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Summary:  12 

Social Decision-making is driven by normative influence (leading to public compliance) and 13 

informational influence (overwriting private beliefs), but how the brain encodes these modulating 14 

forces in probabilistic environments remains unanswered. Using a novel goal-directed learning 15 

paradigm in 185 participants, we observed opposite effects of group consensus on choice and 16 

confidence: people succumbed to the group when confronted with dissenting information, but 17 

increased their confidence when observing confirming information. Leveraging computational 18 

modeling and functional neuroimaging we captured the nuanced distinction between normative 19 

and informational influence, and identified their unique but interacting neural representations in 20 

the right temporoparietal junction (processing social information) and in prefrontal cortices 21 

(representing value computations), whose functional coupling instantiates a reward prediction 22 

error and a novel social prediction error that modulate behavioral adjustment. These results suggest 23 

that a closed-loop network between the brain’s reward hub and social hub supports social influence 24 

in human decision-making. 25 
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INTRODUCTION 31 

Most of our everyday decisions are made in a social context. This affects both big and small 32 

decisions alike: we care about what our family and friends think of which major we choose in 33 

college, and we also monitor other peoples’ choices at the lunch counter in order to obtain some 34 

guidance for our own menu selection. Behavioral studies have examined social influence as 35 

expressed by conformity (Asch, 1956) and have classified two major sources of social influence: 36 

normative and informational influence (Cialdini and Goldstein, 2004; Toelch and Dolan, 2015; 37 

Fehr and Schurtenberger, 2018). Normative influence leads to public compliance, but individuals 38 

may maintain private beliefs, whereas informational influence hypothesizes that social information 39 

is integrated into the own valuation process. Neuroscience studies have recently attempted to 40 

assess the neurobiological underpinnings of both two types of influence (Klucharev et al., 2009; 41 

Campbell-Meiklejohn et al., 2010; Edelson et al., 2011; Zaki et al., 2011; Izuma and Adolphs, 42 

2013; Campbell-Meiklejohn et al., 2017; De Martino et al., 2017; Park et al., 2017). However, 43 

results are controversial (Toelch and Dolan, 2015), and more importantly, none of them have 44 

addressed the neurocomputational distinction and interaction between normative and 45 

informational influence in conjunction with individuals’ own valuation processes. This is largely 46 

due to the challenge that most studies (Klucharev et al., 2009; Campbell-Meiklejohn et al., 2010; 47 

Zaki et al., 2011; Izuma and Adolphs, 2013) relied on preference judgment tasks where no 48 

feedback was given, which hindered the investigation of private belief, and due to a lack of a 49 

comprehensive computational model that quantifies and isolates latent determinants relevant for 50 

behavioral change. Furthermore, confidence is also crucial alongside individuals’ actions in 51 

decision-making (De Martino et al., 2012), however, only a few studies have examined both action 52 

and confidence when social influence is presented (Campbell-Meiklejohn et al., 2017; De Martino 53 

et al., 2017; Park et al., 2017).  54 

Here we establish a comprehensive account of social influence in decision-making at the 55 

behavioral, computational, and neurobiological level identifying distinct, yet interacting brain 56 

regions instantiating social decision-making in humans. We ask whether social influence has a 57 

distinct neurocomputational representation, and how it is integrated with an individual’s own value 58 

computation. To test this, we measured behavioral performance of learning, in combination with 59 

computational modeling and functional magnetic resonance imaging (fMRI). 60 
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Computational models, especially models rooted in reinforcement learning (Sutton and 61 

Barto, 1998), offers a generative framework for approximating the hidden decision processes 62 

underlying decision-making, and hence have brought considerable advances in studying the 63 

neurocomputational mechanisms (e.g., Daw et al., 2006; Gläscher et al., 2010; den Ouden et al., 64 

2013). Although the specific neural circuitry that is recruited during reward learning through direct 65 

experience (Cooper et al, 2012) also contributes to decision-making in social contexts, additional 66 

brain networks dedicated to representing other people’s knowledge and mental state are also 67 

required for facilitating learning in social contexts (e.g. Behrens, 2008; Hampton, 2008, Boorman, 68 

2012). Given these findings, our computational model integrates direct learning instantiated by 69 

individuals’ trial-and-error, together with observational learning instantiated by tracking the 70 

others’ performance. This way, our models recapitulates crucial decision variables associated with 71 

behavioral adjustments, allowing us to directly probe the network of interacting brain regions. 72 

We hypothesize that normative influence has its basis in mentalizing processes encoded in 73 

the right temporal-parietal junction (rTPJ) based on its functional role of representing others in 74 

relation to self (Frith and Frith, 1999; Saxe and Kanwisher, 2003; Hampton et al., 2008). Besides, 75 

we hypothesize that informational influence involves modulation of social learning signals by the 76 

anterior cingulate cortex (ACC), given its relevance to processing vicarious learning (Behrens et 77 

al., 2008; Suzuki et al., 2012). In addition, we anticipate that an individual’s own valuation is 78 

computed via direct reinforcement learning (RL; Sutton and Barto, 1998) encoded in the 79 

ventromedial prefrontal cortex (vmPFC; Bartra et al., 2013). We further propose an interaction of 80 

two brain networks related to processing social information (e.g., rTPJ) and to reward information 81 

(e.g., striatum), whose coupling is modulated by behavioral adjustment (Hare et al., 2010).  82 

We tested these hypotheses by employing a novel paradigm that allows multiple players to 83 

interact with each other in real-time while engaging in a probabilistic reversal learning task (PRL; 84 

e.g., Gläscher et al., 2009). Action as well as confidence were recorded before and after receiving 85 

social information, and both action and confidence were altered by social influence. We report 86 

evidence that direct valuation is integrated with vicarious valuation resulted from informational 87 

influence to make decisions, which is instantaneously affected by normative influence. We further 88 

identify two distinct networks that separately process reward information and social information, 89 

and their functional coupling substantiates a reward prediction error and a social prediction error. 90 
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RESULTS 91 

Participants (N = 185) in groups of five performed the “social influence task”, of which, 39 were 92 

scanned with the fMRI scanner. The task design utilized a multi-phase paradigm, enabling us to 93 

tease apart every crucial behavior under social influence (Figure 1A). Participants began each trial 94 

with their initial choice between two abstract fractals with complementary reward probabilities, 95 

followed by their first post-decision wager (an incentivized confidence rating, referred to as “bet”; 96 

