
 

Empirical measures of mutational effects define neutral models of regulatory evolution in 
Saccharomyces cerevisiae  

 

 
Andrea Hodgins-Davisa, Fabien Duveaua, Elizabeth Walkera, Patricia J Wittkoppa,b* 

aUniversity of Michigan, Department of Ecology and Evolutionary Biology, Ann Arbor, MI 48109, USA 

bDepartment of Molecular, Cellular, and Developmental Biology, Ann Arbor, MI 48109, USA 

 

 

 

Classification: BIOLOGICAL SCIENCES: Evolution 

 

 

Corresponding author:  

Dr. Patricia J Wittkopp 

1105 N University Ave 

Ann Arbor, MI, 48109 USA  

wittkopp@umich.edu 

  

Running title: Empirical measures of mutational effects for gene expression in yeast 

 

  

.CC-BY-NC 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted February 17, 2019. ; https://doi.org/10.1101/551804doi: bioRxiv preprint 

mailto:wittkopp@umich.edu
https://doi.org/10.1101/551804
http://creativecommons.org/licenses/by-nc/4.0/


Abstract 

Understanding how phenotypes evolve requires disentangling the effects of mutation generating new 

variation from the effects of selection filtering it. Evolutionary models frequently assume that mutation 

introduces phenotypic variation symmetrically around the population mean, yet few studies have tested 

this assumption by deeply sampling the distributions of mutational effects for particular traits. Here, we 

examine distributions of mutational effects for gene expression in the budding yeast Saccharomyces 

cerevisiae by measuring the effects of thousands of point mutations introduced randomly throughout 

the genome. We find that the distributions of mutational effects differ for the 10 genes surveyed and 

violate the assumption of normality. For example, all ten distributions of mutational effects included 

more mutations with large effects than expected for normally distributed phenotypes. In addition, some 

genes also showed asymmetries in their distribution of mutational effects, with new mutations more 

likely to increase than decrease the gene’s expression or vice versa. Neutral models of regulatory 

evolution that take these empirically determined distributions into account suggest that neutral 

processes may explain more expression variation within natural populations than currently appreciated. 

 

Significance statement  

New mutations tend to arise randomly throughout the genome, but their phenotypic effects are often 

not random. This disconnect results from interactions among genes that define the genotype-phenotype 

map. The structure of this map is poorly known and different for each trait, making it challenging to 

predict the distribution of mutational effects for specific phenotypes. Empirical measures of the 

distribution of mutational effects are thus necessary to understand how traits can change in the absence 

of natural selection. In this work, we define such distributions for expression of ten genes in S. cerevisiae 

and show that they predict greater neutral expression divergence than commonly used models of 

phenotypic evolution. 

\body 

Introduction 
Variation in gene expression is widespread within and between species (1, 2). This variation reflects the 
joint action of mutation introducing new phenotypic variation and selection filtering variants based on 
their fitness effects. When genes exhibit differences in the rate at which they accumulate expression 
variation over time, selection pressure that varies among genes is often invoked to explain variability in 
expression divergence (3, 4). However, variability in the effects of new mutations on gene expression 
may also affect evolutionary outcomes by biasing the variety of expression phenotypes available for 
selection and drift to act upon (5, 6). Identifying such biases in mutational effects is challenging because 
the effects of mutation are confounded with the effects of selection in natural populations. 

One way to isolate the effects of new mutations on gene expression is to perform a mutation 
accumulation experiment, which allows new mutations to accumulate in the near absence of natural 
selection (7). By comparing expression among evolved lines at the end of a period of mutation 
accumulation, such experiments have been used to estimate mutational variance (Vm) for gene 
expression, which is the variance in a gene’s expression due to spontaneous mutations each generation. 
Vm for gene expression has been estimated genome-wide for model organisms including budding yeast 
(8), nematode worms (9, 10), Drosophilid flies (11–13). Vm differs among genes (14), with a median 
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genome-wide Vm for gene expression estimated to be in the range of 10-5 to 10-4 for each species (8, 9, 
11, 15). Differences in expression Vm observed among genes in these studies reveal differences in the 
potential for a gene’s expression to change over time. For example, in yeast, genes with more 
transcriptional regulators (as estimated from transcriptional profiling of gene deletion strains) tended to 
have higher Vm for expression than genes with fewer transcriptional regulators (8), suggesting that 
differences among regulatory networks can influence changes in gene expression due to new mutations.  

Although these mutation accumulation studies offer a global view of transcriptional changes across the 

genome, they provide a very limited view of the distribution of mutational effects for any single gene 

because the number of spontaneous mutations sampled in each study is low.  For example, the 12.1Mb 

yeast genome has a point mutation rate in the range of 10-9 to 10-10 per base pair per cell division, 

suggesting that only four point mutations occur on average every 1000 cell divisions. Consequently, 

even ambitious MA experiments that capture 2-5 thousand generations of spontaneous mutations are 

expected to survey fewer than two dozen point mutations per line. Mutagenesis studies, by contrast, 

can sample mutations affecting expression of a given gene much more deeply, typically trading off 

breadth of information across the genome for more focused and comprehensive descriptions of 

distributions of mutational effects for single genes. Thus far, such single-gene studies have focused 

primarily on mutations in cis-acting sequences controlling a gene’s expression, such as promoters (16). 

For example, massively parallel reporter gene approaches have been used to describe the effects of 

thousands of mutations in promoters and enhancers on gene expression from diverse organisms 

including viruses, bacteria, yeast, and metazoans (e.g. 17–20). However, these cis-acting sequences are 

only one part of the mutational target for gene expression (21). Regions of the genome encoding or 

regulating trans-acting factors that interact with cis-acting sequences, either directly or indirectly, can 

also harbor mutations that affect gene expression (22). This trans-mutational target size is expected to 

be much larger than the cis-mutational target size (23) and can show different biases in the effects on 

expression (24).  

Here, we use genome-wide mutagenesis to deeply sample and compare the effects of new mutations on 

expression of ten focal genes. We observe differences in distributions of mutational effects among these 

genes that are only partially captured by quantifying variance of mutational distributions (Vm,). In 

particular, we also observed differences in higher moments of these distributions, including the extent 

of asymmetry described by skewness and the frequency of mutations with extreme effects on 

expression related to kurtosis. Consistent with these observations, we find that all ten distributions of 

mutational effects for gene expression are non-normal with heavy tails (i.e., they contain more extreme 

events than a normal distribution). By using these empirically determined distributions of mutational 

effects to parametrize neutral models of gene expression evolution, we show that dramatic differences 

in expression divergence can occur among genes even in the absence of selection. In other words, we 

find that distributions of mutational effects for gene expression are (i) more complex than frequently 

assumed, (ii) different among genes, and (iii) able to introduce biases in the direction of neutral 

evolution. These observations suggest that failing to account for mutational biases may underestimate 

the role of neutral evolution in expression divergence. 

