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Abstract

A major cause of chemoresistance and recurrence in tumors is the presence of dormant tumor foci
that survive chemotherapy and can eventually transition to active growth to regenerate the cancer. In
this paper, we propose a Quasi Birth-and-Death (QBD) model for the dynamics of tumor growth and
recurrence/remission of the cancer. Starting from a discrete-state master equation that describes the time-
dependent transition probabilities between states with different numbers of dormant and active tumor foci,
we develop a framework based on a continuum-limit approach to determine the time-dependent probability
that an undetectable residual tumor will become large enough to be detectable. We derive an exact formula
for the probability of recurrence at large times and show that it displays a phase transition as a function of
the ratio of the death rate µA of an active tumor focus to its doubling rate λ. We also derive forward and
backward Kolmogorov equations for the transition probability density in the continuum limit and, using a
first-passage time formalism, we obtain a drift-diffusion equation for the mean recurrence time and solve it
analytically to leading order for a large detectable tumor size N . We show that simulations of the discrete-
state model agree with the analytical results, except for O(1/N) corrections. Finally, we describe a scheme
to fit the model to recurrence-free survival (Kaplan-Meier) curves from clinical cancer data, using ovarian
cancer data as an example. Our model has potential applications in predicting how changing chemotherapy
schedules may affect disease recurrence rates, especially in cancer types for which no targeted therapy is
available.

Keywords: Tumor recurrence, Tumor growth dynamics, Dormant tumor, Master equation, First-passage
time

1. Introduction

The advent of chemotherapy was an important milestone in the history of cancer treatment and research.
It remains the only option after surgery and radiation for cancers where no long-term targeted adjuvant
(post-surgery) therapy is available, such as serous ovarian cancer and triple negative (ER-/HER2-/PR-)
breast cancer [1]. By targeting rapidly cycling cells, chemotherapy systemically attacks growing tumors.
Side effects on other tissues, especially on cells with a high turnover rate, such as skin and the intestinal
epithelium, can be moderate to severe, depending on the duration and intensity of treatment.

Currently, there are few mathematical models to predict optimal regimens of adjuvant chemotherapy that
can specify duration and dosage levels to reduce recurrence rates [2–4]. Chemotherapy dosage is usually set
to “maximum tolerated dose” for the “minimum possible duration” (usually 3-6 months)[5], in the belief
that this will have the most benefit to the patient in the least possible time, and is based on modeling tumor
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cells as continuously dividing at a constant rate [6, 7]. However, the effectiveness of this treatment paradigm
is unclear and not entirely consistent with some clinical and experimental data. An alternative model is one
where tumor cells are not in continuous growth, but can be in one of two states: a dormant state and an
active-growth state.

It is known that the stage of a cancer, which is related to the tumor size and degree of lymph node
involvement, is an excellent predictor of prognosis, independently of cancer type or therapy. The larger
the tumor, the more difficult it is to effect a cure. Likewise, tumor grade, which is a measure of tumor
aggressiveness, is also a good predictor of outcome. However, the fractional impact of treatment on improved
survival is higher for patients with late-stage or high-grade tumors than for patients with early-stage or
low-grade tumors. This observation suggests that actively growing tumors tend to be more responsive to
cytotoxic drugs than those that are mostly in a dormant or resting state.

It has been suggested that a major cause of resistance to chemotherapy is the presence of dormant
tumor foci with a cycle time that exceeds the duration of chemotherapy [8–10]. This is consistent with the
observation that often, the effect of chemotherapy on recurrence rates does not last for a long time after
chemotherapy ends. Several clinical trials [11–13] have shown that improved recurrence rates for patients
receiving chemotherapy revert to rates for the control group (who received no chemotherapy) in a relatively
short time after termination of treatment, suggesting the presence of residual dormant tumor foci that
survive treatment and regenerate the cancer. These data also suggest that short-duration chemotherapy
only targets the tumor foci that cycle during chemotherapy. Tumor foci that cycle after chemotherapy ends
are not affected and can cause recurrence. This suggests that chemotherapy may be more effective if its
duration is optimized to the time it takes dormant foci to transition to active growth.

Direct evidence for this hypothesis is available in analysis of lymphoma data [14, 15], where maximiz-
ing chemotherapy dosage did not have a prolonged effect on outcome, whereas extending the duration of
chemotherapy, while maintaining a minimum effective dose was more beneficial. Long-term hormonal ther-
apy with drugs that target the ER pathway (e.g. tamoxifen) in ER+/HER2- breast cancers, which are
low grade (have low transition rates of tumor foci from dormancy to active growth) provides yet another
example that longer-term treatment is preferable to short-term treatment [16]. These studies provide evi-
dence that optimally adjusting the duration of chemotherapy may improve chemotherapy effectiveness, while
maintaining the same total amount of drug administered over the course of the chemotherapy regimen.

These observations suggest the following two hypotheses: 1) For a given cancer type, there is a charac-
teristic time for dormant tumor foci to transition to active growth; 2) Dormant tumor foci are often resistant
to chemotherapeutic agents, while active tumor foci are not. Based on these hypotheses, we develop a math-
ematical model and framework with potential application to study the impact of variation in dosage and
duration of chemotherapy on recurrence rates. Our model may serve as a guide for the design of experiments
and clinical trials that may eventually lead to optimized chemotherapy regimens [17].

The remainder of the paper is organized as follows. In Section 2, we give an overview of the model
by defining its state space, parameters and transition rules. In Section 3, the stochastic dynamics of the
model is formulated in terms of a continuous-time master equation in the discrete state space that represents
the numbers of dormant and active tumor foci. In Section 4, it is shown that an expansion of the master
equation for a large detectable-tumor size N leads to a simplified approach by mapping the original discrete-
state model to a stochastic process in a continuous two-dimensional state space. In Section 5, we find the
large-time probability of recurrence in closed analytic form and calculate the mean recurrence time (MRT)
analytically to leading order in N . In Section 5, we compare these analytical results to simulations and
describe a scheme to fit the model to recurrence-free survival (Kaplan-Meier) curves from clinical cancer
data, using ovarian cancer data as an example. Finally, in Section (6) we present our concluding remarks.

2. Overview of the discrete-state model

After surgery and radiation therapy, we assume that cancer patients retain a number of residual, un-
detectable tumor foci that may eventually grow and create a detectable tumor (recurrence). The foci can
transition from a dormant (non-dividing, chemo-resistant) state to an active (dividing, chemo-sensitive)
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(a) Possible transitions on the lattice of states (m,n),
where m is the number of dormant (D) tumor foci and
n is the number of active (A) foci.

(b) Boundaries of the state space D⊗A. The bound-
ary conditions are absorbing at the cure state (0, 0)
and also at the recurrence line m+ n = N .

Figure 1: Structure of the Fock-like state space of the QBD model for tumor recurrence.

state and vice versa with rates η and ξ respectively. Chemotherapy affects only active foci, which can either
double or die, with rates λ and µA respectively. The dynamics of this process is modeled as a Quasi Birth-
and-Death (QBD) process (for an introduction to the topic, see [18, 19]) that describes the stochastic time
evolution of the number of active and dormant tumor foci in a patient, resulting in either tumor recurrence
(when the number of foci is large enough to be detected) or remission (when there are no foci left).

Denoting by |m,n〉 the state with m dormant (D) tumor foci and n active (A) foci, the goal is to predict
the time evolution of the joint probability distribution pmn(t), given the initial condition pmn(0). Without
loss of generality, we can choose pmn(0) = δm0,n0

, where m0 and n0 are respectively initial counts of dormant
and active foci. This is so because the latter initial condition defines a Green’s function, from which the
solution for any arbitrary initial condition can be constructed as a convolution of transition probabilities,
because of linearity.

Our QBD model for tumor recurrence is a Markov process on the two-dimensional lattice of all possible
Fock states |m,n〉 with the following transition rules:

• At any given time, an active (A) tumor focus may either double or die at rates λ and µA, respectively.
During chemotherapy (between time t = 0 and time t = tchemo > 0), the death rate is µA = µchemo
and after treatment (beyond time t = tchemo), it decreases to a lower baseline rate µA = µ0.