De Martino et al., 2012; Persaud et al., 2007; Dotan et al., 2018; also see Star Methods). After 97 

sequentially uncovering their peers’ first decisions in order of their subjective preference, 98 

participants had the opportunity to adjust both their choice and bet. The final choice and bet were 99 

then multiplied to determine the outcome on that trial. It is worth noting that participants’ actual 100 

choices were communicated to every other participant via real-time connection, thus maintaining 101 

a high ecological validity of the task. The core of this task is a probabilistic reversal learning 102 

paradigm (Gläscher et al., 2009; Figure 1B). This implementation requires participants to learn 103 

and continuously update action-outcome associations, thus creating enough uncertainty such that 104 

group decisions are likely to influence the choice and bet in the 2nd decision (i.e., inferring 105 

normative influence), and examine whether the others’ learning behavior at the end of the trial was 106 

integrated into their own learning (i.e., implying informational influence; see Star Methods). These 107 

dynamically evolving group decisions also allowed us to parametrically test the effect of group 108 

consensus (Figure 1C), although participants were aware that outcomes were only dependent on 109 

their own choice and not that of the group, which prevented cooperative and competitive motives.  110 

 111 

Social Influence Alters Both Action and Confidence in Goal-directed Learning  112 

Model-free analyses showed that 185 healthy participants indeed altered both their first choice and 113 

bet after observing the group decision, but in the opposite direction. Both second choices and bets 114 

were modulated by a significant interaction between the relative direction of the group (with vs. 115 

against the participant’s 1st choice) and the group consensus (2:2, 3:1, 4:0, view of each participant, 116 

Figure 1C). Participants showed an increasing trend to switch their choice toward the group 117 

decision when faced with more dissenting social information, whereas, they were more likely to 118 

persist when observing agreement with the group (direction x consensus interaction, F1,574 = 55.82, 119 

P < 0.001) (Figure 1D and Table S1). Conversely, participants tended to increase their bets as a 120 
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function of group consensus when observing confirming opinions, but sustained their bets when 121 

being contradicted by the group (F1,734 = 4.67, P < 0.05) (Figure 1E and Table S1).  122 

We further verified the benefit of behavior adjustment: social information facilitated 123 

learning. Participants’ choice accuracy of the second decision was indeed significantly higher than 124 

the first one (F1,2392 = 4.45, p < 0.05; see Figure S1A and Table S2). Similarly, participants’ second 125 

bet was significantly higher than their first one (F1,184 = 7.10, p < 0.01; Figure S1B and Table S2). 126 

Together, we identified the effect of social influence in behavioral adjustments, and demonstrated 127 

that the adjustment is not a result of perceptual salience.  128 

 129 

Figure 1. Experimental task and behavioral results. (A) Experimental procedure (see Star Methods). 130 
(B) Example reward structure. Reward contingency reverses after every 8-12 trials. (C) Group 131 
consensus (view from a participant). (D) Switch probability at 2nd choice and bet difference (2nd bet – 132 
1st bet) as a function of the majority of the group’s 1st decision (with vs. against) and the group consensus. 133 
All black lines indicate actual data (mean ± within-subject SEM). Shaded error bars represent the 95% 134 
highest density interval (HDI) of the mean effect computed from the winning model’s posterior density 135 
(posterior predictive check).  136 

 137 

Computational mechanisms of social influence in goal-directed learning 138 

Using computational modeling, we aimed to formally quantify the latent mechanisms by 139 

dissociating the two types of social influence at the computational level, and particularly, by 140 
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unraveling how informational influence was incorporated into one’s own learning process. In 141 

addition to existing RL models on social influence (Biele et al., 2011; Diaconescu et al., 2014), 142 

our model accommodates multiple players, and is able to simultaneously estimate participants’ 143 

two choices and two bets under the hierarchical Bayesian analysis workflow (Gelman et al., 2013; 144 

Carpenter et al., 2017). Our efforts to construct these models were guided by two design principles: 145 

(1) separating of the individual’s own value (Vself) and the vicarious value of others (Vother) during 146 

learning, which were then combined into a choice value for the 1st choice (Vcombined) using linear 147 

weighting,  148 

, 149 

and (2) separating instantaneous normative social influence on the second choice and social 150 

learning from observing the performance of other players (i.e., informational influence). Crucially, 151 

we modeled the second choice as a function of two counteracting influences: (1) the group 152 

dissension (Nagainst) representing the instantaneous normative influence and (2) the difference 153 

between the participants’ action values in the 1st choice (Vchosen – Vunchosen) representing the 154 

distinctiveness of the current value estimates, 155 

. 156 

Following this construction, for instance, when the value difference on their first choice is large, 157 

participants are less likely to succumb to social influence from dissenting information on their 158 

second choice, and vice versa. Lastly, when all outcomes were delivered at the end of the trial, 159 

both own and vicarious value were updated on a trial-by-trial basis: Vself was updated with a reward 160 

prediction error (RPE; Schultz et al., 1997), 161 

; 162 

meanwhile, Vother was updated through tracking a preference-weighted discounted reward history 163 

(i.e., their performance in the recent past) of all four other co-players (Figure 2A; see also Star 164 

Methods), 165 

. 166 

 167 

Vt = bselfVself,t + botherVother,t

Vt(switch) = bbias + bvdiff (Vchn
t - Vunchn

t) + bagainstw.Nagainst + bbet1bet1

Vt = Vt-1 + h(Rt-1 - Vt-1)

Vother,t(A) = ws Rs,icT- i,
i=T-3

T-1

/ if C2s,t-1 = A
s=1

4

/
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 168 

Figure 2. Computational model and its relation to behavior. (A) Schematic of the computational 169 
model (see main text and Star Methods). (B) Left: Relationship between contradicting social information 170 
(preference-weighted Nagainst) and the susceptibility to social influence (slope of switch probability). 171 
Right: Relationship between confirming social information (preference-weighted Nwith) and the bet 172 
difference. 173 

 174 

Arguably, instead of tracking each co-player’s performance, individuals may simulate an 175 

RL-like algorithm to update this vicarious value through observational learning from the co-176 

players – effectively, learning “for” the others. However, using four independent RL algorithms 177 

to update learning signals for the other four co-players is cognitively demanding – participants had 178 

to track and update each other’s individual learning processes together with their own valuation to 179 

make further decisions. Given that an RL update requires both action and reward, a simpler 180 

vicarious learning mechanism may rely on either of them. In other words, participants may utilize 181 

either others’ choice preference history or their performance history to approximate the value 182 

update. We tested all these hypotheses by constructing learning models with the corresponding 183 

value update rule. Model comparison first verified the necessity of the social learning component, 184 

further ruled out these alternative learning process, and therefore, confirmed that vicarious values 185 

were updated by maintaining others’ discounted reward history (Table 1; see also Star Methods). 186 

Additionally, Bayesian model averaging using Bayesian bootstrap (Yao et al., 2018) indicated that 187 

the probability of this winning model being the best model over the others was 99.8%, which 188 

substantiated the model comparison result. 189 

We further verified our winning model using two rigid validation approaches. First, we 190 

carried out a parameter recovery analysis. Although the hierarchical Bayesian approach increases 191 
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the complexity of the parameter space, all parameters of our winning model could be accurately 192 

and selectively recovered (Figure S2). Second, as model comparison provided relative model 193 

performance, we noted the importance to conduct a posterior predictive check (e.g., Frank, et al., 194 

