

Nose - Back-head 0.18 ± 0.13 2.12 ± 1.12 3.85e-08 2.00 

Cheek - Eyebrow 0.10 ± 0.08 0.77 ± 0.81 1.83e-06 1.87 

Cheek - Top-head 0.20 ± 0.16 2.18 ± 0.67 1.37e-07 2.37 

Cheek - Back-head 0.22 ± 0.21 1.63 ± 1.12 3.85e-08 1.71 

Eyebrow - Top-head 0.19 ± 0.14 1.91 ± 1.01 5.63e-08 3.26 

Eyebrow - Back-head 0.22 ± 0.19 2.33 ± 0.78 3.57e-08 1.78 

Top-head - Back-head 0.22 ± 0.13 2.11 ± 0.90 1.37e-07 1.94 

 
 
Supplementary Table 2 | Discriminability distance distribution and p-values from Wilcoxon 
signed-rank tests for the Tingle with thermal sensor data between the sampling distribution and 
original distance (median ± MAD) 

Target pair Discriminability 
distance: 
Shuffled labels 

Discriminability 
distance:  
True labels 

p-value Effect size 

Mouth - Nose 0.62 ± 0.21 3.06 ± 1.04 6.07e-08 1.91 

Mouth - Cheek 0.71 ± 0.20 3.07 ± 0.94 4.84e-08 1.62 

Mouth - Eyebrow 0.62 ± 0.20 2.61 ± 0.75 8.18e-08 2.04 
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Mouth - Top-head 0.65 ± 0.11  2.94 ± 0.48 3.57e-08 1.51 

Mouth - Back-head 0.76 ± 0.23 3.31 ± 0.47 3.57e-08 1.35 

Nose - Cheek 0.52 ± 0.18 1.25 ± 0.84 3.76e-07 1.62 

Nose - Eyebrow 0.62 ± 0.38 2.17 ± 0.84 7.56e-07 1.43 

Nose - Top-head 1.49 ± 1.14 3.27 ± 0.91 9.29e-07 1.26 

Nose - Back-head 0.82 ± 0.41 3.32 ± 0.66 8.68e-07 1.28 

Cheek - Eyebrow 0.63 ± 0.32 2.23 ± 1.32 2.09e-06 1.75 

Cheek - Top-head 1.05 ± 0.65 3.22 ± 0.96 9.18e-06 1.22 

Cheek - Back-head 0.82 ± 0.40 3.01 ± 0.72 6.54e-08 1.31 

Eyebrow - Top-head 0.77 ± 0.38 2.71 ± 0.91 3.31e-06 1.32 

Eyebrow - Back-head 0.84 ± 0.33 3.01 ± 0.77  3.57e-08 1.51 

Top-head - Back-head 0.89 ± 0.40 2.88 ± 0.50 5.22e-08 1.29 

 
 
Supplementary Table 3 | AUROC value distribution (for individual and general classifiers) and 
p-values from Wilcoxon signed-rank tests for the Tingle with no thermal sensor data and with 
thermal sensor data (median ± MAD) 

 Mouth Nose Cheek Eyebrow Top-head Back-head 

No thermal 0.86 ± 0.13 0.69 ± 0.26 0.60 ± 0.15 0.74 ± 0.36 0.91 ± 0.12 0.73 ± 0.33 

Yes thermal 0.99 ± 0.01 0.96 ± 0.07 0.93 ± 0.09 0.96 ± 0.06 0.98 ± 0.06 1.00 ± 0.00 

p-value 3.20e-07 1.14e-07 6.15e-08 2.48e-07 3.65e-07 7.25e-08 

Effect size 1.27 1.37 1.93 1.66 0.94 3.49 

General 0.89 ± 0.13 0.83 ± 0.13 0.75 ± 0.15 0.84 ± 0.07 0.89 ± 0.10 0.94 ± 0.08 
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Figure Legends 
 
Figure 1 | A. Thermal map of the head showing temperature differences (the image was 
pixelated for this preprint). B. A prototype of the Tingle device, which uses an array of four 1-
pixel sensors with different fields of view, a proximity sensor, and two IMU sensors. C. Sample 
datastream in the Tingle application interface as the user approaches the mouth and hovers 
around various parts of the head. The top four signals are temperature readings from the four 
thermopiles, followed by the two IMU sensors, then the proximity sensor in blue. D. LSTM 
network-based AUROC value distribution for the Tingle per target location on the head. E. 
Confusion matrices for each location on the head with median values of classifier accuracy 
across participants. 
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