• By definition, a dormant (D) tumor focus cannot double, but it could in principle die at some rate
µD. However, we will eventually set µD = 0. This is because dormant foci can repair chemotherapy
damage as we argued above, i.e., they are chemoresistant.

• An active (A) tumor focus may transition to dormancy (D) at rate ξ and a dormant tumor focus may
become active at rate η.

• Let T̄D and T̄A be the respective times that a tumor focus spends, on average, in the dormant and
active states before it doubles (averaged over many doublings). It then follows that the D → A and
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A → D hopping rates are given by η = 1/T̄D and ξ = 1/T̄A, respectively, so the doubling rate is given
by λ = 1/(T̄A + T̄D). Hence, the rates η, ξ and λ are related by the equation

1

λ
=

1

η
+

1

ξ
. (1)

This constraint reduces the number of parameters in the model by one and allows us to parametrize
the rates η, ξ as

ξ = λ(1 + ν) , η = λ(1 + 1/ν) (ν > 0). (2)

• All the tumor foci within each population (either D or A) are equally likely to undergo a transition,
so each transition probability on the two-dimensional lattice of states is proportional to either the
population of dormant foci (m) or the population of active foci (n). The transition probabilities of
any transitions beyond nearest neighbors are assumed to be second order in infinitesimal time, so the
model is “skip free”. The transition probabilities to neighboring states are then given by

Pr{m− 1, n; t+ ∆t|m,n; t} = µDm∆t+O(∆t2)

Pr{m,n− 1; t+ ∆t|m,n; t} = µAn∆t+O(∆t2)

Pr{m,n+ 1; t+ ∆t|m,n; t} = λn∆t+O(∆t2) (3)

Pr{m− 1, n+ 1; t+ ∆t|m,n; t} = ηm∆t+O(∆t2)

Pr{m+ 1, n− 1; t+ ∆t|m,n; t} = ξn∆t+O(∆t2)

and for transitions to states beyond nearest-neighbors, i.e., for |m−m′| > 1 or |n−n′| > 1, we assume

Pr{m′, n′; t+ ∆t|m,n; t} = O(∆t2). (4)

A diagram of the state space showing the transitions above is given in Fig. 1.

• If the total number of tumor foci m + n reaches a sufficiently large number N , the tumor becomes
detectable and no further transitions are allowed, i.e., the disease recurrence is defined by means of
absorbing boundary conditions at the recurrence boundary m+n = N . The absorbing boundary con-
dition at the extinction state (0, 0) is automatically satisfied, since the transition rates are proportional
to either m or n.

3. Master equation for the state probabilities

From the transition rules described in Section 2, it follows that the time evolution of the state probabilities
pmn(t) is given by the master equation

d |p(t)〉
dt

= Q̂ |p(t)〉 , (5)

where |p(t)〉 is the probability vector, whose components are the state probabilities pmn(t), i.e., |p(t)〉 =∑
mn

pmn(t) |m,n〉. The infinitesimal transition operator Q̂ = Q̂bulk + Q̂edge consists of a “bulk” part Q̂bulk

and an edge correction Q̂edge due to the absorbing boundary conditions at the recurrence line m+ n = N .
In second-quantized language, the bulk part is given by

Q̂bulk = (λ â+ + µA â− + ξ d̂+ â− − λ− µA − ξ) n̂+

+ (µD d̂− + η d̂− â+ − µD − η) m̂ (6)
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and the edge correction is given by

Q̂edge =
∑N
m=0 [ −µDm |m− 1, N −m〉〈m,N −m|

−µA(N −m) |m,N −m− 1〉〈m,N −m|
−ξ(N −m+ 1) |m,N −m〉〈m− 1, N −m+ 1|
+(λ+ µA + ξ)(N −m) |m,N −m〉〈m,N −m|
−η (m+ 1) |m,N −m〉〈m+ 1, N −m− 1|
+ (µD + η)m |m,N −m〉〈m,N −m| ] .

(7)

In Eq. (7), d̂+ and d̂− are respectively creation and annihilation operators for dormant tumor foci and
â+ and â− are those for the active foci. These operators are defined as:

d̂± |m,n〉 = |m± 1, n〉 ,
â± |m,n〉 = |m,n± 1〉 . (8)

The number operators m̂ and n̂ are defined in the usual fashion:

m̂ |m,n〉 = m |m,n〉 ,
n̂ |m,n〉 = n |m,n〉 . (9)

The structure of the matrix Q̂ is block-tridiagonal in the linear space D⊗A, with block indices (m,m′)
that run across the Fock states of D, and with indices (n, n′) within each nonzero block that run across the
Fock states of A. The N + 1 blocks along the diagonal are themselves tridiagonal and decrease in size as
the D-space index n increases. The structure of Q̂, as described in Appendix A, is sufficiently complicated
that explicit analytical solutions are not straightforward, although analytical formulas are available for the
inversion of general tridiagonal and even certain types of block-tridiagonal matrices [20, 21]. Analytical
and even stable numerical methods for general level-dependent QBD processes, i.e., QBD models with a
block-tridiagonal matrix structure where the blocks are not constant along the diagonals [22], are scarce in
the literature. Although a matrix-analytic method has been developed for these models in [23], it still relies
on the ability to to solve matrix equations with non-trivial block matrices. Numerical methods have been
developed for finding stationary distributions in level-dependent QBD models [24], but generally applicable
numerical methods for finding transient solutions (other than the expensive matrix exponentiation) have yet
to be developed [25]. For a special class of level-dependent QBD models with applications in biology and
epidemiology, a method based on a continuous-fraction representation of the Laplace-transformed transition
probabilities has recently been developed [25]. However, it is not applicable to the model defined by Eqs.
(5), (6) and (7), where all the transition and birth/death rates can be nonzero.

If we disregard constraint (1) for the moment and consider the special case η = ξ = µD = 0, the system
reduces to a continuous-time birth-and-death process with transition rates λn and µAn (otherwise known
in queuing theory as the M/M/1/N queue [18]) and with absorbing boundary states. The version of this
model with N → ∞ (i.e., semi-infinite Markov chain) and reflecting boundary conditions has been studied
extensively and analytical solutions have been obtained for its transient analysis using several techniques
[26–30]. A version of the M/M/1/N queuing model that is more relevant to our analysis is the one with
finite N and absorbing boundary states, which is solved analytically in [31], where the transient solution
is obtained and a simple expression is given for the large-time probability πrec of absorption at the state
n = N (corresponding to recurrence in our model), under the initial condition pn(0) = δn,n0

:

πrec =
1− (µA/λ)n0

1− (µA/λ)N
(10)

The probability of absorption at the zero-particle state n = 0 (corresponding to cure) is then πcure =
1− πrec. In the limit N →∞, we note that this model has a phase transition at µA/λ = 1:

πrec =

{
1− (µA/λ)n0 if µA/λ ≤ 1

0 otherwise
(11)
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As will be shown in Section 5.1, a similar stationary solution also occurs in general in the QBD model
defined by Eqs. (5), (6) and (7). We will show this both analytically in the continuum limit and in
simulations of the discrete-state stochastic process.

4. Continuum-limit of the discrete-state QBD model

A simple approach that is suitable for our tumor recurrence model is to take the continuum limit of the
master equation (5), i.e., take the large N limit. Since the reciprocal of the detectable tumor size (1/N) is
a natural small parameter in the model, the master equation can be expanded in powers of 1/N and thus
converted to a continuum equation. The resulting partial differential equation may then be solved using
well-developed methods [32].