2015). Indeed, our winning model provided the best out-of-sample predictive power, and its 195 

posterior prediction well captured behavioral findings of our model-free analyses (Figure 1D).  196 

Next, we sought to establish the functional association between model parameters and the 197 

model-free behaviors. Parameter results (Figure S1C-F) hinted that the extent to which participants 198 

learned from themselves and from the others was on average comparable, suggesting that an 199 

integrated value computed from one’s direct learning and the informational influence to guide 200 

future decisions. Furthermore, parameters related to normative influence were well-capable of 201 

predicting the individual difference of participant’s behavioral adjustment. If the model-derived 202 

signal was in high accordance with the corresponding model-free feature, we ought to anticipate a 203 

strong association between them. Indeed, we observed a significant positive correlation between 204 

β(w.Nagainst) and the slopes of choice switch probability in the against condition (Pearson’s R = 205 

0.64, p < 0.001; Figure 2B). Similarly, we observed a positive correlation between β(w.Nwith) and 206 

slope derived from the bet difference in the “with” condition (Pearson’s R = 0.33, p < 0.001; Figure 207 

2B).  208 

Table 1. Candidate computational models and model comparison 209 

Class Model Description ΔLOOIC 

Non-social models 
M1a simple RL 0 

M1b M1a + fictitious update −1245 

Social models with 

instantaneous effect 

M2a M1a + instantaneous social influence −1893 

M2b M1b + instantaneous social influence −2889 

Social models with 

instantaneous effect 

and observational 

learning 

M3 M2b + OL (others’ RL update) −3089 

M4 M2b + OL (others’ action preference) −2869 

M5 M2b + OL (others’ current reward) −3203 

M6a M2b + OL (others’ cumulative reward) −3450 

M6b M2b + OL (others’ cumulative reward) + bet1 −3507 

Note: RL = reinforcement learning, OL = observational learning. LOOIC = leave-one-out information 210 

criterion; lower LOOIC value indicates better out-of-sample predictive accuracy. M6b (in bold) is the 211 

winning model. 212 
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Together, our computational modeling analyses suggested that (1) participants indeed 213 

learned both from their own valuation using an RPE to update their own values and from others 214 

by maintaining the others’ reward history that was subsequently integrated it into their own 215 

decision process; (2) participants’ behavioral adjustment was instantaneously affected by the group 216 

consensus: the number of co-players who made the opposite choice prompted participants to 217 

switch their choice towards the direction of the group, where the number of co-players who decided 218 

on the same option drove participants to increase their bet. Once we had uncovered those latent 219 

elements of the decision processes under social influence, we were then able to test how they were 220 

computed and implemented at the neural level using model-based fMRI (Gläscher and O’Doherty, 221 

2010). 222 

 223 

Neural substrates of dissociable self- and other value 224 

The first part of our imaging analyses focused on how distinctive decision variables (Figure 225 

2A) were represented in the brain (GLM1; see Star Methods). Second-level results were obtained 226 

using non-parametric methods with threshold-free cluster enhancement (TFCE; Smith and 227 

Nichols, 2009). Our model distinguished between two value signals and suggested that an 228 

integrated value signal was associated with participants’ initial action and bet. Consequently, we 229 

now aimed to test the hypothesis that distinct and dissociable brain regions were recruited to 230 

implement these computational signals. Indeed, we observed that the vmPFC (peak: x = 4, y = 46, 231 

z = −14; all coordinates reported in the MNI space) activity was positively scaled with Vself, and 232 

the ACC (peak: x = 2, y = 10, z = 36) activity was positively scaled with Vother (Figure 3A; Table 233 

S3). To test whether the two value signals (i.e., Vself, Vother) are distinctively and respectively 234 

associated with vmPFC and ACC, we engaged in a double-dissociation approach (e.g., Shamay-235 

Tsoory et al., 2009; Kennerley et al., 2011), and we found that Vself was exclusively encoded in the 236 

vmPFC but not in the ACC, whereas Vother was exclusively represented in the ACC but not in the 237 

vmPFC (Figure 3B). In addition, the medial prefrontal cortex (mPFC; peak: x = 10, y = 40, z = 10) 238 

was functionally coupled with both vmPFC and ACC (Figure S5 and Table S5), suggesting a 239 

neural encoding for the integrated value signal (e.g., Rouault et al., 2019). Besides the value 240 

signals, an RPE signal was firmly associated with activities in the nucleus accumbens (NAcc; left 241 

peak: x = −10, y = 8, z = −10; right peak: x = 12, y = 10, z = −12; Figure 3D; Table S3), a region 242 
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that is well-studied in the literature (e.g., Schultz et al., 1997). However, a closer look at the two 243 

theoretical subcomponents of RPE is necessary to assess its neural substrates (e.g., Behrens et al., 244 

2008; Jocham et al., 2014). To qualify as a region encoding an RPE signal, activities in the NAcc 245 

ought to covary positively with the actual outcome (i.e., reward) and negatively with the 246 

expectation (i.e., value). Notably, this property thus provides a common framework to test the 247 

neural correlates of any error-like signal (Behrens et al., 2008). Under this framework, we indeed 248 

found that the activities in the NAcc showed a positive correlation with the reward outcome (p < 249 

0.0001, permutation test; Figure 3E, green line), and a negative effect of the value signal (p = 250 

0.021, permutation test; Figure 3E, red line). 251 

 252 

Figure 3. Neural substrates of dissociable value signals and reward prediction error. (A) The neural 253 
representation of Vself and Vother are encoded in the vmPFC (red/yellow) and the ACC (blue/light blue), 254 
respectively. Sagittal slice at x = 3. (B, C) Time series estimates (Behrens et al., 2008) demonstrate a 255 
double dissociation of the neural signatures of the value signals. The vmPFC is positively correlated 256 
with Vself, but not with Vother, whereas the ACC is positively correlated with Vother, but not with Vself. (D) 257 
The neural representation of reward prediction error (RPE) is encoded in the VS/NAcc. Coronal slice at 258 
y = 10. (E) The time series in the left VS/NAcc is sensitive to both component of the RPE: positive 259 
correlation with reward (green line), and negative correlation with value (red line). 260 

 261 
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Neural correlates of dissenting social information and behavioral adjustment 262 

We next turned to disentangle the neural substrates of the instantaneous social influence 263 

(GLM1; see Star Methods) and the subsequent behavioral adjustment (GLM2; see Star Methods). 264 

As we have validated enhanced learning using such social information (Figure S1), we reasoned 265 

that participants might process other co-players’ intentions relative to their own first decision to 266 

make subsequent adjustments, and this might be related to the mentalizing network. Based on this 267 

reasoning, we assessed the parametric modulation of preference-weighted normative influence 268 