Results and Discussion 
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To compare the effects of mutations on gene expression driven by promoters from different genes, we 

selected ten promoters from S. cerevisae: GPD1, OST1, PFY1, RNR1, RNR2, STM1, TDH1, TDH2, TDH3, 

and VMA7. These promoters vary for properties previously hypothesized to affect the mutability of gene 

expression, including expression noise (25), nucleosome occupancy (25), and number of mismatches to 

a canonical TATA box (8) (Table S1). This set of genes includes three paralogs, TDH1, TDH2, and TDH3, 

and two genes acting in the same molecular complex, RNR1 and RNR2. All of these promoters drive 

expression at levels that can be reliably detected by flow cytometry.  For each gene, we cloned the 

promoter sequence upstream of the coding sequence of a yellow fluorescent protein (YFP) and inserted 

the resulting reporter gene into the S. cerevisiae genome at the ho locus. YFP expression level from 

these reporter genes is therefore expected to measure effects of mutations in the cis-acting promoter 

sequence as well as all trans-acting regulators of the gene from which the promoter was derived.  

To assess the impact of new mutations on expression driven by each promoter, we exposed cells 

carrying each reporter gene to a low dose of ethyl methanesulfonate (EMS) (Figure 1a), which is a 

chemical mutagen that primarily introduces G->A and C-> T point mutations (26). While these mutations 

are a subset of the types of changes that arise spontaneously, they are the most common type of point 

mutation observed in mutation accumulation lines (27, 28) and the most common type of single 

nucleotide polymorphism segregating in natural populations of S. cerevisiae (29). Using a canvanine 

resistance assay (30, 31), we estimated that the EMS conditions used introduced ~29 mutations per cell 

(95% percentiles: 24-39). Following mutagenesis, we isolated single cells from each of the mutagenized 

populations randomly with respect to the YFP fluorescence level using fluorescence activated cell sorting 

(FACS) (Figure 1a). Each of these sorted cells was grown clonally in four replicate populations. YFP 

fluorescence levels were then estimated based on at least ~ 12 thousand events captured with flow 

cytometry from each replicate population (Supplementary Methods, Table S2a). These YFP fluorescence 

levels were used to estimate YFP mRNA expression levels as in (32) (Figure 1a). In parallel, for each 

promoter, populations of un-mutagenized cells were subjected to a sham treatment that was identical 

to the mutagenesis protocol except for exposure to EMS. Ultimately, we captured 148-254 genotypes 

with unique sets of mutations for each promoter (median: 214, Table S2b) as well as 44-62 genotypes 

isolated from each sham population (median: 55, Table S2b). For each of these genotypes, we calculated 

median YFP expression for each of the replicates and then calculated the mean of these medians to 

represent the expression level for that genotype. Comparing the levels of these means of medians for 

the sham genotypes among promoters showed differences in the YFP expression driven by each 

promoter (Figure 1b).   

For each promoter, the collection of EMS-treated genotypes (each of which had a unique set of 

mutations) was used to estimate a gene-specific distribution of mutational effects on gene expression. 

With an average of 29 mutations per genotype, we estimate that these distributions reflect the effects 

of approximately 4000 to 7200 individual mutations distributed across the genome for each promoter 

analyzed. Mutation accumulation lines in S. cerevisiae suggest that ~10-3 spontaneous point mutations 

arise in each cell each generation (27), implying that at least 2.1 million generations of mutation 

accumulation would be required to assess the effects of a similar number of mutations for each 

promoter. For TDH3, the distribution of mutational effects observed based on the 254 mutagenized 

genotypes described was similar to the distribution of mutational effects inferred using an independent 

collection of >1200 mutagenized genotypes carrying the same TDH3 reporter gene (24) (Figure 1c). This 
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similarity suggests that the sample sizes used in this study provide reasonable approximations of the 

underlying mutational distributions. 

Distributions of mutational effects differ in skewness, kurtosis, and dispersion 
To determine how mutations alter the expression of each reporter gene, we compared the distributions 

of expression levels between mutagenized and unmutagenized (sham) genotypes for each promoter 

(Figure 2). For all promoters, the distribution of expression levels for sham genotypes was symmetrical 

around the median, whereas, for some promoters, the distribution of expression levels for mutagenized 

genotypes was asymmetrical (Table S3a,b). This asymmetry suggests that these promoters have biases 

in the direction of expression changes caused by new mutations. For example, we observed significantly 

more mutagenized cells with increased than decreased expression for the STM1 promoter relative to 

the sham median (Figure 2f, ninc = 138, ndec = 83, two-sided exact binomial test, q = 0.002).  The RNR1 

promoter showed the opposite pattern with more mutagenized cells showing decreased than increased 

expression (Figure 2d, ninc = 93, ndec = 132, q = 0.05, test results for all promoters available in Table S2a). 

In addition, three promoters exhibited departures from symmetry resulting from differences in the 

magnitude of increased or decreased expression relative to the sham median (Figure 2k; Table S2b): the 

TDH1 and STM1 promoters both exhibited larger increases in expression than decreases (permutation 

test, TDH1: P = 0.006; STM1: P = 0.031), and RNR2 exhibited larger decreases than increases (P = 0.013).  

To infer distributions of mutational effects from expression observed for mutagenized genotypes, we 

used variability in the corresponding sham genotypes to control for non-genetic sources of variation in 

expression. Specifically, for each promoter, we scaled expression of each genotype by the variability in 

the sham genotypes for that promoter, subtracting the median sham phenotype and then dividing by 

the standard deviation of sham phenotypes to convert to Z-scores (Figure S1). In this Z-score scale, one 

unit of change corresponds to a change in expression equivalent to one standard deviation in the 

population of sham genotypes. We found that at least 60% of mutagenized genotypes (range: 60-86%) 

showed expression Z-scores within two standard deviations of the sham median for all promoters, 

suggesting that most new mutations have small effects on a gene’s expression (Figure 3a, Table S4). 

Prior studies have suggested that non-genetic variability in gene expression can predict mutational 

effects (8); however, we did not observe this relationship for these ten genes: the variance in Z-scores 

among EMS-treated cells was not significantly correlated with the variance of expression levels in the 

corresponding sham population (Spearman’s rho = - 0.27, P = 0.448). 

The distributions of Z-scores for EMS-treated genotypes violated normality for all ten promoters 

(Shapiro-Wilks test, Table S5). To more fully describe the shapes of these distributions, we calculated 

robust summary statistics that are less sensitive to outliers than the traditional measures used to 

estimate moments of a distribution (33–35) (Figure S2-S5). Comparing the shapes of distributions of 

mutational effects among promoters, we observed differences in the centrality (median), dispersion 

(median-averaged deviation or MAD), skewness (medcouple or MC), and relative frequency of 

mutations with extreme effects (left/right medcouple or LMC/RMC; Table S4). A principal component 

analysis (PCA) of summary statistics describing these properties found that the first principal component 

explained 36% of the variance among promoters and primarily captured skewness and the frequency of 

extreme increases in expression (Figure S7a and d). A second, independent, principal component 

explained 30% of the variance and was strongly influenced by median and dispersion (Figure S7b and e). 