There are two alternative ways to represent the time evolution of the stochastic process at hand [32–36],
namely the forward master equation (5) and the backward master equation

d

dt
〈P (m,n; t)| = 〈P (m,n; t)| Q̂†, (12)

where Q̂† is the adjoint of the operator Q̂ defined in Eqs. (6), (7) and the state vector 〈P (m,n; t)| is defined
as the probability to end up at a particular state 〈m,n| at time t, starting from any state 〈m0, n0| at time
t = 0, i.e.,

〈P (m,n; t)| ≡
∑
m0,n0

〈m0, n0|Pr{m,n; t|m0, n0; 0}. (13)

When either Eq. (5) or Eq. (12) is used in the large-N expansion, we get respectively the forward or
the backward Kolmogorov equation in the continuum limit 1/N � 1 by truncating the expansion after the
second term, as discussed further below.

4.1. Forward Kolmogorov approach

We can define a continuum limit of the state space Ω = {(m,n)|m ≥ 0;n ≥ 0;m + n ≤ N} by defining
continuous variables x = m/N and y = n/N , which represent the dormant and active foci populations as a
fraction of the detectable tumor size N , respectively. We define a “tumor focus” as the resolution scale of
our model: for example, we can define a focus as 1/1000 of a detectable tumor, in which case N = 1000 is a
natural definition of recurrence (detectable tumor size). When N � 1, the lattice of discrete states (m,n)
becomes a continuum as the spacings 1/N decrease to zero. The discrete probabilities pmn(t) can then be
replaced by a smooth probability density ρ(~x, t) = N2pmn(t), where ~x = (x, y) is an arbitrary point in the
bounded region Ω = {(x, y)|x ≥ 0; y ≥ 0;x+ y ≤ 1}.

We proceed to take the continuum limit of the master equation by first replacing the raising/lowering
operators (see Eqs. (5), (6) and (8)) by the corresponding translation operators in the continuum, i.e.,

d̂± → e∓δx∂/∂x and â± → e∓δy∂/∂y (the reason for the opposite signs is that the creation and annihilation
operators are passive transformations, whereas the continuum translation operators are defined as active
transformations). Then a Kramers-Moyal expansion of the master equation can be obtained by expanding
the operator (6) in powers of δx = δy = 1/N . Retaining only the first and the second terms in this large-size
expansion, we obtain the two-dimensional Fokker-Planck equation

∂ρ(~x, t)

∂t
= −~∇ · ~J(~x, t), (14)

which is a local continuity equation with a probability current density given by

~J(~x, t) = [−(ηx− ξy)(êx − êy)− µDxêx + (λ− µA)yêy] ρ(~x, t)−

− 1

2N

{
(êx − êy)

(
∂

∂x
− ∂

∂y

)
[(ηx+ ξy)ρ(~x, t)] +

+ êx
∂

∂x
[µDxρ(~x, t)] + êy

∂

∂y
[(λ+ µA)yρ(~x, t)]

}
, (15)
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where each drift term is a product of the respective transition rate by the probability density, along the
unit vector in the direction of the transition, and the terms proportional to 1/N represent diffusion, with
a diffusion tensor that involves off-diagonal terms (i.e., the terms that involve mixed second derivatives
∂2ρ/∂x∂y are nonzero) and is dependent upon the state variables (x, y).

Since Eq. (14) gives the probability density ρ(~x, t) at any state ~x = (x, y) at time t ≥ 0, given the
initial condition ρ(~x, 0), it corresponds to the well-known forward Kolmogorov equation [32–36]. Here we
define the initial condition to be sharply peaked at a state ~x0 = (x0, y0), i.e., ρ(~x, 0) = δ(~x − ~x0). Note
that the normalization of the probability density ρ(~x, t) is not preserved by the time evolution, because the
probability flux exits through the recurrence boundary x + y = 1, and also accumulates at the cure state
(0, 0).

The boundary conditions for Eq. (14) are the following. At the recurrence line x+ y = 1, the absorbing
boundary condition is ρ(~x, t) = 0. In the vicinity of the cure state (0, 0) we define ρ(~x, t) = 0 on the line
x + y = ε, where ε � 1/N is a small parameter. In the weak limit (in the distributional sense) ε → 0, the
small region x+ y ≤ ε, representing the cure state, becomes a single absorbing point where the probability
density collapses to a Dirac delta function weighted by the probability of cure before time t, which will
henceforth be denoted by pcure(t).

On the boundaries x = 0, ε ≤ y ≤ 1 and y = 0, ε ≤ x ≤ 1, the boundary conditions are both reflecting,
i.e., the normal component of the probability current density must vanish. In other words, ~J(~x, t) · ~n = 0,

where ~n is the outward normal and the current density ~J(~x, t) is defined by Eq. (15) (see Appendix B.1 for
details).

Equation (14) is separable with respect to time, i.e., it can be reduced to an eigenvalue problem for the
forward Fokker-Planck operator Lf defined by recasting Eq. (14) in the form ρ̇(~x, t) = Lfρ(~x, t). However,
it is not separable in the coordinates (x, y) and also depends on these variables explicitly through coefficients
inside the differential operators. Finding a basis of two-variable eigenfunctions of Lf satisfying the mixed
boundary conditions described above is a difficult problem, but unnecessary for our main goal, which is to
derive an equation for the recurrence-free survival function S(t), defined as the probability of no-recurrence
before time t, i.e.,

S(t) ≡
ˆ

Ωε

ρ(~x, t)d2x+ pcure(t) = 1− prec(t), (16)

where the domain of integration is the region Ωε = {(x, y)|x ≥ 0; y ≥ 0; ε ≤ x + y ≤ 1} and prec(t) and
pcure(t) are respectively the time-dependent probabilities of recurrence and cure before time t.

The function S(t) defined in Eq. (16) is a bridge that connects data (survival curves) to the model.
The backward Kolmogorov approach is often more appropriate to first-passage time problems [34–37] and
will be used in combination with Eq. (15) to derive an equation for S(t). The current density derived
from the forward equation (Eq. (15)) will be used to derive formulas for the probability flux into the cure
state or through the recurrence boundary (note that unlike the forward equation, the backward equation
cannot be expressed as a local continuity equation for the conservation of probability). Furthermore, the
boundary conditions for the backward equation are derived from those of the forward equation, as explained
in Appendix B.2.

4.2. Backward Kolmogorov approach

Starting with Eq. (12) and using the adjoint of the master equation operator (6), we can derive the
backward Kolmogorov equation by means of a Kramers-Moyal expansion similar to that leading to the
forward equation (14). It should be noted that the differential operators in the backward equation act on
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functions of the initial-state variables (x0, y0):

∂ρ(~x, ~x0, t)

∂t
= [−(ηx0 − ξy0)(êx − êy)− µDx0êx +

+(λ− µA)y0êy] · ~∇~x0
ρ(~x, ~x0, t)+

+
2∑
i=1

2∑
j=1

Dij(~x0)
∂2ρ(~x, ~x0, t)

∂x0i∂x0j

≡ Lb ρ(~x, ~x0, t), (17)

where Lb is the backward operator, (x01, x02) ≡ (x0, y0), and Dij(~x0) are the components of the diffusion
tensor

D(~x0) =

(
D11(~x0) D12(~x0)
D21(~x0) D22(~x0)

)
=

1

2N

(
ηx0 + ξy0 + µDx0 −(ηx0 + ξy0)
−(ηx0 + ξy0) ηx0 + ξy0 + (λ+ µA)y0

)
. (18)

The backward equation (17) is somewhat different from Eq. (14) in that the non-constant coefficients
appear outside the differential operators. It is subject to the final condition that some state ~x will be reached
at time t, starting from anywhere (~x0) in the state space. This explains why the backward equation is often
more useful for first-passage time problems than its forward counterpart.