(w.Nagainst), and indeed found that activity in TPJ (left peak: x = −48, y = −62, z = 30; right peak: 269 

x = 50, y = −60, z = 34), among other regions (e.g., ACC, anterior insula; see Table S4), was 270 

positively correlated with the dissenting social information (Figure S3; Table S4). In addition, the 271 

resulting choice adjustment (i.e., switch vs. stay) covaried with activity in bilateral dorsolateral 272 

prefrontal cortex (dlPFC; left peak: x = −32, y = 48, z = 16; right peak: x = 26, y = 42, z = 32; 273 

Figure S4; Table S4), commonly associated with executive control and behavioral flexibility 274 

(Gläscher et al., 2009; Burke et al., 2010). In contrast, the vmPFC (peak: x = 6, y = 44, z = −16) 275 

was more active during stay trials (i.e., stay > switch) trials, reminiscent of its representation of 276 

one’s own valuation (Bartra et al., 2013; Gläscher et al., 2009; Figure S4; Table S4). In summary, 277 

our model-based fMRI analyses (Gläscher and O’Doherty, 2010; Cohen et al., 2017) revealed two 278 

distinct brain networks representing social information and reward and value processing. 279 

 280 

A network between Brain’s Reward Circuit and Social Circuit 281 

So far, we have shown how key decision variables are implemented at distinct nodes at the 282 

neural level. In a next step, we sought to establish how these network nodes are functionally 283 

connected to bring about socially-induced behavioral change and to uncover additional latent 284 

computational signals that would otherwise be undetectable by conventional general linear models. 285 

We first conducted a psycho-physiological interaction (PPI, Friston et al., 1997; O’Reilly et al., 286 

2012) to examine the context-dependent connectivity, and then we performed a physio-287 

physiological interaction (PhiPI; Friston et al., 1997) to further interrogate the functional coupling 288 

at the physiological level.  289 

 290 
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 291 

Figure 4. Functional connectivity between reward-related regions and social-related regions. (A) 292 
The functional connectivity between the left putamen (green) and the seed region rTPJ (blue) is 293 
modulated by the choice adjustment (switch vs. stay). (B) Correlation of activity in seed and target 294 
region for both switch and stay trials in an example subject and histogram of coupling strength across 295 
all participants for switch and stay trials. (C) The BOLD time series in the left putamen (PPI target) 296 
exhibits a social prediction error (positive correlation with the actual agreement, and negative correlation 297 
with the expected agreement) (mean effect across participants ± SEM). (D) Two seed regions, the rTPJ 298 
(blue), which responds to the social information, and the left dlPFC (yellow), which encodes the choice 299 
adjustment, elicit connectivity activations in the vmPFC and the pMFC (both in green), which partially 300 
overlap with the latent value signals (i.e., Vself; red; and Vother; blue), as in Figure 3A. Sagittal slice at x 301 
= 0. (E, F) Correlation plots of seed and target regions for both high and low dlPFC activity in an 302 
example subject and histograms of seed-target coupling strengths across all participants for high and 303 
low dlPFC activity. 304 

 305 

Using a PPI seeded in rTPJ (see Star Methods), we investigated how behavioral change at 306 

the 2nd decision modulated the functional coupling between the social information represented in 307 

rTPJ and other brain regions. This analysis identified the left putamen (lPut; peak: x = −20, y = 308 

12, z = −4; Figure 4A and 4B; Table S5). Closer investigations into the computational role of lPut 309 

revealed that it did not correlate with the two components of an RPE: activities in the lPut only 310 

positively correlated with reward (p < 0.0001, permutation test), but not negatively correlated with 311 
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value, (p = 0.4854, permutation test). Instead, as the choice adjustment resulted from social 312 

information, we reasoned that lPut might encode a social prediction error (SPE). Follwing this 313 

reasoning, we conducted a similar analysis as we did for the RPE, and we found that activity in 314 

the lPut was positively correlation with the actual agreement (approximated by 1-Nagainst%; p = 315 

0.040, permutation test) and negatively correlated with the expected agreement (approximated by 316 

the value difference Vchosen - Vunchosen; as individuals who maintain a larger value difference may 317 

expect more agreement; Zhu et al., 2012; p = 0.014, permutation test) (Figure 4C). This pattern 318 

confirmed that lPut was effectively encoding a hitherto uncharacterized social prediction error. 319 

Taken together, these analyses demonstrate that functional coupling between neural 320 

representations of social information and an SPE is enhanced, when this social information is 321 

leading to a behavioral change.  322 

In the last step, using a PhiPI we investigated how the neural representation of switching 323 

at 2nd decision in the left dlPFC modulated the functional coupling of rTPJ and other brain regions. 324 

This analysis revealed that activity in rTPJ positively modulated the coupling between vmPFC 325 

(peak: x = 0, y = 48, z = −12) and ACC (peak: x = 0, y = 0, z = 40), which strikingly overlapped 326 

with the regions that represented the two value signals (Figure 4D-F, Table S5). Therefore, it seems 327 

that the interplay of neural representations of social information and the propensity for behavioral 328 

change leads to the updating of both values signals obtained via both direct learning and 329 

observational learning. 330 

 331 

DISCUSSION 332 

Social influence is a powerful modulator of individual choices (Ruff and Fehr, 2014). Although 333 

accumulating studies have investigated the neural representations of social influence and attempted 334 

to identify potential mechanisms, there is little direct evidence for the dissociation between 335 

normative influence and informational influence and how the distinct computations are represented 336 

in the brain and how these brain regions interact with one another. Here, we addressed this gap 337 

with a novel social decision-making paradigm that allowed us to dissociate the two sources of 338 

social influence. In a comprehensive neurocomputational approach to social decision-making, we 339 

were not only able to identify a network of brain regions that represents and integrates social 340 

information of others, but also characterize the computational role of each node in this network in 341 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted May 24, 2019. ; https://doi.org/10.1101/551614doi: bioRxiv preprint 

https://doi.org/10.1101/551614


15 
 

detail (Figure 5), suggesting the following process model: one’s own decision is guided by a 342 

combination of value signals from direct learning (Vself) represented in vmPFC (Figure 3A-B; 343 

Bartra et al., 2013) and from observational learning (Vother) represented in a section of ACC (Figure 344 

3A-B) that is also closely related to estimates of the volatility of others’ choices (Behrens et al., 345 

2008) and to error detection and response conflict resolution (e.g., Carter, 1998). The decisions of 346 

others are encoded with respect to the own choice in rTPJ (Figure S4), an area linked, but not 347 

limited to representations of social information and agents in a variety of tasks (Saxe and 348 

Kanwisher, 2003; Hampton et al., 2008; Suzuki et al., 2015). In fact, rTPJ is also related to Theory 349 

of Mind (Frith and Frith, 1999) and other integrative computations such as multisensory 350 

integration (Tsakiris et al., 2010) and attentional processing (Corbetta and Shulman, 2002). 351 