Finally, the third principal component explained 24% of the variance and was influenced by both 
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extreme decreases in expression and dispersion (Figure S7c and f). Because differences in symmetry 

among promoters dominated these contrasts, we chose to more directly examine skewness for a range 

of effect sizes using quantile-quantile plots (QQ plots) comparing the magnitude of increases to the 

magnitude of decreases moving away from the median for each promoter (Figure 3b). By illustrating 

biases in the direction and magnitude of mutational effects as departures from the 45-degree line, these 

plots highlight differences among promoters such as the asymmetries described above for STM1, RNR1, 

TDH1, and RNR2.   

Directly comparing the distributions of Z-scores between promoters, we detect 13 of 45 pairwise 

comparisons in which these distributions of mutational effects differed significantly between promoters 

(Anderson-Darling test, P < 0.05 with BH correction for multiple tests, Figure S6, Table S6). Seven of 

these 13 cases involved RNR1, which possessed an especially unique distribution of mutational effects 

due to a wide dispersion of Z-scores among mutagenized strains and an overall negative skew, including 

a small decrease in median compared to its sham population. The distribution of mutational effects for 

STM1 was significantly different from five other promoters including RNR1, exhibiting biases in the 

opposite direction from the RNR1 distribution: STM1 also showed broad dispersion, but exhibited an 

overall positive skew with more large effect increases in expression than any other promoter, including 

a small increase in median compared to its sham population. Other distributions of mutational effects 

that showed pairwise differences from more than one other promoter included TDH1 and RNR2, which 

were significantly different from each other and two other promoter distributions (TDH1: RNR1, VMA7; 

RNR2: RNR1, STM1). Like STM1, TDH1 exhibited a positive overall skew with more density in the right 

tail of its distribution of mutational effects, but without the right shift in median. RNR2 was distinct in 

showing the most humped (aka platykurtic) distribution with the least density in the extreme tails. This 

RNR2 distribution also showed a slight shift in median towards increased expression despite an overall 

negative skew.  

Relationships between promoter properties and distributions of mutational effects 
As described above, the promoters included in this study were chosen because they vary for properties 

hypothesized to influence the mutability of gene expression. To determine whether any of these 

properties might explain the differences in distributions of mutational effects that we observed, we 

tested for evidence of a significant relationship between the robust summary statistics describing the 

empirical distributions of mutational effects and the following seven gene properties: (i) expression level 

of the native gene, (ii) expression noise for the native gene, (iii) presence of a canonical TATA box in the 

gene’s promoter, (iv) number of trans-regulatory factors annotated in YEASTRACT for the gene, (v) 

density of nucleosome occupancy in the gene’s promoter region, (vi) presence of a duplicate gene in the 

yeast genome, and (vii) fitness of strains homozygous for a deletion of the gene in rich media. We 

observed no statistically significant relationship between either dispersion (breadth) measured as MAD 

or skewness measured as MC and any of the seven properties tested after correction for multiple tests 

(Figure S8 a-n), but note that our power was limited by the number of genes analyzed. Future studies 

deeply sampling the effects of mutations on many more genes are needed to better understand how 

properties of promoters, or the regulatory networks they are embedded in, affect gene-specific 

distributions of mutational effects for gene expression. 

Predicting neutral expression divergence using distributions of mutational effects  
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In the absence of empirical data describing the distribution of mutational effects for a specific trait, 

quantitative genetics models often make the simplifying assumption that the distribution of mutational 

effects is normally distributed. This assumption is based on the idea that quantitative traits are generally 

controlled by many loci with small effects (36). If traits are controlled by relatively few loci and/or loci of 

large effect, as sometimes seems to be the case for gene expression (22, 37), the distribution of 

mutational effects may be particularly likely to violate normality. Our studies support this observation 

for gene expression phenotypes, and studies of mutational effects for morphological traits (largely in 

Drosophila) have also tended to produce non-normal (leptokurtic) distributions of mutational effects 

with heavy tails (38–46), suggesting they might have similar genetic architecture. Theoretical work has 

shown that ignoring non-normality of distributions of mutational effects can cause evolutionary models 

to produce misleading inferences (47–50), but the sparseness of empirical data describing distributions 

of mutational effects has limited our ability to assess the magnitude of errors caused by these 

assumptions. To address this knowledge gap, we used our empirical distributions of mutational effects 

to parametrize models of neutral regulatory evolution for 10 genes and then contrasted the expression 

divergence predicted by these models with the expression divergence predicted by a more conventional 

model of regulatory evolution based on normal distributions of mutational effects.  

For each promoter, we founded a population of 1000 individuals with expression levels drawn randomly 

with replacement from the distribution of expression levels for that promoter’s sham population. Each 

individual had a probability of mutating equal to the spontaneous mutation rate observed in a S. 

cerevisiae mutation accumulation study (1.67 x 10-10 per nucleotide per generation (27)), resulting in a 

new mutation arising in 2 individuals each generation on average. The effect of each mutation was 

determined by randomly sampling with replacement from the distribution of mutational effects for that 

promoter and multiplying this effect by the individual’s original expression level, making the simplifying 

assumption that the distributions of mutational effects stays constant over time. We then randomly 

sampled 1000 individuals with replacement to populate the next generation. This procedure was 

repeated for 50,000 generations, calculating mean expression level within the population at each 

generation. 500 independent simulations were run for each promoter to determine the variation in 

simulated mean expression levels at each generation. 

At the end of 50,000 generations, expression divergence differed dramatically among promoters (Figure 

a-j). Promoters with a strong positive mutational skew in the distribution of mutational effects like STM1 

and TDH1 exhibited large increases in median population expression levels across 500 independent 

evolutionary trajectories, while promoters with a strong negative mutational skew like RNR1 and RNR2 

showed large declines in median population expression levels. Promoters with more symmetric 

mutational distributions, for example VMA7 and OST1 (Table S4), exhibited less median expression 

divergence from the original expression level. The TDH3 mutational distribution was also symmetric, but 

included a few mutants with low expression relative to the rest of the population that caused large step-

like decreases in expression when sampled; excluding the 5 lowest values or sampling from a larger 

collection mutant phenotypes resulted in much more symmetric evolution of TDH3 expression (Figure 

S9ab). As expected, differences in the distributions of mutational effects among genes were responsible 

for these outcomes: grand median expression at generation 50,000 was jointly predicted by skewness 

and weight in the extreme negative tail of the promoter-specific mutational distributions (grand median 

expression (log transformed to improve normality) at generation 50K ~ MC + LMC, F2,7 = 20.15, P = 
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0.001). Similar results were observed using simulations with a population size of 100 instead of 1000 

individuals (Figure S9c-l). 