The boundary conditions for the backward equation (17), which can be derived from those of the forward
equation (14), are the following. On both absorbing boundaries x0 + y0 = ε and x0 + y0 = 1, ρ(~x, ~x0, t) = 0.
At the reflecting boundaries, the boundary conditions are

∂ρ(~x,~x0,t)
∂x0

∣∣∣
x0=0

= ∂ρ(~x,~x0,t)
∂y0

∣∣∣
x0=0

(19)

at the boundary x0 = 0, ε ≤ y0 ≤ 1 and

∂ρ(~x,~x0,t)
∂x0

∣∣∣
y0=0

= ∂ρ(~x,~x0,t)
∂y0

∣∣∣
y0=0

(20)

at the boundary y0 = 0, ε ≤ x0 ≤ 1. These boundary conditions are derived in Appendix B.2.
The equations for the probability flux through the absorbing boundaries x+y = 1 and x+y = ε are given

in Appendix C. From them, we can derive the partial differential equations below for the time-dependent
probabilities of recurrence and cure before time t, respectively (see Appendix C for details):

ṗrec(~x0, t) = Lb prec(~x0, t), (21)

ṗcure(~x0, t) = Lb pcure(~x0, t), (22)

where Lb is the backward operator defined in Eq. (17) and we have used the notation prec(~x0, t), pcure(~x0, t)
to recall the dependence on the initial condition ~x0 = (x0, y0). Since the recurrence-free survival function is
defined as S(~x0, t) = 1− prec(~x0, t), it must satisfy the PDE

Ṡ(~x0, t) = Lb S(~x0, t). (23)

For µD = 0, we can simplify the backward equation (17) by transforming to the new variables z0 ≡ x0,
w0 ≡ x0 + y0,

∂ρ(~z, ~z0, t)

∂t
= Lb ρ(~z, ~z0, t), (24)

where ~z ≡ (z, w) and the transformed backward operator is given by

Lb =− [ηz0 − ξ(w0 − z0)]
∂

∂z0
+ (λ− µA)(w0 − z0)

∂

∂w0
+

+
1

2N
[ηz0 + ξ(w0 − z0)]

∂2

∂z2
0

+
1

2N
(λ+ µA)(w0 − z0)

∂2

∂w2
0

(25)
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Table 1: Boundary conditions for the PDEs satisfied by a few relevant functions of the initial-state variables
~z0 = (z0, w0), where z0 ≡ x0 and w0 ≡ x0 + y0.

Function Equation
Boundary

w0 = ε w0 = 1 z0 = 0 z0 = w0

ρ(~z, ~z0, t) ρ̇ = Lb ρ ρ = 0 ρ = 0 ∂ρ
∂z0

= 0 ∂ρ
∂z0

= 0

prec(~z0, t) ṗrec = Lb prec prec = 0 prec = 1 ∂prec
∂z0

= 0 ∂prec
∂z0

= 0

pcure(~z0, t) ṗcure = Lb pcure pcure = 1 pcure = 0 ∂pcure
∂z0

= 0 ∂pcure
∂z0

= 0

S(~z0, t) Ṡ = Lb S S = 1 S = 0 ∂S
∂z0

= 0 ∂S
∂z0

= 0

T
(1)
rec(~z0) Lb

[
prec(∞)T

(1)
rec

]
= −prec(∞) undef.* T

(1)
rec = 0

∂T (1)
rec

∂z0
= 0

∂T (1)
rec

∂z0
= 0

* The mean recurrence time diverges at the cure-state boundary w0 = ε.

In the new variables (z0, w0), the boundary conditions for Eqs. (21), (22), (23) and (24) are summarized
in Table 1. The Neumann boundary conditions for Eq. (24) at the boundaries z0 = 0 and z0 = w0, given
in Table 1, follow immediately from Eqs. (19) and (20), and those for Eqs. (21), (22) and (23) follow from
the equations for the probability flux through the absorbing boundaries x + y = 1 and x + y = ε, given in
Appendix C.

The PDEs (21), (22) and (23), subject to the boundary conditions given in Table 1, are all separable in
time, but not in the initial-state variables (z0, w0). However, they can be solved analytically in the large-time
limit t→∞, as will be shown in Section 5.1 below.

A key random variable in our model is the recurrence time (which will be henceforth denoted by Trec),
corresponding to the first passage time through the recurrence boundary. The normalized probability that
Trec lie between t and t+ dt can be obtained from a simple application of Bayes’ theorem [36]:

Pr{t < Trec < t+ dt | recurrence} =
ṗrec(t)dt

prec(∞)
(26)

In other words, the probability density function (PDF) for the recurrence time Trec is ṗrec(t)/prec(∞) =
−Ṡ(t)/prec(∞), where the probability prec(∞) =

´∞
0
ṗrec(t)dt that recurrence takes place at any time t <∞

is given in closed analytic form in Section 5.1 below (see Eq. (32)). The ratio prec(t)/prec(∞) then gives
the cumulative distribution function (CDF) of Trec.

Let

T (n)
rec ≡

ˆ ∞
0

tn
ṗrec(t)

prec(∞)
dt (27)

denote the n-th moment of the recurrence time Trec (n = 0, 1, 2, . . . ). From Eqs. (21) and (27), we get the
hierarchy of equations below [33, 34], where the n-th moment of Trec is related to its (n− 1)-th moment:

Lb
[
prec(∞)T (n)

rec (~z0)
]

= −n prec(∞)T (n−1)
rec (~z0) (28)

Here we have used the notation T
(n)
rec (~z0) to recall the dependence on the initial condition ~z0. Since the

function prec(∞) also depends on the initial condition through the variable w0 (see Eq. (32) below), it
cannot be taken outside the backward operator Lb, because the latter acts on the initial condition variables
(z0, w0).

The boundary condition for Eq. (28) at the absorbing boundary w0 = 1 is T
(n)
rec (~z0)] = 0. From Eq. (27)

and Table 1, it also follows that Neumann boundary conditions ∂
∂z0

[prec(∞)T
(n)
rec (~z0)] = 0 must be imposed

at both reflecting boundaries z0 = 0 and z0 = w0.
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Letting n = 1 in Eq. (28), we get an equation for the mean recurrence time (MRT), denoted here by

T
(1)
rec:

Lb
[
prec(∞)T (1)

rec(~z0)
]

= −prec(∞) (29)

This is a key equation in our analysis, which will be used to find an approximate analytical formula for the
MRT.

5. Results and discussion

In this section, we discuss our main results, namely the stationary solution of Eq. (21) at large times in
closed analytic form, as well as the “outer solution” of the mean recurrence time (MRT) equation (29) at
leading (zeroth) order in 1/N , which is approximately valid everywhere except inside thin boundary layers
that stretch along the reflecting barriers z0 = 0 and z0 = w0. For several choices of the parameters and
initial conditions, these solutions are compared against simulations. We also describe a simple procedure to
fit the model to survival data, using serous ovarian cancer data downloaded from the public database The
Cancer Genome Atlas [43] as an example.

5.1. Stationary solution at large times

The stationary solution of Eq. (21), which satisfies ṗrec(~z0, t) = 0, gives the large-time probability
prec(z0, w0,∞) of absorption at the recurrence boundary w = 1, given the initial state (z0, w0). In the
large-time limit t→∞, the probability of cure is given by pcure(~z0,∞) = 1−prec(~z0,∞): recurrence or cure
are the only possible fates at large times. Therefore, prec(z0, w0,∞) satisfies the homogeneous backward
equation

Lb prec(z0, w0,∞) = 0, (30)

where the backward operator in the variables (z0, w0) is given by Eq. (25). The boundary conditions are
given in Table 1.