Moreover, dissenting social information gives rise to a novel and hitherto uncharacterized social 352 

prediction error (difference between actual and expected agreement with group decision) 353 

represented in lPut (Figure 4A, 4C; Figure S5), unlike the more medial NAcc, which exhibits the 354 

neural signature of a classic RPE (Figure 3D-E; O’Doherty et al., 2003; O’Doherty et al., 2004). 355 

Notably, the interplay of lPut and rTPJ affects behavioral change toward the group decision (Figure 356 

4A-B) in combination with its neural representation of choice switching in left dlPFC (Figure 4D-357 

F). These functionally connected neural activities trigger the update of direct learning in vmPFC 358 

(Vself) and observational learning in ACC (Vother), thus closing the loop of decision-related 359 

computations in social contexts. 360 

 361 

Figure 5. Schematic of the of the network supporting social influence in decision-making 362 

as uncovered in this study (for details see main text). 363 

 364 
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Our result that self-valuation is encoded in vmPFC is firmly in line with previous evidence 365 

from learning and decision-making in non-social contexts (Plassmann et al., 2007; Levy and 366 

Glimcher, 2012; Bartra et al., 2013), and extends it into a social context. On top of individuals’ 367 

own value update, we further show that ACC is responding to the value signals updated from 368 

observational learning, which is aligned with previous studies that have implicated the ACC in 369 

tracking the volatility of social information (Behrens et al., 2008; Behrens et al., 2009). In 370 

particular, given that the social information in the current study is represented by the cumulative 371 

reward history of the others as inferred by our computational model, the dynamics of how well the 372 

others were performing in the recent past somewhat reflects their volatility in the same learning 373 

environment as in Behrens et al. (2008). Moreover, this distinct neural coding of direct values and 374 

vicarious values in the current study fundamentally differs from previous studies on social 375 

influence in decision-making. In a recent study, for instance, Apps and Ramnani (2017) reported 376 

that neural activities in vmPFC and ACC were respectively associated with subjective values and 377 

normative values in an intertemporal economic game. It should be noted that participants in this 378 

study were asked to separately and explicitly make intertemporal decisions either for themselves 379 

or for another group. In the current study, however, because the two value signals were modeled 380 

at the same time point, and no instruction was given to track self and other differently, we argue 381 

that the learning processes from one’s own valuation and from the others’ reward history were 382 

implemented in parallel; let alone our winning model has indicated the extent to which individuals 383 

were relying on their own and the others were effectively comparable (Figure S1C). Collectively, 384 

these results demonstrate concurrent yet distinct value computations in vmPFC and ACC when 385 

social information is presented during goal-directed learning.  386 

Apart from the value dissociation, we were interested in how direct value and vicarious 387 

value were integrated to guide future decisions. As shown by our functional connectivity analyses, 388 

the mPFC covaried with activities in both the vmPFC and the ACC. According to a recent meta-389 

analysis (Bartra et al., 2013), this region is particularly engaged during the decision stage when 390 

individuals are representing the choice options and selecting actions, especially in value-based and 391 

goal-directed decision-making (Rangel and Hare, 2010). Hence, it suggests that beyond the 392 

dissociable neural underpinnings, the directed value and vicarious value are further combined to 393 

make subsequent decisions (e.g., Rouault et al., 2019).  394 
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Furthermore, we replicated previous reports that identified the NAcc was associated with 395 

the RPE computation instead of mere outcome representation (Behrens et al., 2008; Jocham et al., 396 

2014; Klein et al., 2017). That is, if a brain region encodes the RPE, its activity should be positively 397 

correlated with the actual outcome (e.g., reward), and negatively correlated with the expected 398 

outcome (e.g., value). Using this property of the RPE signal, our data identify a hitherto 399 

uncharacterized social prediction error (SPE) encoded in a section of the putamen, resulting from 400 

a psychophysiological interaction seeded at rTPJ. This suggests that the SPE signal may trigger a 401 

re-computation of expected values and give rise to the subsequent behavioral adjustment, which is 402 

partially in line previous reports showing that an SPE was signaled by increased striatal activity 403 

(Behrens et al., 2008; Meshi et al., 2012). In addition, these functional connectivity results 404 

somewhat concur with previous reports that demonstrated the rTPJ has functional links with the 405 

reward network, of which the striatal region is a central hub (Hare et al., 2010). 406 

In addition, our results complement and extend previous neuroimaging work on social 407 

influence. Consistent with the large body of studies on social influence and conformity (Klucharev, 408 

et al., 2009; Berns et al., 2010; Tomlin et al., 2013), the ACC and the aINS are more activated 409 

when observing conflicting social information, with the ACC being relevant to general error 410 

monitoring and conflict detecting (Ridderinkhof; et al., 2004; Diedrichsen et al., 2005) and the 411 

aINS being associated with affective emotion and negative arousal (Craig, 2002, 2003). This body 412 

of evidence suggests when observing the other co-players choosing the alternative option and thus 413 

contradicting an individuals’ own first choice, a conflict monitoring process may be initiated, and 414 

such conflict between individuals’ prior decision and the group opinion may be accompanied by 415 

increased affective arousal, such as worry and anxiety. However, such an interpretation remains 416 

speculative as we did not collect psychophysiological measures of arousal (such as skin 417 

conductance responses). Nevertheless, it should be noted that conflict monitoring is not necessarily 418 

triggered by dissenting social information; other forms of perceptual mismatch may provoke a 419 

similar neural response in the ACC and aINS. Yet in the current study, our behavioral results have 420 

shown that switching towards the direction of the group was not due to perceptual mismatch; 421 

instead, social information was utilized to facilitate learning (Figure S1-2). 422 

It is perhaps surprising and interesting that we did not find significant neural correlates 423 

with post-decision confidence (i.e., “bet” in the current study). This might be due to the fact that 424 

events in our current design (i.e., first choice and first bet, second choice and second bet) were not 425 
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constructed far apart in time, such that even carefully specified GLMs are not able to capture the 426 

variance related to the bets. More importantly, bets in the current design were closely tied to the 427 

corresponding choice valuation. In other words, when individuals were sure that one option would 428 

lead to a reward, they tend to place a high bet. In fact, this relationship was well reflected by our 429 

winning model and related model parameters (Figure S1E). That said, the bet was positively 430 

correlated with value signals, thus inevitably resulting in co-linear regressors and diminishing the 431 

statistical power. These caveats aside, our results nonetheless shed light on the change in 432 

confidence after incorporating social information in decision-making, which largely extends 433 

evidence from previous studies that neither directly addressed the difference in confidence before 434 

and after exposing the social information, nor examined the interface between choice and 435 

confidence (De Martino et al., 2017; Park et al., 2017; Campbell-Meiklejohn et al., 2017). 436 