We then simulated changes in expression expected for each gene under the more commonly used 

model of random walks in phenotype space described by Brownian motion. In this model, mutational 

effects were drawn from a normal distribution centered on the starting expression level of the 

unmutagenized promoter with variance equal to the variance observed for the empirically-derived 

distribution of mutational effects for that promoter. We again examined the population means of 500 

independent simulations after 50,000 generations. We found that the Brownian motion simulations 

showed less overall divergence from the starting point than simulations using the empirical distributions 

of mutational effects, although the extent of difference between the two predictions varied among 

promoters (Figure 5a, mean expression (log transformed) at generation 50K ~ Promoter*Model Type: F 

19,9980 = 616, P < 2.2 x 10-16 with significant interaction identified by ANOVA F-test P < 2.2 x 10-16, see 

Table S7a). This variation in projected phenotypes from the two types of neutral models could be 

partially explained by differences in the effects of distribution skewness (MC), dispersion (MAD), and 

weight in the extreme negative tails on model outcomes (Figure 5b, Table S7b).  

To determine how well empirically derived distributions of mutational effects might estimate neutral 

trait evolution, we compared properties of gene-specific distributions of mutational effects to levels of 

polymorphism seen for that gene among 22 natural isolates of S. cerevisiae (46) because polymorphism 

is often assumed to primarily reflect neutral processes (45). We observed a significant positive 

relationship between the degree of dispersion (MAD) in the mutational distribution and expression 

polymorphism measured as the expression variance among the 22 natural isolates (Figure S10, ExpVar ~ 

MAD, F1,8 = 8.18, P =  0.021); however, this relationship was driven primarily by TDH1, which was an 

outlier for MAD with respect to the 10 other promoters (Figure S4). Excluding TDH1 reduced the 

strength of this correlation and resulted in a p-value that was not statistically significant (ExpVarnoTDH1 ~ 

MADnoTDH1, F1,7 = 1.122, P =  0.325, dotted line). Skewness of the distribution of mutational effects also 

failed to significantly predict polymorphism (ExpVar ~ MC, F = 0.58, P = ); however, in both cases, we 

note that our power to detect such relationships is limited by the number of genes studied. Testing for 

relationships between the effects of mutation and polymorphism more robustly will require similarly 

deep sampling of mutational effects for many more genes in the yeast genome. 

Modeling distributions of mutational effects and the evolution of gene expression 
One of the benefits of assuming a normal distribution of mutational effects is that it simplifies modeling 
by allowing draws from a well-known continuous distribution rather than a collection of discrete 
empirical data-points. We therefore sought to identify continuous probability distributions that reflect 
the shape of the observed empirical distributions of mutational effects better than normal distributions. 
Distributions of mutational effects for leaf traits in Arabidopsis have previously been described using the 
family of distributions known as LaPlace distributions (46), also known as double exponential 
distributions, which have fatter tails than the normal distribution and can be specified in both symmetric 
(2-parameter) and asymmetric (3-parameter) forms. To determine whether LaPlace distributions fit 
distributions of mutational effects for gene expression better than normal distributions, we used 
maximum likelihood to optimize parameters for Gaussian, symmetric LaPlace, and asymmetric LaPlace 
distributions and then used Bayesian Information Criteria (BIC) to identify the best fitting distribution for 
each promoter. For all ten promoters, LaPlace distributions were better supported than a normal 
distribution for the observed distribution of mutational effects (Table S8ab). The VMA7 promoter 
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exhibited similar levels of support for symmetric and asymmetric LaPlace distributions, whereas all other 
promoters were best described by asymmetric LaPlace distributions. These observations suggest that 
LaPlace distributions may provide more realistic distributions of mutational effects than normal 
distributions. They also encourage further investigation into models of regulatory evolution that relax 
the common theoretical assumption that all loci have equal effects (47–49) and favor models of 
phenotypic evolution that allow for a high variance in mutational effects (51).   
 

Conclusion 

By studying the effects of thousands of new mutations on expression of individual genes, we have 
shown how distributions of mutational effects for gene expression differ among genes. Differences 
observed in the direction and magnitude of mutational effects suggest that some genes may exhibit 
underlying biases in the expression variation available to selection. In addition, large changes in gene 
expression were more common than predicted by a normal distribution. For most genes, a null model of 
neutral expression divergence based on sampling mutations from these distributions predicted greater 
expression divergence than commonly used quantitative genetic models, suggesting that neutral 
evolution might explain more variability in gene expression within and between species than often 
assumed. Challenges for the future include (1) deeply characterizing the distribution of mutational 
effects for more genes, (2) determining how distributions of mutational effects vary among genetic 
backgrounds due to epistasis, and (3) identifying features of regulatory networks that can be used to 
predict a particular gene’s propensity for mutations of a certain effect. Because gene expression is a 
critical step in the conversion of genotypes to phenotypes, addressing these issues will improve our 
understanding of the evolutionary processes that generate, maintain, and control variation in complex 
traits more generally.  

Materials and Methods 

More detailed information on the materials and methods used in this study are provided in SI Appendix, 
Materials and Methods. 

Promoter selection 
Promoters from the GPD1, OST1, PFY1, RNR1, RNR2, STM1, TDH1, TDH2, TDH3, and VMA7 genes were 

selected to represent a diverse range of properties expected to impact mutational variability (8, 18), 

including expression noise (52), presence of a TATA box motif (53), variation in nucleosome occupancy 

(54), mutational variance in MA studies, and fitness of homozygous gene deletion strains (55) (Table S1). 

Maximizing sensitivity for downstream flow cytometry required that all promoters drive relatively high 

expression, therefore all promoters selected were among the top 15% of highly expressed S. cerevisiae 

genes (56).  

Strain creation 
To assay promoter activity, a construct consisting of the promoter region of each focal gene (defined as 

the intergenic sequence between the start codon of the focal gene and next upstream gene) followed by 

the Venus YFP coding sequence, the CYC1 terminator and an independently transcribed KanMX4 drug 

resistance was integrated at the HO locus of a BY4724-derivative strain. Constructs were generated 
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through tailed PCR and transformed via homologous recombination into a strain with a ho::URA3-YFP 

allele. The genetic background of this strain carried the alleles RME1(ins-308A); TAO3(1493Q) (57) and 

SAL1; CAT5(91M); MIP1(661T) (58), which decrease petite frequency relative to the alleles of the 

ancestral BY4724. Data reported include previously published results for TDH3 (24) re-analyzed in a 

common framework with the nine additional promoters reported here for the first time. 