An ansatz solution to Eq. (30) would be a recurrence probability that only depends on the total initial
number of tumor foci w0 and not specifically on what fraction of this initial number are dormant foci (z0),
i.e., ∂

∂z0
prec(z0, w0,∞) = 0. This type of solution automatically satisfies the Neumann boundary conditions

at the reflecting boundaries z0 = 0 and z0 = w0 (see Table 1). Using the ansatz above and Eq. (25), the
homogeneous PDE (30) becomes the following ODE in the variable w0:

1

2N
(λ+ µA)

d2prec(∞)

dw2
0

+ (λ− µA)
dprec(∞)

dw0
= 0, (31)

where prec(∞) ≡ prec(z0, w0,∞) only depends on w0. This equation can be easily solved for the Dirichlet
boundary conditions given in Table 1. The solution is

prec(∞) =
1− e−2RN0

1− e−2RN
, (32)

where N0 = w0N is the initial total number of tumor foci and

R ≡ 1− µA/λ
1 + µA/λ

. (33)

In Eq. (32), the limit ε → 0 has been taken. In the large-time limit t → ∞, the probability of cure is
given by

pcure(∞) = 1− prec(∞). (34)

In Fig. 2, the function (32) is plotted for different values of the detectable tumor size N at a fixed initial
number of foci N0 and also for different initial conditions N0 at a fixed N .
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Figure 2: Large-time probability of recurrence vs. µA/λ for µD = 0, obtained analytically using the backward Kolmogorov
approach (see Eq. (32)). Pane 2a shows the effect of changing the total initial number of tumor foci (N0), whereas pane 2b
shows the effect of a finite detectable-tumor size N on the phase transition.

In the limit N →∞, this solution displays a phase transition at µA/λ = 1:

prec(∞) =

{
1− e−2RN0 if µA/λ ≤ 1

0 otherwise
(35)

Thus, in the limit N →∞, the large-time probability of cure for µA/λ ≤ 1 is pcure(∞) = 1− prec(∞) =
e−2RN0 , which is the large-time limit of the recurrence-free survival function S(t).

The drift term of the Fokker-Planck equation (14) alone is not sufficient to reproduce the phase transition
(35). The latter is the result of a combination of drift and diffusion in the presence of two opposite absorbing
boundaries, so that the initial delta peak ρ(~x, 0) = δ(~x−~x0) splits into a bi-modal probability density ρ(~x, t)
with two peaks that travel in opposite directions, toward the cure or recurrence boundaries. For µA/λ > 1,
the height of the peak traveling toward the recurrence boundary vanishes, so the final state in the large-time
limit t→∞ becomes the cure state (0, 0), with probability 1. The result (32) is only slightly different from
the stationary solution of the M/M/1/N queue with absorbing boundary states (see Eq. (11)). As we will
show, it agrees with simulations of the discrete-state QBD process.

5.2. Approximate solution of the mean recurrence time equation

In this section, we will solve the mean recurence time equation (29) analytically to the leading (zeroth)
order in 1/N . This approximation is valid outside boundary layers near the reflecting barriers z0 = 0 and
z0 = w0, the sizes of which vanish as N →∞. The leading order solution can be obtained by neglecting the
second derivative terms in Eq. (29). This results in the first order PDE

[ηz0 − ξ(w0 − z0)]
∂T

(1)
rec

∂z0
− (λ− µA)(w0 − z0)

∂T
(1)
rec

∂w0
= 1, (36)

which can be solved by the method of characteristics. The solution is

T (1)
rec = − 1

β
lnu, (37)

11

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted February 15, 2019. ; https://doi.org/10.1101/551770doi: bioRxiv preprint 

https://doi.org/10.1101/551770
http://creativecommons.org/licenses/by-nc-nd/4.0/


0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x = m N

y
=

n
N

0

1

2

3
4

5
6

Figure 3: Level curves of the leading-order outer solution of the mean recurrence time equation (see Eqs. (37) and (38)) for
µA/λ = 0.5 and ν ≡ ξ/η = 2.5. At large N , these curves are approximately valid outside boundary layers that exist close
to the reflecting barriers x0 = 0 and y0 = 0. The sizes of these boundary layers vanish in the limit N → ∞. The values of

T
(1)
rec at the first few level curves are given in the figure in units of the doubling time 1/λ. The spacings between adjacent lines

(which were plotted for 1/λ increments of T
(1)
rec) approach zero at the cure state (0, 0), where the mean recurrence time diverges

logarithmically.

where u is the only root of the transcendental equation

uα/β
{
−ξw0

[
(η + ξ − α)(1− u2) + β(1 + u2)

]
+

+ z0

[
(η + ξ − α)2 − β2

]
(1− u2)

}
+ 2ξβu = 0, (38)

where

α ≡ 1

2
(η + ξ + µA − λ) (39)

and
β ≡

[
α2 + η(λ− µA)

]1/2
. (40)

The procedure for obtaining this solution is described in Appendix D. The finite-N solution of Eq. (29)
converges to the leading-order approximation given by Eqs. (37) and (38) pointwise, but not uniformly.
Indeed, the approximate solution above does not satisfy the homogeneous Neumann boundary conditions
at z0 = 0 or z0 = w0 (see Table 1); near each reflecting barrier, there is a boundary layer within which the
zeroth-order approximation in 1/N fails. This is seen in the form of the mean recurrence time (MRT) level
curves given by Eqs. (37) and (38), which are straight lines that are not parallel to the recurrence boundary

w0 = 1, except asymptotically in the limit T
(1)
rec → 0 (see Fig. 3). In reality, close to each reflecting barrier

(within some distance that vanishes in the limit N → ∞), the exact (finite-N) level curves bend toward
the boundary, where these curves end at a right angle. At fixed initial conditions and as a function of the
parameters µA/λ and ξ/η, the shapes of the MRT level curves given by Eqs. (37) and (38) in parameter
space are shown in Fig. 4 for two different initial conditions, namely N0 = 7, m0 = 3 and N0 = 50, m0 = 20.

The PDE (29), along with its boundary conditions given in Table 1, is a singular perturbation problem
that should be handled by special perturbation methods, because the small parameter 1/N premultiplies the
second-derivative terms in the backward operator (25). Further inspection shows that Eq. (29) is structured
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(a) Level curves for N0 = 7, m0 = 3.
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Figure 4: Level curves in parameter space of the leading-order outer solution of the mean recurrence time (MRT) equation (see
Eqs. (37) and (38)) for two different initial conditions, with N = 100. The ruler at the bottom of each plot gives the values of
the MRT in units of the doubling time 1/λ.

in such a way that the problem can be treated by boundary-layer theory [38]. Since the solution of Eq.
(29) obtained by dropping the diffusion (1/N) terms in the backward operator (25) is only valid outside the
boundary layers that exist near the reflecting boundaries z0 = 0 and z0 = w0 (the sizes of which vanish as
N → ∞), in the language of boundary layer theory the solution given by Eqs. (37) and (38) is called the
“outer solution” of the boundary value problem. The “inner solutions”, on the other hand, require proper
rescaling of the variables before these solutions can be expanded asymptotically in the parameter 1/N ; in
this case, the second-derivative terms in Eq. (25) cannot be neglected inside each boundary layer, since they
become comparable to the first-derivative terms within each layer.

An approximate composite solution that would be valid everywhere can in principle be obtained by the
method of matched asymptotic expansions, which requires solving Eq. (29) both inside and outside the
boundary layers [38]. In this paper, however, only the leading-order outer solution is given (Eqs. (37) and
(38) above). In practice, the outer solution itself is already a quite useful result, even at the lowest order
in 1/N , since it agrees reasonably with simulations of the model (as will be shown in Section 5.3 below),
except for small corrections that can in principle be calculated using the boundary-layer method.

5.3. Simulations

The discrete-state QBD process was simulated for several values of the model parameters and initial
conditions using a pseudo random number generator. The results from the simulations were then compared
to the large-time stationary solution given by Eq. (32), and also to outer solution given by Eqs. (37) and
(38). The time step was chosen to be such that the transition probabilities would always remain sufficiently
small within the range of the transition rates used in the simulations, even for transitions between states
with large numbers m,n ∼ N . For a given set of parameters, each simulation tracked both the fraction of
patients for which the tumor recurred and the recurrence times (from which the MRT was estimated) for
an ensemble of 400 hypothetical patients. The detectable tumor size was set to N = 100.