In summary, our results provide behavioral and computational evidence that normative 437 

social influence alters individuals’ actions and confidence, and informational social influence is 438 

incorporated into their own valuation processes. Moreover, we found a network of distinct, yet 439 

interacting brain regions substantiating specific computational variables. Such a network is in a 440 

prime position to process decisions of the sorts mentioned in the beginning, where – as in the 441 

example of a lunch order – we have to balance our own experienced-based reward expectations 442 

with the expectations of congruency with others and use the resulting error signals to flexibly adapt 443 

our choice behavior in social contexts. 444 

 445 
  446 
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STAR METHODS:  447 

 448 

CONTACT FOR REAGENT AND RESOURCE SHARING 449 

Further information and requests for resources and MRI data should be directed to and will be 450 

fulfilled by the Lead Contact, Jan P. Gläscher (glaescher@uke.de), Institute for Systems 451 

Neuroscience, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany. 452 

 453 

EXPERIMENTAL MODEL AND SUBJECT DETAILS 454 

Forty-one groups of five healthy, right-handed participants were invited to participate in the study. 455 

No one had any history of neurological and psychiatric diseases, nor current medication except 456 

contraceptives or any MR-incompatible foreign object in the body. To avoid gender bias, each 457 

group consisted of only same-gender participants. Forty-one out of 205 participants (i.e., one of 458 

each group) were scanned with fMRI while undergoing the experimental task. The remaining 164 459 

participants were engaged in the same task via an intranet connection, while being seated in the 460 

adjacent behavioral testing room outside the scanner. Twenty participants out of 205 who had only 461 

switched once or had no switch at all were excluded, including two fMRI participants. This was 462 

to ensure that the analysis was not biased by these non-responders (Tomlin et al., 2013). The final 463 

sample consisted of 185 participants (95 females; mean age: 25.56 ± 3.98 years; age range: 18-37 464 

years), and among them, 39 participants belonged to the fMRI group (20 females; mean age: 25.59 465 

± 3.51 years; age range: 20-37 years). All participants gave informed written consent before the 466 

experiment. The study was conducted in accordance with the Declaration of Helsinki and was 467 

approved by the Ethics Committee of the Medical Association of Hamburg (PV3661). 468 

 469 

METHOD DETAILS 470 

Task 471 

Underlying probabilistic reversal learning paradigm  472 

The task structure of our social influence task was a probabilistic reversal learning (PRL) task. In 473 

our two-alternative forced choice PRL (Figure 1B), each choice option was associated with a 474 
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particular reward probability (i.e., 70% and 30%). After a variable length of trials (i.e., 8-12 trials), 475 

the reward contingencies reversed, such that individuals who were undergoing this task needed to 476 

re-adapt to the new reward contingencies so as to maximize their outcome. Given that there was 477 

always a “correct” option, which led to more reward than punishment, alongside an “incorrect” 478 

option, which caused otherwise, a higher-order anticorrelation structure thus existed to represent 479 

the underlying reward dynamics (Gläscher et al., 2009). 480 

We used the PRL task rather than tasks with constant reward probability (e.g., being always 481 

70%) because the PRL task structure requires participants continuously pay attention to the reward 482 

contingency, in order to adapt to the potentially new state of the reward structure, and to ignore 483 

the (rare) probabilistic punishment from the “correct” option. As a result, the PRL task assures 484 

constant learning throughout the entire experiment (Figure S1A-B). In fact, one of our early pilot 485 

studies used a fixed reward probability. In this pilot, participants quickly learned the reward 486 

contingency and neglected the social information; in this version, we thus could not tease apart the 487 

contributions between reward-based influence and socially-based influence. 488 

 489 

Breakdown of the social influence task  490 

For each experimental session, a group of five participants were presented with and engaged in the 491 

same PRL via an intranet connection without experimental deception. For a certain participant, 492 

portrait photos of other four same-gender co-players were always displayed within trials. This 493 

manipulation further increased the ecological validity of the task, at the same time created a more 494 

engaging situation for the participants.  495 

The social influence task contained six phases. Phase 1. Initial choice (1st choice). Upon the 496 

presentation of two choice options using abstract fractals, participants were asked to make their 1st 497 

choice. A yellow frame was then presented to highlight the chosen option. Phase 2. Initial bet (1st 498 

bet). After making the 1st choice, participants were asked to indicate how confident they were in 499 

their choice, 1 (not confident), 2 (reasonably confident) or 3 (very confident). Notably, the 500 

confidence ratings also serve as post-decision wagering metric (an incentivized confidence rating, 501 

Persaud, et al., 2007); namely, the ratings would be multiplied by their potential outcome on each 502 

trial. For instance, if a participant won on a particular trial, the reward unit (i.e., 20 cent in the 503 

current setting) was then multiplied with the bet (e.g., 2) to obtain the final outcome (20 * 2 = 40 504 
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cent). Therefore, the confidence rating in the current paradigm was referred to as “bet”. A yellow 505 

frame was presented to highlight the chosen bet. Phase 3. Preference giving. Once all participants 506 

had provided their choices and bets, the choices (but not the bets) of the other co-players were 507 

revealed. Crucially, instead of seeing all four other choices at the same time, participants had the 508 

opportunity to sequentially uncover their peer’s decisions. In particular, participants could decide 509 

whom to uncover first and whom to uncover second, depending on their preference. The remaining 510 

two choices were then displayed automatically. This manipulation is essential, because, in studies 511 

of decision-making, individuals tend to assign different credibility to their social peers based on 512 

their performance (e.g., Behrens et al., 2008; Boorman et al., 2013). In this study that there were 513 

four other co-players in the same learning environment, it is likely that they had various 514 

performance levels, and therefore shall receive difference credibility. Phase 4. Choice adjustment 515 

(2nd choice). When all four other choices were presented, participants were able to adjust their 516 

choices given the social information. The yellow frame was shifted accordingly to highlight the 517 

adjusted choice. Phase 5. Bet adjustment (2nd bet). After the choice adjustment, participants might 518 

adjust their bet as well. Additionally, participants also observed other co-players’ second choices 519 

(on top of the first choices) once they had submitted their adjusted bets. Presenting other co-520 

players’ choices after the bet adjustment rather than the choice adjustment prevented a biased bet 521 

adjustment by the additional social information. The yellow frame was shifted accordingly to 522 

highlight the adjusted bet. Phase 6. Outcome delivery. Finally, the outcome was determined by the 523 

combination of participants’ 2nd choice and 2nd bet. Outcomes of the other co-players were also 524 

displayed, but shown only as the single reward unit (i.e., 20 cent) without multiplying their 2nd bet. 525 