Mutagenesis 
To sample the genome-wide effects of point mutations on promoter activity, we performed random 

mutagenesis of strains carrying all promoter constructs. Mutagenesis was executed as in (24) using the 

chemical mutagen ethylmethanosulfonate (EMS), which introduces G/C to A/T point mutations 

randomly throughout the genome (see SI Appendix for details). Based on canvanine resistance assays 

performed for P-TDH1-YFP, we estimated that ~29 mutations were introduced per cell with the EMS 

conditions used (95% percentiles: 24-39), consistent with (24, 59). Sham-treated controls including both 

a promoter-matched genotype and a P-TDH3-YFP construct were maintained in parallel and treated 

identically with the exception of EMS exposure. Following mutagenesis, single cells from EMS- and 

sham-treated populations were isolated via FACS and recovered on YPD agar (2% dextrose, 1% yeast 

extract, 2% peptone, 2% agar) for 48-72 hours at 30 degrees C. Viability of isolated cells was significantly 

impacted by treatment condition, but not by the genetic background or mutagenesis assay performed 

(glm quasibinomial models: (Viability ~ Condition) vs (Viability ~ Condition + Assay), F test, F47,55 = 0.931, 

P = 0.5002; (Viability ~ Condition) vs (Viability ~ Condition*Assay), F test, F15,55 = 0.5656, P = 0.9242). 

After cell isolation, colonies were transferred from agar to liquid YPD and grown to saturation with 

shaking, typically 20-24 hours at 30 deg C. Cultures were then used i) to preserve genotypes as glycerol 

stocks and ii) for initiating cultures to analyze fluorescence. Cultures for analyzing fluorescence were 

spotted on YPD agar, and 20-24 plate control strains for estimating random experimental effects were 

interspersed into each row and column. After an additional 48-72 hours growth, colonies were 

transferred to liquid YPD in 96-well deepwell culture plates, grown for 20-24 hours to saturation with 

shaking, and scored for fluorescence.  A minimum of 4 replicate assays were performed for each plate.   

Phenotyping & data processing 
To characterize promoter expression levels, YFP fluorescence driven by the promoter of interest was 
quantified for all sham-, EMS-treated and plate control genotypes. Fluorescence data was collected on a 
BD Accuri C6 (488 nm laser and 530/30 optical filter) coupled with an IntelliCyt HyperCyt autosampler. 
Cultures were diluted in 1x phosphate buffered saline (PBS) to approximately 106 cells/mL directly 
before scoring. 48 samples were collected per instrument run with gentle vortexing to aerate and re-
suspend cells between runs. Separation of run FSC files into well FSC files was performed automatically 
by Hyperview software (Intellicyt) and manually checked.  

Using tools from the flowCore and flowClust libraries (60, 61) and custom scripts, flow cytometry data 
was analyzed to remove non-cellular debris, events where double cells passed the detector, extreme 
outliers in cell size or YFP, and correlation between cell size and YFP expression (see SI Materials and 
Methods). Additionally, because fixed PMT voltages on the Accuri C6 produce non-linearity between 
fluorophore concentration and fluorescence intensity level (62) , this study follows (32) in using a 
standard curve determined by quantifying RNA abundance via pyrosequencing and fluorescence 
intensity via flow cytometry for the same samples to scale mRNA abundance estimates appropriately 
(see SI Materials and Methods).  These procedures were performed on a single cell basis for all events 
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that passed quality control thresholds in each sample well. Individual samples were then summarized by 
calculating median YFP RNA abundance and coefficient of variation (CV estimated as median-averaged 
deviation/median). Cell size was also summarized as median FSC and FSC MAD.  A number of samples 
were excluded at this stage for phenotypes consistent with high levels of bacterial contamination (small 
cell size and no YFP expression) or contamination with P-TDH3 sham controls (YFP expression at the 
median of P-TDH3 sham for a non P-TDH3 genotype). Any samples with fewer than 1000 single cells 
passing quality control filters were excluded from analysis. The median and minimum number of cells 
analyzed per sample are listed by promoter in Table S2.  

To account for technical variability across plates, YFP mRNA abundance and FSC metrics for each sample 
were then normalized to remove random effects due to technical noise arising among instrument runs, 
plate row position, or plate column position. The power to perform these normalizations came from 
inclusion of 20-24 control strains in each experimental 96-well plate. Initial experiments were performed 
using a P-TDH3-YFP construct in control positions as in previous work, but when contrasts showed that 
controls provided more robust correction when matched to the fluorescence phenotype of the 
construct being corrected, subsequent experiments matched the genetic background of controls to the 
promoters tested.  

To summarize phenotypes estimated for each genotype collected, means and standard deviations were 

calculated for independent measurements of population medians and CVs across replicated samples. 

Any individual replicate that was more than 4 MAD outside of other estimates for the same genotype 

was called as an outlier and excluded from further analysis. Only genotypes with at least 3 independent 

replicates passing all quality control filters were included in downstream data analysis. These stringent 

quality control procedures resulted in some differences in the total number of genotypes represented 

across conditions for different promoter constructs (Table S2b). 

Characterization of mutational spectra 
Statistical analyses to characterize mutational spectra across promoters were performed in R (63).  
Scripts are provided in the supplement (upon publication).  

To characterize asymmetry in distributions of expression levels, genotypes were divided into groups 
with expression greater than (increases) and less than (decreases) the median sham phenotype. We 
used a binomial test (binom.test with BH multiple test correction) to determine whether increases or 
decreases were more frequent for each expression distribution and a permutation test (custom 
function, see SI) to determine whether the mean absolute magnitudes of increases and decreases 
differed from one another.  

The observation that sham-treated genotypes differed in their variability among promoters (Figure S1a) 
lead us to calculate a Z-score as a metric for capturing the increase in variability due to EMS treatment 
alone across promoters. To calculate mutational Z-scores, the median of sham phenotype for each 
promoter was subtracted from each genotype’s YFP expression value and the resulting quantity was 
divided by the standard deviation among the sham genotypes for that promoter. The resulting metric 
was centered on 0 and expressed in units representing standard deviations among un-mutated 
individuals expressing a matched promoter construct (Figure S1b).  

To describe differences in the shapes of these distributions of mutational effects on this Z-score scale, 
we explored a variety of metrics. Summary statistics like sample mean, variance (or standard deviation), 
skewness, and kurtosis are commonly used to describe distributions, however, these measures have 
been shown to be particularly vulnerable to influence by outliers (35). More robust statistical measures 
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can be used to describe distribution shape while controlling the impact of outliers in situations where 
sample size is limiting (33). Here we apply the median-averaged deviation or MAD to characterize 
distribution breadth in place of standard deviation (64), medcouple to characterize distribution bias in 
place of skewness (65), and left and right medcouple to characterize the location of distribution tail 
weight in place of kurtosis.  By down-sampling an earlier mutagenesis experiment incorporating more 
than 1200 mutagenized genotypes, we illustrated that sample median, median-averaged deviation 
(MAD), medcouple (MC), and left and right medcouple (LMC, RMC) provide more robust and repeatable 
characterizations of distribution shape (Figure S2-S5). Then, to identify the combination of variables 
explaining differences between mutational distributions of different promoters, we performed a 
principle components analysis (66) on robust estimators of moments extracted from Z-score 
distributions across promoters (Figure S7). 