For a simulation with ν ≡ ξ/η = 5 and initial condition m0 + n0 = 7, m0 = 3, Fig. 5 shows a plot
of the large-time fraction of patients for which the tumor recurred against µA/λ. The figure also shows
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Figure 5: Large-time fraction of patients for which the tumor recurred, obtained in a simulation of the QBD model with 400
hypothetical patients. The parameters are µD = 0, ν ≡ ξ/η = 5, m0 + n0 = 7, m0 = 3 and N = 100. The red curve shows the
analytical result given by Eq. (32).

that the result of the simulation agrees with the analytical formula given by Eq. (32). Fig. 6 shows a
plot of the MRT obtained in simulations against the initial total number of tumor foci (N0) along the line
m0 = n0 = N0/2, for 4 different values of µA/λ, with ν ≡ ξ/η = 2.5. These results are compared to the
smooth curves obtained from the leading-order outer solution of the MRT equation (Eqs. (37) and (38)).
At the cure state N0 = 0, the MRT diverges logarithmically and the discrepancy between simulations and
the outer solution increases as N0 approaches zero, due to the boundary-layer structure (the vicinity of the
cure state is the region where the boundary layers along the reflecting barriers overlap).

For both initial conditions N0 = 7, m0 = 3 and N0 = 50, m0 = 20, Fig. 7 shows the MRT obtained in
simulations against the ratio ν ≡ ξ/η at 5 different values of µA/λ, and compares it to the curves obtained
from the leading-order outer solution given by Eqs. (37) and (38). As expected, the higher the value of
µA/λ, the larger is the discrepancy, since the finite-size effect is greatest near the critical point µA/λ = 1.

It is worth noting that the ratio ν ≡ ξ/η can in principle be measured in experiments by estimating the
relative times that the cells in a tumor spend in dormant versus active phases of the cell cycle, for example,
through reconstruction of cell cycle dynamics from single-cell transcriptome data [39–41].

Fig. 8 shows the MRT obtained in simulations against µA/λ for the initial conditions N0 = 7, m0 = 3
and N0 = 50, m0 = 20, at different values of the ratio ν ≡ ξ/η. These results are compared to the smooth
curves obtained from Eqs. (37) and (38). At leading order, the MRT given by the outer solution diverges at
the critical point µA/λ = 1, as shown by Eqs. (37) and (38). The larger discrepancy near the critical point
can be explained by a finite size effect in the phase transition given by Eq. (32), which effectively shifts the
critical point to a value slightly higher than µA/λ = 1 (see plot in Fig. 2b).

We note that the continuum limit of the discrete-state master equation is a good approximation, since
it agrees reasonably well with the simulations even at leading (zeroth) order in 1/N . This is a remarkable
feature of our model, since the diffusion limit sometimes fails for other types of birth-and-death processes,
especially ones that involve non-linear transition rates [42].
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(38)). We note the logarithmic divergence at the cure state N0 = 0.
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Figure 7: Mean recurrence time (MRT) obtained in simulations vs. the ratio ν ≡ ξ/η for two different initial conditions, with
N = 100. Each set of points on each panel corresponds to a different value of µA/λ and the lines represent the leading-order
outer solution of the MRT equation (see Eqs. (37) and (38)). The results represent an average over 400 hypothetical patients.
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Figure 8: Mean recurrence time (MRT) obtained in simulations vs. µA/λ for two different initial conditions, with N = 100.
Each set of points on each panel corresponds to a different value of the ratio ν ≡ ξ/η and the smooth curves represent the
leading-order outer solution of the MRT equation (see Eqs. (37) and (38)). The simulations were run for 400 hypothetical
patients. At leading order, the MRT given by the outer solution diverges at the critical point µA/λ = 1.

5.4. Fitting the model to survival data

Even in the context of univariate birth-and-death processes, estimating model parameters from data is
generally a difficult problem [44]. In this section, we describe a simple procedure to fit the model to survival
data through an example. Since the method that we describe below relies on the leading-order outer solution
given by Eqs. (37) and (38), it is approximately valid (within O(1/N) corrections) for initial conditions
outside the boundary layers.

Serous ovarian cancer data downloaded from the public database The Cancer Genome Atlas [43] (TCGA)
were used to generate the recurrence-free survival function shown in Fig. 9. Since 170 out of the 583 patients
in the data set were censored, the Kaplan-Meier product-limit estimator [45] was used to estimate the time-
dependent probability of no recurrence.

In order to obtain the MRT from a given survival function S(t), we first need to renormalize the proba-
bility of recurrence prec(t) = 1−S(t) as in Eq. (26), i.e., the appropriate probability measure is conditioned
on recurrence. The renormalized survival function S̃(t) is then given by

S̃(t) =
S(t)− S(∞)

1− S(∞)
, (41)

which vanishes in the limit t → ∞. The MRT is then given by the area under the curve S̃(t), i.e., T
(1)
rec =´∞

0
S̃(t)dt. For the serous ovarian cancer data from TCGA, we found S(∞) = 0.086 (defined as the lowest

value of the Kaplan-Meier estimate for S(t)) and an MRT of 687.5 days. For a given initial condition,
estimation of the parameter ν ≡ ξ/η from Eqs. (37) and (38) requires that the time scale be fixed by
specifying the doubling rate λ. Using the order of magnitude guess 1/λ = 40 days for the doubling time
based on clinical data [46], the MRT for the ovarian cancer data in units of the doubling time was then fixed
at λ(687.5 days) = 17.2.

For a given choice of the initial number N0, Eqs. (32) and (33) can be solved for the parameter µA/λ
using the value prec(∞) = 1−S(∞) = 0.914 obtained from the Kaplan-Meier curve. Assuming m0 = 0.4N0
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Figure 9: Product-limit estimate of the recurrence-free survival function (Kaplan-Meier curve [45]) for ovarian cancer in a group
of 583 patients, obtained from TCGA data [43], showing Kaplan-Meier’s estimate for the 90% confidence interval (green lines).
The red vertical crosses (+) represent censored patients, whereas the black saltire crosses (×) represent recurrence events. The
inset provides a closer view of the KM curve for the time interval between 0 and 500 days.
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Figure 10: The same Kaplan-Meier curve shown in Fig. 9 for ovarian cancer data from TCGA [43] (dashed curve), plotted
along with several recurrence-free survival curves obtained in simulations of the QBD model for 400 hypothetical patients, with
N = 100. The mean recurrence time (MRT) for the TCGA data was found to be 687.5 days; assuming a doubling time of
1/λ = 40 days to fix the scale, the MRT in units of the doubling time was fixed at λ(687.5 days) = 17.2 for all the simulated
curves. For each curve, the time axis was rescaled to units of the MRT. Each curve was simulated for a different value of
N0 = m0 + n0 and assuming m0 = 0.4N0. For each value of N0, the parameters µA/λ and ν ≡ ξ/η (given in the legend)
were fixed using the scheme described in Section 5.4, which ensures that the MRT and the large-time recurrence probability
both match the data. Among the initial conditions shown in the plot, the best fit (thick blue curve) corresponds to the choice
N0 = 45.
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(for which the outer solution gives a reasonable approximation of the MRT, unless N0 is too small), it
then only remains to determine the value of the ratio ν ≡ ξ/η consistent with both the MRT (fixed at

T
(1)
rec = 17.2/λ) and the inferred µA/λ. This is done by solving Eqs. (37) and (37) numerically for ν ≡ ξ/η

(see also Eq. (2)).
Using the parameters determined through the scheme described above, survival curves were simulated

for several initial conditions N0. In Fig. 10, these curves are shown in one plot, along with the Kaplan-Meier
curve for the ovarian cancer data from TCGA. The time axis was rescaled to units of the MRT and the
values of N0, µA/λ and ν ≡ ξ/η used in the simulations are given in the legend. Among the initial conditions
shown in the plot, the best fit corresponds to the choice N0 = 45.