This was to provide participants with sufficient yet not overwhelming information about their 526 

peer’s performance.  527 

 528 

Procedure 529 

To ensure a complete understanding of the task procedure, this study was composed of a two-day 530 

procedure: pre-scanning training (Day1), and main experiment (Day2).  531 

 532 

Pre-scanning training (Day1) 533 
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One to two days prior to the MRI scanning (Day2), five participants came to the behavioral lab to 534 

participate in the pre-scanning training. Upon arrival, they received the written task instruction and 535 

the consent form. After returning the written consent, participants were taken through a step-by-536 

step task instruction by the experimenter. Notably, participants were explicitly informed (1) that 537 

an intranet connection was established so that they would observe real responses from the others, 538 

(2) what probabilistic reward meant by receiving examples, (3) that there was neither cooperation 539 

nor competition in this experiment, and (4) that the reward probability could reverse multiple times 540 

over the course of the experiment, but participants were not informed about when and how often 541 

this reversal would take place. Importantly, to shift the focus of the study away from social 542 

influence and conformity, we stressed the experiment as a multi-player decision game, where the 543 

goal was to detect the “good option” so as to maximize their personal payoff in the end. Given this 544 

uncertainty, participants were instructed that they may either trust their own learning experience 545 

through trial-and-error, or take decisions from their peers into consideration, as some of them 546 

might learn faster than the others. Participants’ explicit awareness of all possible alternatives was 547 

crucial for the implementation of our social influence task. To further enhance participants’ 548 

motivation, we informed them that the amount they would gain from the experiment would be 549 

added to their base payment (see Reward Payment below). After participants had fully understood 550 

the task, we took portrait photos of them. To avoid emotional arousal, we asked participants to 551 

maintain a neutral facial expression as in typical passport photos. To prevent potential confusion 552 

before the training task, we further informed participants that they would only see photos of the 553 

other four co-players without their own.  554 

The training task contained 10 trials and differed from the main experiment in two aspects. 555 

Firstly, it used a different set of stimuli than used in the main experiment to avoid any learning 556 

effect. Secondly, participants were given a longer response window to fully understand every step 557 

of the task. Specifically, each trial began with the stimuli presentation of the two choice 558 

alternatives (4000ms), followed by the 1st bet (3000ms). After the two sequential preference ratings 559 

(3000ms each), all 1st choices from the others were displayed below their corresponding photos 560 

(3000ms). Participants were then able to adjust their choice (4000ms) and their bet (3000ms). 561 

Finally, outcomes of all participants were released (3000ms), followed by a jittered inter-trial 562 

interval (ITI, 2000 – 4000ms). To help participants familiarize themselves, we orally instructed 563 
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them what to expect and what to do on each phase for the first two to three trials. The procedure 564 

during Day1 lasted about one hour.  565 

 566 

Main experiment (Day2) 567 

On the testing day, the five participants came to the MRI building. After a recap of all the important 568 

aspects of the task instruction, the fMRI participant gave the MRI consent and entered the scanner 569 

to perform the main social influence task, while the remaining 4 participants were seated in the 570 

same room adjacent to the scanner to perform the same task. All computers were interconnected 571 

via the intranet. They were further instructed not to make any verbal or gestural communications 572 

with other participants in the experiment.  573 

The main experiment contained 100 trials and used a different pair of stimuli from the 574 

training task. It followed the exact description detailed above (see Breakdown of the social 575 

influence task). Specifically, each trial began with the stimuli presentation of the two choice 576 

alternatives (2500ms), followed by the 1st bet (2000ms). After the two sequential preference ratings 577 

(2000ms each), all 1st choices from the others were displayed below their corresponding photos 578 

(3000ms). Participants were then able to adjust their choice (3000ms) and their bet (2000ms). 579 

Finally, outcomes of all participants were released (3000ms), followed by a jittered inter-trial 580 

interval (ITI, 2000 – 4000ms). The procedure during Day2 lasted about 1.5 hours. 581 

 582 

Reward payment 583 

All participants were compensated with a base payment of 35 Euro plus the reward they had 584 

achieved during the main experiment. In the main experiment, to prevent participants from careless 585 

responses on their 1st choice, they were explicitly instructed that on each trial, either the 1st choice 586 

or the 2nd choice would be used to determine the final payoff. However, this did not affect the 587 

outcome delivery on the screen. Namely, although on some trials participants’ 1st choice was used 588 

to determine their payment, only outcomes that corresponded to the 2nd choice appeared on the 589 

screen. Additionally, when their total outcome was negative, no money was deducted from their 590 

final payment. Overall, participants gained 4.48 ± 4.41 Euro after completing the experiment. 591 

Finally, the experiment ended with an informal debriefing session. 592 
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 593 

Behavioral data acquisition 594 

Stimulus presentation, MRI pulse triggering, and response recording were accomplished with 595 

Matlab R2014b (www.mathworks.com) and Cogent2000 (www.vislab.ucl.ac.uk/cogent.php). In 596 

the behavioral group (as well as during the pre-scanning training), buttons “V” and “B” on the 597 

keyboard corresponded to the left and right choice options, respectively; and “V”, “B”, and “N” 598 

corresponded to the bets “1”, “2”, and “3”, respectively. As for the MRI group, a four-button MRI-599 

compatible button box with a horizontal button arrangement was used to record behavioral 600 

responses. To avoid motor artifacts, the position of the two choices options was counterbalanced 601 

for all the participants. 602 

 603 

FMRI data acquisition and pre-processing 604 

MRI data collection was conducted on a Siemens Trio 3T scanner (Siemens, Erlangen, Germany) 605 

with a 32-channel head coil. Each brain volume consisted of 42 axial slices (voxel size, 2 x 2 x 2 606 

mm, with 1 mm spacing between slices) acquired using a T2*-weighted echoplanar imaging (EPI) 607 

protocol (TR, 2510ms; TE, 25ms; flip angle, 40°; FOV, 216mm) in descending order. Orientation 608 

of the slice was tilted at 30° to the anterior commissure-posterior commissure (AC-PC) axis to 609 

improve signal quality in the orbitofrontal cortex (Deichmann et al., 2003). Data for each 610 

participant were collected in three runs with total volumes ranging from 1210 to 1230, and the first 611 

3 volumes of each run were discarded to obtain a steady-state magnetization. In addition, a gradient 612 

echo field map was acquired before EPI scanning to measure the magnetic field inhomogeneity 613 

(TE1 = 5.00ms, TE2 = 7.46ms), and a high-resolution anatomical image (voxel size, 1 x 1 x 1 mm) 614 

was acquired after the experiment using a T1-weighted MPRAGE protocol.  615 

fMRI data preprocessing was performed using SPM12 (Statistical Parametric Mapping; 616 

Wellcome Trust Center for Neuroimaging, University College London, London, UK). After 617 

converting raw DICOM images to NIfTI format, image preprocessing continued with slice timing 618 

correction using the middle slice of the volume as the reference. Next, a voxel displacement map 619 

(VDM) was calculated from the field map to account for the spatial distortion resulting from the 620 

magnetic field inhomogeneity (Jezzard and Balaban, 1995; Andersson et al., 2001; Hutton et al., 621 
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2002). Incorporating this VDM, the EPI images were then corrected for motion and spatial 622 

distortions through realignment and unwarping (Andersson et al., 2001). The participants’ 623 

anatomical images were manually checked and corrected for the origin by resetting it to the AC-624 