 Promoter-specific mutational distributions of Z-scores were visualized by generating stacked density 
plots using ggplot2 (67). To test for differences in the shapes of distributions of mutational effects 
between promoters, we applied the non-parametric Anderson-Darling (AD) k-sample test (68, 69) to 
identify pairwise differences between different promoter mutational distributions, applying the BH 
procedure to control the false discovery rate in these multiple pairwise tests at 5%.  

Correlation of promoter and population parameters with mutational summary statistics 
Promoter properties were collected from the literature (53, 55, 70–72).  Linear models predicting 

summary statistics MC and MAD independently were tested including all promoter property correlates 

as additive effects. Given the small number of genes involved, the relationship to promoter properties 

was explored both for continuous metrics and by dividing continuous data into categories of low and 

high values around the median. A process of model simplification was used to identify predictors 

explaining variation in MAD or MC, and a BH multiple test correction was performed. Population 

polymorphism quantified as variance in expression among 22 natural isolates (73) was also tested for a 

significant relationship with MAD and MC. 

Evolutionary simulations 
To illustrate the consequences of the mutational distributions reported here for evolutionary 
predictions under neutrality, we simulated evolution of an asexual population of individuals randomly 
sampling mutations impacting the focal promoter and tracked the trajectory of the mean population 
phenotype over time. For each promoter, populations were initiated by sampling a starting phenotype 
for each individual (n=1000) from a smoothed version of the sham-treated population. Each generation 
each individual mutated with a probability determined based on the average estimate of per-generation 
rate of point mutations (~1.67*1010 bp/generations) detected in mutation accumulation studies (27) 
multiplied by the S. cerevisiae genome size (1.25 x 107 bp). When individuals mutated, they drew a 
mutational effect size from the distribution of expression levels estimated for EMS-treated genotypes 
and multiplied their current phenotype by that effect size.  Individuals were randomly selected for 
inclusion in the population each generation. Simulations ran for 50,000 generations and 500 replicate 
simulations were performed for each promoter. To contrast these results with more typical evolutionary 
predictions based on an assumption of normally distributed mutational effects, we also ran versions of 
the simulation from each promoter that were identical except that the mutational effects were drawn 
from a normal distribution with mean of 0 and variance based on variance among all EMS-treated 
genotypes for the promoter.  For each promoter, evolutionary trajectories were described by the 
distribution of population means for each generation among independent replicates, and total 
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divergence within each simulation was summarized by the distribution of population means at 
generation 50,000.  

To ask whether differences among models and among genes altered the neutral divergence predicted, 
we fit a linear model predicting the median phenotype of each replicate population after 50,000 
generations based on promoter identity and model identity (Log Median Expression at Generation 50K ~ 
Promoter * Model Type) and use an ANOVA F-test to assess fit of full and reduced models. To show how 
differences in distribution shape related to changes in evolutionary predictions under the two models, 
we summarized population mean expression among all replicates with a median and then predicted this 
median expression for each gene based on robust summary statistics calculated for each distribution of 
mutational effects (Log Grand Median Generation 50K ~ MAD + MC + LMC + RMC). We performed this 
procedure separately for the Brownian and full empirical models, and performed model simplification 
dropping variables with no explanatory power to identify the summary statistics predicting expression 
divergence in each case. 

Distribution fitting 
To identify the family of probability distributions best fitting the empirically-defined distributions of 

mutational effects, maximum likelihood estimation was performed to identify parameters and log-

likelihoods for the Gaussian, symmetric LaPlace, and asymmetric LaPlace distributions given the 

empirical data. This procedure was performed independently for the EMS-treated populations of each 

promoter. BIC values were calculated for each fit to identify the best supported model while 

appropriately penalizing for differences in number of parameters among the distributions (2 for 

Gaussian and symmetric LaPlace, 3 for asymmetric LaPlace). ΔBIC values were calculated for each fit by 

subtracting the BIC of the model with the lowest BIC values from all others. We took ΔBIC values greater 

than 10 as a signal of poor support for a given model. 

Access to Data and Analysis Scripts 
All raw flow cytometry data have been uploaded to FlowRepository (FR-FCM-ZYUW) and will be made 
available on publication.  

Supplementary File 1: Primers used to generate and sequence confirm reporter constructs 

Supplementary File 2: R code for processing raw .fcs files, normalizing phenotypes by plate controls, 
filtering outliers, and calculating mean phenotypes by promoter 

Supplementary File 3: Layout spreadsheet with experimental metadata linking .fcs files to samples 

Supplementary File 4: R code used to contrast mean phenotypes among promoters 

Supplementary File 5: R code for evolutionary simulations 

Supplementary File 6: Processed data file including mean phenotypes  
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Figure Legends 

Figure 1. Experimental overview (a) A schematic describing the experimental design is shown: i. 
Saturated cultures of cells possessing a promoter sequence driving the YFP reporter were divided in 
samples for mutagenesis and sham treatments. ii. After mutagenesis and recovery, single cells were 
isolated using fluorescence activated cell sorting (FACS). iii. Colonies arising from single cells were 
cultured in quadruplicate and scored using flow cytometry. iv. YFP expression was estimated (BD Accuri 
C6) as the ratio of fluorescence (log FL1-A: 488 nm laser, 530-30 nm filter) and cell size (log FSC-A). v. 
YFP fluorescence was converted to estimated mRNA level, adjusting for known non-linearity between 
YFP fluorescence and mRNA abundance (74). vi. Median mRNA concentrations were calculated for each 
individual replicate, and then the mean and standard deviation of all replicates were used to 
characterize expression level for each genotype. (b) Median expression levels (x axis) and expression 
noise (y axis) are shown for 40 independent unmutagenized genotypes per promoter. Data points 
represent the mean of 4 replicate flow cytometry measurements per genotype scaled relative to the 
activity of the TDH3 promoter. Expression noise was measured as the coefficient of variation (CV) 
among cells measured within each replicate, and then CV estimates were averaged among replicates. 
Error bars represent 95% confidence intervals for each genotype. (c) Quantile-quantile plot comparing 
the distribution of mutational effects for two independent mutagenesis experiments for the TDH3 
promoter (x axis: Experiment 1, n=254, y axis: Experiment 2, n=1213) are shown. The second panel 
enlarges the area corresponding to the central 95% density of both experiments (solid lines: 10th and 
90th quantiles, dotted lines: 25th and 75th quantiles). The dashed line on the diagonal represents the 
hypothesis that the two samples are drawn from the same distribution.  A non-parametric Anderson-
Darling test fails to reject the null hypothesis that these two samples come from a common population 
(AD criterion=0.76056, p-value = 0.29).   