In this procedure for fitting the model to data, we have assumed a sharply peaked initial condition,
i.e., the initial condition is a delta function centered at some specified initial number of tumor foci N0.
However, in reality this number should follow a probability distribution that would reflect the histogram
of the residual-tumor size in the population under study. Moreover, different patients may have different
responses to treatment (i.e., different values of µA/λ), as well as different ξ/η values. This means that the
fitted values should be regarded as only a guide that gives insight into the possible scenarios leading to the
observed survival curve.

6. Conclusion

In this paper, we developed a mechanistic mathematical model aimed at describing the stochastic dy-
namics of tumor recurrence through a Quasi Birth-and-Death (QBD) process. The main assumption is the
presence of residual tumor foci that can transition between a dormant, chemoresistant and an active-growth,
chemosensitive state. We started with a continuous-time discrete-state master equation that describes the
time-dependent probability pm,n(t) to be in a state with m dormant and n active tumor foci, and then
showed that for a large detectable-tumor size N , the discrete master equation can be well approximated
by a drift-diffusion equation in a continuous state space. Recurrence and cure were built into the model
by imposing absorbing boundary conditions at the cure state (0, 0) and at the recurrence line m + n = N ,
respectively.

Using the forward and backward Kolmogorov approaches in the continuum limit, we derived an equation
for the time-dependent probability of recurrence and the appropriate boundary conditions. The stationary
solution at large times was then obtained analytically (see Eq. (32)) and we showed that it displays a phase
transition as a function of µA/λ, where µA is the death rate of active tumor foci and λ is their doubling
rate. We also derived an equation for the mean recurrence time (MRT), which we solved analytically to
leading order in 1/N by dropping the diffusion (second-derivative) terms in the equation, an approximation
that works outside thin boundary layers along the reflecting barriers (see Eqs. (37) and (38) for the “outer
solution”).

The analytical results were compared to simulations of the discrete-state QBD model. The large-time
probability of recurrence obtained in simulations matched the analytical solution, whereas the MRT from
the simulations showed a small discrepancy to the leading order outer solution of the MRT equation, except
near the critical point µA/λ = 1, where the discrepancy was larger due to the finite-size effect. In principle,
it is possible to get an improved approximation by solving the MRT equation inside the boundary layer
(where the variables have to be rescaled) and constructing a composite solution by the method of matched
asymptotic expansions [38].

Finally, we described a scheme to fit the model to recurrence-free survival data (Kaplan-Meier curves),
using ovarian cancer data from TCGA [43] as an example (Fig. 10). The model has potential applications
to predicting the effect of changes in the tumor death rate or in the duration of chemotherapy on survival
(recurrence rates). By switching the parameter µA at a specified time t = tchemo (where tchemo represents
the duration of chemotherapy) from some specified level µchemo to a lower baseline level µ0, we can simulate
the effect on survival of extending chemotherapy at lower dose (i.e., simultaneously increasing tchemo and
lowering µchemo). This would allow quantitative studies of the effect of changes in chemotherapy regimens
that can potentially be useful as a guide to clinical practice.
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Appendix A. Structure of the infinitesimal transition matrix

Projecting the operator Q̂ = Q̂bulk+ Q̂edge given by Eqs. (6) and (7) on both sides between basis vectors
〈m,n| and |m′, n′〉, we get matrix elements with a block-tridiagonal structure in the direct-product linear
space D ⊗A:

Q = Qbulk + Qedge =



Q00 Q01 0 . . . . . . 0

Q10 Q11 Q12 . . . . . . 0

0 Q21 Q22
. . .

...
...

...
. . .

. . .
. . .

...
...

...
. . .

. . . QN−1,N

0 0 . . . . . . QN,N−1 QNN


(A.1)

From the geometry of the state space boundary (see Fig. 1b), it follows that the block matrices Qmm
decrease in size as m increases: Qmm is an (N − m + 1) × (N − m + 1) matrix, since only the subspace
spanned by the states |m, 0〉 , . . . , |m,N −m〉 is accessible. The bulk part of each block Qmm is tridiagonal
and acts within the accessible subspace of A:

Qbulkmm =



−mη 0 0 0 . . . 0

0 −mγD − γA 2µA 0 . . . 0

0 λ −mγD − 2γA 3µA . . . 0

0 0 2λ −mγD − 3γA

.
.
. 0

.

.

.

.

.

.

.

.

.

.
.
.

.
.
.

.

.

.

.

.

.

.

.

.

.

.

.

.
.
. (N −m)µA

0 0 0 . . . . . . −mγD − (N −m)γA


, (A.2)

where

γD ≡ µD + η ,

γA ≡ λ+ µA + ξ . (A.3)

The bulk parts of the off-diagonal blocks are the matrices

Qbulk
m,m+1 = (m+ 1)



µD−η

η µD

η
. . .

. . . µD

η


(N−m+1)×(N−m)

(A.4)

Qbulkm,m−1 =



0 ξ

0 2ξ
. . .

. . .

. . .
. . .

0 (N −m+ 1)ξ


(N−m+1)×(N−m+2)

(A.5)
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The edge corrections for the three block matrices above are given by

Qedgemm =


0 0 . . . 0
...

. . .
. . .

...
...

. . . −(N −m)µA

0 . . . mγD + (N −m)γA


(N−m+1)×(N−m+1)

(A.6)

Qedge
m,m+1 =



0

0 0

0
. . .

. . .
. . .

. . . −(m+ 1)µD

−(m+ 1)η


(N−m+1)×(N−m)

(A.7)

Qedgem,m−1 =



0 0
0 0

. . .
. . .

. . .
. . .

0 −(N −m+ 1)ξ


(N−m+1)×(N−m+2)

(A.8)

Appendix B. Boundary conditions for the forward and backward Kolmogorov equations

In this appendix, we first explain in detail how the boundary conditions for the forward Kolmogorov
equation are properly defined, with special note to the appropriate treatment of the single absorbing point
at the origin (i.e., the cure state). Then we show how the boundary conditions for the backward Kolmogorov
equation can be derived from those of the forward equation.

Appendix B.1. Forward Kolmogorov equation

The boundary condition that the cure state ~x = (0, 0) acts as a single absorbing point can be imposed
by defining

ρ(~x, t) = ρreg(~x, t) + pcure(t)δ(~x) (B.1)

where ρreg(~x, t) is the regular part of ρ(~x, t) and pcure(t) is the probability of cure at any time ≤ t. In Section
4.2, it is shown that this boundary condition can be fixed through an equation for the function pcure(t) (see
Eq. (22)), which is derived using the backward Kolmogorov approach. In Section 5.1, the large-time limit
of pcure(t) is obtained in closed form in terms of the initial condition. The single-absorbing-point boundary
condition above can be defined more rigorously by setting ρ(~x, t) = 0 on the line x+ y = ε, where ε� 1/N
is sufficiently small (i.e., this line can be defined as an absorbing boundary through which the probability
flux gets into a small region near the origin), and by defining

ρ(~x, t) =
6

ε2

(
1− x+ y

ε

)
pcure(t) (B.2)

for any (x, y) within the small region {(x, y)|x ≥ 0; y ≥ 0;x + y ≤ ε}. When the probability density (B.2)
is integrated over this area, we get exactly pcure(t), i.e., the small region near the origin approximately
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represents the cure state. In the weak limit (in distributional sense) ε → 0, the probability density at the
origin becomes a Dirac delta distribution.

The boundary condition at the recurrence line x + y = 1 is also absorbing, i.e., ρ(~x, t) = 0. At either

x = 0 or y = 0, the boundary condition for the regular part of ~J(~x, t) (i.e., the current density defined

by Eq. (15), corresponding to the regular part of ρ(~x, t)) is given by ~Jreg(~x, t) · ~n = 0, where ~n is the
outward normal, i.e., there cannot be any flux crossing the boundaries x = 0 or y = 0, except at the cure
state (x, y) = (0, 0), at which the regular part of ρ(~x, t) vanishes, whereas the delta peak works as a single

absorbing point. We can easily prove from the conditions ~Jreg(0, y, t) · (−êx) = 0 and ~Jreg(x, 0, t) · (−êy) = 0
that ρreg(0, y, t) → 0 and ρreg(x, 0, t) → 0 continuously as y → 0 and x → 0, respectively (see Eq. (15)).
The absorbing boundary conditions should be interpreted as follows: while the single absorbing point at
the origin pins any probability that it absorbs to the cure state (thus the delta peak), the probability flux
through the recurrence boundary x + y = 1 exits to the outer region {(x, y)|x ≥ 0; y ≥ 0;x + y ≥ 1} and
never comes back.