Figure 2. Distributions of expression levels observed for mutagenized and unmutagenized genotypes. 

(a-j) Distributions of expression among mutagenized (colors) and sham-treated genotypes (overlaid gray 

transparency) for each promoter. Expression levels (x axis) in both mutant and sham populations are 

expressed relative to the median of each wild-type expression level (dotted line). The frequency of 

phenotypes in each population is summarized by promoter as a smoothed density curve (y axis). Data 

for TDH3 in (i) was previously published in (24). Sample sizes are listed in Table S3.  
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Figure 3. Distributions of mutational effects. (a) Stacked distributions of mutational effects among 

mutagenized populations. Mutational effects (x axis) are expressed as Z-scores. Dashed lines note the 

sham median and 2 standard deviations above and below the sham median. (b) The relative frequency 

of expression changes for a continuous range of magnitudes above and below the sham median are 

represented as quantile-quantile plots of the magnitude of increases in expression (x axis) by the 

magnitude of decreases in expression (y axis) for each promoter compared to the median sham 

phenotype. The dashed line on the diagonal represents the hypothesis that mutational effects generate 

increases and decreases from the sham median with equal frequency at all effect sizes.   

Figure 4. Neutral changes in gene expression predicted by distributions of mutational effects. 

Evolutionary simulations based on empirical mutational distributions for populations of 1000 individuals 

evolving in the absence of selection for fifty thousand generations are shown.  Population divergence at 

each generation (x axis) was summarized by the mean population phenotype represented on a log2 

scale (y axis). Shaded areas represent the 95% credible intervals for the mean population phenotype at 

each generation among 500 independent evolutionary trajectories. The darkest line represents the 

grand median of all independent simulations and lighter shading moving away from the grand median 

represents quantiles of replicate populations in increments of 10. All populations evolved from a starting 

population with a mean of log2(100), which equals 6.64 .  

Figure 5. Contrasting neutral models of regulatory evolution. (a) Evolutionary divergence predicted 

after 50,000 generations under neutral simulations with mutational effects drawn from either a model 

sampling from the full empirical distributions of mutational effects (x axis) or a Brownian motion model 

assuming a normal distribution parametrized with the variance of the empirical mutational distributions 

(y axis). Points represent the grand median expression level among independent evolutionary 

trajectories for each gene at generation 50,000 under each model on a log scale. Error bars represent 

95% credible intervals among 500 replicate populations. (b) Differences in projected expression levels 

after 50,000 generations of neutral evolution under different mutational models are compared to the 

observed skewness in the distribution of mutational effects (MC: x axis). Specifically, the grand median 

phenotype at generation 50,000 is shown on a log scale (y axis) for simulations using the normal 

(Brownian, open circles) and fully empirical (filled circles) distributions of mutational effects. Skewness 

predicts simulation results for the empirical (Log Grand Median at Generation 50K ~ MC, F1,8 = 8.64, P =  

0.018, solid gray line), but not Brownian (Log Grand Median at generation 50K ~ MC, F1,8 = 1.53, P =  

0.25, dotted gray line) mutational model. Colored bars between points illustrate the differences in 

simulation predictions when the assumption of normality is relaxed. 

Supplementary Table Legends 
 

Table S1. Properties of the promoters analyzed. Promoter properties (mean expression, expression CV, 

presence or absence of TATA box, nucleosome occupancy score, and fitness of a strain homozygous for 

a deletion of the gene) are summarized from references (25, 53–55, 70). 

Table S2. Summary of sampling depths for conditions and promoters. (a) Summary of flow cytometry 

sampling depth by condition. The number of flow cytometry events collected per sample by condition in 

unprocessed and processed data are provided as median and 95% intervals for the number of events 

measured from each well, and the minimum number of events describing any single well after quality 
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control and data processing is provided for each condition. Counts and phenotypes for every sample at 

each processing step are provided in Supplementary File 1. (b) The number of genotypes used to 

describe expression distributions by promoter and condition after all data filtering.  

Table S3. Statistics summarizing tests for symmetry of distributions of expression values. (a) Exact 

binomial test for differences in the frequency of EMS-treated genotypes showing median expression 

levels less than and greater than the median sham expression levels. Statistics reported for both sham 

and EMS populations include the probability of observing a decrease in expression among genotypes 

and the FDR-adjusted p-value for the test. (b) Permutation test for differences in mean magnitude of 

decreases versus increases. Statistics reported for both sham and EMS populations include the mean 

difference in magnitude between increases and decreases in expression from the median for 10 

thousand samples matched in sample size, and the p-value testing the probability that the difference 

between increases and decreases was larger than a random sample of measured differences in 

expression from the median. 

Table S4. Summary statistics for the distribution of mutational effects for each promoter. Summary 

statistics reported include sample sizes, median, median-averaged deviation (MAD), skewness as 

characterized by medcouple (MC), weight in left extreme tails as characterized by left medcouple (LMC), 

and weight in right extreme tails as characterized by right medcouple (RMC) on both the native scale 

(scaled relative to 0 expression and the sham median at 1) and on a Z-score scale (substracting the sham 

median and dividing by the sham MAD). The proportion of EMS-treated genotypes falling within 1-, 2-, 

and 3 standard deviations of the sham median are listed.  

Table S5. Results of the Shapiro-Wilks test for normality for distributions of mutational effects. The 

tests were performed on the EMS-treated genotypes promoters expressed on a Z score scale and the 

test statistic and FDR-adjusted p-value are reported. 

Table S6. Results of the K-sample Anderson-Darling (AD) non-parametric test for similarity between 

mutational distributions. The AD test was used to test the null hypothesis that each pair of mutational 

distributions expressed on a Z-score scale was drawn from the same underlying true distribution.   This 

test of distribution similarity identified pairwise differences among distributions of mutational effects 

shown in Figure S6 (red: pairwise differences at P < 0.05). Test statistic and FDR-adjusted P-values are 

reported for each pairwise comparison.  

Table S7. Results predicting population divergence in evolutionary simulations based on promoter 

identity, mutational model, or the shape of distributions of mutational effects. (a) Mean population 

divergence was log transformed to improve normality for statistical analyses. Population divergence in 

evolutionary simulations across all 500 trajectories for all promoters was best predicted by a model 

including an interaction between the promoter identity and mutational model type (ANOVA test of the 

full interaction vs a reduced additive model, F = 828, P <2.2 x 10-16). Regression coefficients and post-hoc 

P-values for the multiple regression test  (Log Mean Population Phenotype after 50K Generations ~ 

Promoter * Model Type) are reported in Table S7.  (b) Comparisons of the most parsimonious models 

predicting grand median expression levels for both Brownian motion simulations and for simulations 

drawing mutational effects from the full empirical distribution from robust summary statistics are 

reported including models, regression coefficients, and post-hoc P-values. 
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Table S8. Support for fits of different probability distributions to the empirical distributions of 

mutational effects. The fit of different probability distributions was assessed based on Bayesian 

Information Criterion difference scores (ΔBIC) describing support for Gaussian, symmetric LaPlace, and 

asymmetric LaPlace model parametrizations. ΔBIC difference scores are expressed relative to the model 

with the lowest log-likelhood (highlighted with shading in this table). Models separated by 

10Parametrizations of model with the most support including choice of model, minus log-likelihood, 

parameter estimates and BIC calculated. 

Supplemental Figure Legends 
Figure S1. Effects of converting expression distributions to Z-scores. Differences in expression variation 

among un-mutagenized sham populations on the (a) median expression scale and (b) mutational Zscore 

scale represented as violin plots of smoothed density values are shown.   

Figure S2. Comparing robustness of metrics that estimate the central tendency of a distribution 

inferred using different sample sizes. Density distributions of means (left) and medians (right) 

calculated from 1000 replicate samples of 50, 100, 200, 400, 600, 800, and 1000 values drawn from the 

same underlying distribution are shown. Dotted lines show the value of each parameter calculated from 

all 1200 datapoints in the distribution from which the samples were drawn. These data show that the 

median provides a more reliable measure of the central tendency of the underlying distribution, 

especially for smaller sample sizes.  

Figure S3. Comparing robustness of metrics that estimate dispersion of a distribution inferred using 

different sample sizes. Density distributions of standard deviation (StDev, left) and median-averaged 

deviation (MAD, right) calculated from 1000 replicate samples of 50, 100, 200, 400, 600, 800, and 1000 

values drawn from the same underlying distribution are shown. Dotted lines show the value of each 

parameter calculated from all 1200 datapoints in the distribution from which the samples were drawn. 

These data show that the MAD provides a more reliable measure of the dispersion of the underlying 

distribution, especially for smaller sample sizes.  

Figure S4. Comparing robustness of metrics that estimate asymmetry of a distribution inferred using 

different sample sizes. Density distributions of skewness (left) and Medcouple (right) calculated from 

1000 replicate samples of 50, 100, 200, 400, 600, 800, and 1000 values drawn from the same underlying 

distribution are shown. Dotted lines show the value of each parameter calculated from all 1200 

datapoints in the distribution from which the samples were drawn. These data show that Medcouple 

provides a more reliable measure of the asymmetry of the underlying distribution, especially for smaller 

sample sizes. 

Figure S5. Comparing robustness of metrics that estimate weight in the extreme tails in a distribution 

inferred using different sample sizes. Density distributions of kurtosis (left), medcouple for the left half 

of the distribution (LMC, middle), and medcouple for the right half of the distribution (RMC, right) 

calculated from 1000 replicate samples of 50, 100, 200, 400, 600, 800, and 1000 values drawn from the 

same underlying distribution are shown. Dotted lines show the value of each parameter calculated from 

all 1200 datapoints in the distribution from which the samples were drawn. Note that LMC and RMC 

measure distribution weight in the peak vs tails of a distribution independently on either side of the 

median, while kurtosis combines this information in a single measure. LMC and RMC each provide a 
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more self-consistent estimate at every sample size than kurtosis, which shows a multimodal distribution 

of estimates that increases with sample size.. 

Figure S6. Comparing distributions of mutational effects among promoters. Quantile-quantile plots 

contrasting mutational distributions on a Z-score scale for each pair of promoters are shown. The 

dashed diagonal line represents the hypothesis that samples were drawn from the same underlying 

mutational distribution. Pairwise comparisons achieving significance (P<0.05 on non-parametric 

Anderson-Darling test with BH correction, Table S6) are plotted with red points.  

Figure S7. Principal Components Analysis (PCA) comparing shapes of mutational distributions. (a-c) 

PCA factor scores for different promoters and (d-f) component loadings for summary statistics 

comparing PC1 vs PC2, PC2 vs PC3, and PC1 vs PC3 are shown. (g-i) Stacked distributions of mutational 

effects ordered by promoter scores on PC1 (g), PC2 (h), and PC3 (i) are shown. 

Figure S8. Do promoter properties predict distributions of mutational effects? Dispersion (MAD, a-g) 

and asymmetry (MC, h-m) of distributions of mutational effects are compared for promoters with high 

and low native expression level  (a,h), high and low expression CV (b,i), the absence (TATA-) or presence 

(TATA+) of a canonical TATA box (c,j), high and low numbers of annotated regulators (d,k), the absence 

(N) or presence (Y) of duplicate in the yeast genome (e,l), nucleosome occupancy (f,m), and competitive 

fitness of a strain with homozygous deletion of the gene of interest (g,n). Binary categories of 

continuous variables like expression level, CV, or numbers of regulators were formed by grouping genes 

with values above or below the median. Continuous metrics were also explored for quantifying TATA 

box (# of differences from a canonical TATA sequence) and nucleosome occupancy, but results were 

consistent whether continuous and categorical metrics of promoter properties were used (data not 

shown).  The black dotted lines in panels f, g, m, and n show the best fit regression lines, though no 

relationships were identified that remained statistically significant at a P < 0.05 level after correction for 

multiple testing..  

Figure S9. Neutral changes in gene expression predicted by distributions of mutational effects.  (a,b) 

Evolutionary simulations based on empirical mutational distributions for the gene TDH3 using different 

samples of mutants to estimate mutational distributions for populations of 1000 individuals evolving for 

50,000 generations are shown, including (a) a subset of the TDH3 mutants analyzed in this manuscript 

but excluding the mutants with 5 lowest expression levels, and (b) a larger sample of 1400 mutants 

described in (24). (c-l) Evolutionary simulations based on empirical mutational distributions for 

populations of 100 individuals evolving in the absence of selection for fifty thousand generations are 

shown.  Population divergence at each generation (x axis) was summarized by the mean population 

phenotype represented on a log2 scale (y axis). Shaded areas represent the 95% credible intervals for 

the mean population phenotype at each generation among 500 independent evolutionary trajectories. 

The darkest line represents the grand median of all independent simulations and lighter shading moving 

away from the grand median represents quantiles of replicate populations in increments of 10. All 

populations evolved from a starting population with a mean of log2(100), which equals 6.64. 

Figure S10. Comparing mutational variability to levels of expression polymorphism in S. cerevisiae. 

Correlation between variability of mutational distributions (MAD) and expression polymorphism among 

22 natural isolates of S. cerevisiae described by (73) for the 10 genes examined in this study, 

characterized as variance in expression level among natural isolates. The positive relationship between 

mutational variability (MAD) and expression polymorphism (ExpVar ~ MAD, F1,8 = 8.18, P =  0.021, solid 
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line) is highly influenced by the outlier TDH1 (ExpVarnoTDH1 ~ MADnoTDH1, F1,7 = 1.122, P =  0.325, dotted 

line). 
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