This proper definition of the boundary condition near the origin ensures that the Fokker-Planck equation
(14) gives the correct probability conservation equation in its integral form. Indeed, using the boundary-
condition scheme described above and integrating Eq. (14) over the area Ωε = {(x, y)|x ≥ 0; y ≥ 0; ε ≤
x+ y ≤ 1}, we get

d

dt

ˆ
Ωε

ρ(~x, t)d2x = −
ˆ

Ωε

~∇ · ~J(~x, t)d2x. (B.3)

Using the divergence theorem and the reflecting boundary condition ~J(~x, t) ·~n = 0 at the boundaries x = 0,
ε ≤ y ≤ 1 and y = 0, ε ≤ x ≤ 1, we get

d

dt

ˆ
Ωε

ρ(~x, t)d2x = −
ˆ

x+y=1
(1,0)→(0,1)

~J(~x, t) · ~n dl −
ˆ

x+y=ε
(0,ε)→(ε,0)

~J(~x, t) · ~n dl

= − ṗrec(t)− ṗcure(t), (B.4)

where ~n is the outward normal and prec(t), pcure(t) are the probabilities of recurrence and cure at any time
≤ t, respectively.

Appendix B.2. Backward Kolmogorov equation

The boundary conditions for the backward equation (17) can be derived from those of the forward
equation (14) as follows (see e.g. [33]). Let f and g be arbitrary square-integrable functions defined
on the domain Ωε = {(x, y)|x ≥ 0; y ≥ 0; ε ≤ x + y ≤ 1}, satisfying the forward and the backward
equations/boundary conditions, respectively. Let us consider the L2 inner product

〈Lff, g〉 ≡
ˆ

Ωε

g Lff d2x = −
ˆ

Ωε

g ~∇ · ~Jf d2x, (B.5)

where ~Jf is the current density as defined in Eq. (15) for the density function f . Integrating the right-hand
side of Eq. (B.5) by parts, it can be shown that

〈Lff, g〉 = 〈f,Lbg〉 −
‰
∂Ωε

[
g ~Jf + f(D~∇g)

]
· ~n dl, (B.6)

where D is the diffusion tensor defined in Eq. (18).

Since the backward operator is the adjoint of the forward operator, i.e., Lb = L†f , we must have 〈Lff, g〉 =
〈f,Lbg〉 for any square-integrable functions f, g defined on the domain Ωε that satisfy the forward and
backward equation/boundary conditions, respectively. Therefore, it follows that the boundary term on the
right-hand side of Eq. (B.6) must vanish for any such f, g. This means that given boundary conditions on
any function f satisfying the forward equation, the boundary conditions for any function g satisfying the
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backward equation have to be chosen in such a way that the integrand on the second term of Eq. (B.6) must

vanish. It then follows that g = 0 for absorbing boundaries and (D~∇g) · ~n = 0 for reflecting boundaries.
Hence, on both absorbing boundaries x0 + y0 = ε and x0 + y0 = 1, the boundary condition is ρ(~x, ~x0, t) = 0.
Using Eqs. (17) and (18), we can also show that

∂ρ(~x,~x0,t)
∂x0

∣∣∣
x0=0

= ∂ρ(~x,~x0,t)
∂y0

∣∣∣
x0=0

(B.7)

at the reflecting boundary x0 = 0, ε ≤ y0 ≤ 1 and

∂ρ(~x,~x0,t)
∂x0

∣∣∣
y0=0

= ∂ρ(~x,~x0,t)
∂y0

∣∣∣
y0=0

(B.8)

at the reflecting boundary y0 = 0, ε ≤ x0 ≤ 1.

Appendix C. Probability flux through the absorbing boundaries

The probability flux through the recurrence boundary can be obtained by integrating the normal com-
ponent of the current density (15) over the line x+ y = 1,

ṗrec(~x0, t) = −Ṡ(~x0, t) =

ˆ

x+y=1
(1,0)→(0,1)

~J(~x, ~x0, t) · ~n dl, (C.1)

where S(~x0, t) is the recurrence-free survival function (see Eqs. (16) and (B.4)) and ṗrec(~x0, t) ≡ ∂
∂tprec(~x0, t).

For µD = 0, using the boundary condition that the probability density has to vanish at the recurrence line
x+ y = 1, we get

ṗrec(~x0, t) = − 1

2N
(λ+ µA)

ˆ 1

0

y
∂ρ(x, y, ~x0, t)

∂y

∣∣∣∣
x=1−y

dy. (C.2)

Using the scheme described in Appendix B.1 for the boundary condition near the origin (see discussion
below Eq. (B.1) and also Eq. (B.4)), for µD = 0 we find that the probability flux into the cure state (0, 0)
is given by

ṗcure(~x0, t) = − 1

2N
(λ+ µA) lim

ε→0+

ˆ ε

0

y
∂ρ(x, y, ~x0, t)

∂y

∣∣∣∣
x=ε−y

dy. (C.3)

The partial differential equations (21) and (22) for the time-dependent probabilities of recurrence and
cure before time t can immediately be derived, respectively, by doing the operations on the right-hand sides
of Eqs. (C.2) and (C.3) on both sides of Eq. (17). These operations commute with the backward operator
Lb defined in Eq. (17), because the latter only acts on the initial-condition variables (x0, y0). Eqs. (21) and
(22) then follow after integration in time from 0 to t.

Appendix D. Solution of the mean recurrence time equation outside the boundary layers
(leading order)

At leading (zeroth) order in 1/N Eq. (29) becomes the first-order PDE (36), which is valid outside
boundary layers that exist near the reflecting boundaries z0 = 0 and z0 = w0. Eq. (36) can be solved by
the method of characteristics, as follows.

Along the characteristic curves (which are parametrized by a parameter r), the PDE (36) becomes the
set of ODEs

dz0

dr
= ηz0 − ξ(w0 − z0)

dw0

dr
= −(λ− µA)(w0 − z0) (D.1)

dT
(1)
rec

dr
= 1
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This last equation immediately gives r = T
(1)
rec (here we can choose the constant of integration to be zero,

since it can be absorbed into the constants s1 and s2 in Eqs. (D.2) below).
Solving the first two ODEs yields

z0 = s1 e
Λ−T

(1)
rec + s2 e

Λ+T
(1)
rec ,

w0 =
1

ξ
(η + ξ − Λ−) s1 e

Λ−T
(1)
rec +

1

ξ
(η + ξ − Λ+) s2 e

Λ+T
(1)
rec , (D.2)

where s1 and s2 are constants of integration and

Λ± = α± β, (D.3)

with α and β given by Eqs. (39) and (40).

By imposing the absorbing boundary condition T
(1)
rec = 0 at w0 = 1, we find the relation

s1 =
ξ − (η + ξ − Λ+)s2

η + ξ − Λ−
(D.4)

Using this relation in Eqs. (D.2), it follows that

(η + ξ − Λ−)z0 − ξeΛ−T
(1)
rec = s2

[
(η + ξ − Λ−)eΛ+T

(1)
rec − (η + ξ − Λ+)eΛ−T

(1)
rec

]
,

ξw0 − ξeΛ−T
(1)
rec = s2

[
(η + ξ − Λ+)eΛ+T

(1)
rec − (η + ξ − Λ+)eΛ−T

(1)
rec

]
. (D.5)

Eliminating the constant of integration s2 from Eqs. (D.5) and simplifying the resulting equation, we
finally get the solution given by Eqs. (37) and (38).
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