PC. The EPI images were then coregistered to this origin-corrected anatomical image. The 625 

anatomical image was skull stripped and segmented into gray matter, white matter, and CSF, using 626 

the “Segment” tool in SPM12. These gray and white matter images were used in the SPM12 627 

DARTEL toolbox to create individual flow fields as well as a group anatomical template 628 

(Ashburner, 2007) The EPI images were then normalized to the MNI space using the respective 629 

flow fields through the DARTEL toolbox normalization tool. A Gaussian kernel of 6 mm full-630 

width at half-maximum (FWHM) was used to smooth the EPI images. 631 

After the preprocessing, we further detected brain volumes that (1) excessively deviated 632 

from the global mean of the BOLD signals (> 1 SD), (2) showed excessive head movement 633 

(movement parameter / TR > 0.4), or (3) largely correlated with the movement parameters and the 634 

first derivative of the movement parameters (R2 > 0.95). This procedure was implemented with the 635 

“Spike Analyzer” tool (https://jan-glaescher.squarespace.com/s/spike_analyzer.m) which returned 636 

indices of those detected volumes. We then constructed them as additional participant-specific 637 

nuisance regressors of no interest across all our first-level analyses. This implementation detected 638 

3.41 ± 4.79% of all volumes. As this procedure was done per participant, the total number of 639 

regressors for each participant may differ.  640 

 641 

QUANTIFICATION AND STATISTICAL ANALYSIS 642 

Behavioral data analysis 643 

We tested for behavioral adjustment after observing social information in Phase 3, by assessing 644 

the choice switch probability in Phase 4 (how likely participants switched to the opposite option) 645 

and the bet difference in Phase 5 (2nd bet magnitude minus the 1st bet magnitude) as a measurement 646 

of how choice and confidence were modulated by the social information. Neither group difference 647 

(fMRI vs. behavioral) nor gender difference (male vs. female) was observed for choice switch 648 

probability (group: F1,914 = 0.14, p = 0.71; gender: F1,914 = 0.24, p = 0.63) and bet difference (group: 649 

F1,914 = 0.09, p = 0.76; gender: F1,914 = 1.20, p = 0.27). Thus, we pulled data altogether to perform 650 

the subsequent analysis. Additionally, trials where participants did not give valid responses on 651 
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either the 1st choice or the 1st bet in time were excluded from the sample. On average, 7.9 ± 7.3% 652 

of the entire trials were excluded.  653 

We first tested how choice switch probability (Figure 1D, left) and bet difference (Figure 654 

1D, right) varied as a function of the direction of the group (with and against, with respect to each 655 

participant’s 1st choice) and the consensus of the group (2:2, 3:1, 4:0, view of each participant, 656 

Figure 1C). To this end, we submitted the choice switch probability and the bet difference to an 657 

unbalanced 2 (direction) x 3 (consensus) repeated measures ANOVAs. The unbalance was due to 658 

the fact that data in the 2:2 condition could only be used once, and we grouped it into the “against” 659 

condition, resulting in three consensus levels in the “against” condition and two consensus levels 660 

in the “with” condition. Grouping it into the “with” condition did not alter the results. We also 661 

sought to account for the random effect in this analysis. We constructed five mixed effect models 662 

(Table S1) with different random effect specifications, and selected the best one for the subsequent 663 

statistical analysis.  664 

We then tested if there was a linear trend within each direction condition as a function of the 665 

group consensus. That is, we tested whether the choice switch probability in the “against” (or 666 

“with”) condition showed a significant increase (or decrease) trend as the group consensus. To this 667 

aim, we first dummy coded the consensus 2:2, 3:1, 4:0 as 1, 2 and 3, then performed a simple 1st-668 

order polynomial fit using the choice switch probability as a function of the newly coded 669 

consensus. We concluded the linear trend when the slope term was significant. Similarly, the linear 670 

trend in the bet difference was also tested as a function of the group consensus for each direction.  671 

Given that participants’ interest solely lay in maximizing their personal payoffs, we then 672 

tested whether it was beneficial for the participants to adjust their choice after receiving the social 673 

information. If so, participants were expected to perform better (choosing the “good” option more 674 

often) on their 2nd choices than on their 1st choices. To this aim, we assessed the accuracy of both 675 

choices (whether selecting the more rewarding option) as well as both bets’ magnitude (i.e., 1, 2 676 

and 3). We selected a window of three trials to perform this analysis: three trials before the reversal 677 

and three trials after the reversal, with the reversal included. We then stacked the data with respect 678 

to the reversal (i.e., time-lock) and averaged them per participants. Similar to the above analysis, 679 

here we submitted the data to a 2 (1st accuracy / 1st bet vs. 2nd accuracy / 2nd bet) x 7 (relative trial 680 

position, −3, −2, −1, 0, +1, +2, +3) ANOVAs with five difference random effect specifications, 681 
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respectively (Table S2). If the main effect of position was significant, we then submitted the data 682 

to a post-hoc comparison with Tukey’s HSD correction.  683 

All repeated measures ANOVA mixed-effect models were analyzed with the “lme4” 684 

package (Bates et al., 2014) in R (v3.3.1; www.r-project.org). The 1st-order polynomial fit was 685 

performed with Matlab R2014b. Results were considered statistically significant at the level p < 686 

0.05.  687 

 688 

Computational modeling 689 

We developed three categories of models to uncover the latent computational mechanisms (Figure 690 

2A) when participants were performing the social influence task. We based all our computational 691 

models on the simple reinforcement learning model (RL, Sutton and Barto, 1998), and 692 

progressively add components (Table 1).  693 

First, given the structure of the PRL task, we sought to evaluate whether a fictitious update 694 

RL model that incorporates the anticorrelation structure (see Underlying probabilistic reversal 695 

learning paradigm) outperformed the simple RL model that only updated the value of the chosen 696 

option. Thus, we constructed both the simple RL model and the fictitious update RL model, and 697 

both of them did not consider social information (Category 1: M1a and M1b). On top of Category 698 

1 models, we then included the instantaneous social influence (reflecting the normative influence) 699 

in the non-social models to construct social models (Category 2: M2a and M2b). Finally, we 700 

further considered the component of observational learning (reflecting the informational influence) 701 

with competing predictions (Category 3: M3, M4, M5, M6a, M6b). In all models, we 702 

simultaneously estimated participants choice and bet using hierarchical Bayesian analysis. The 703 

remainder of this section explains the technical details regarding the model specification. 704 

 705 

Choice model specifications 706 

In all models, the 1st choice was estimated using a softmax function (Sutton and Barto, 1998) 707 

that converted action values into action probabilities. On trial t, the action probability of choosing 708 

the option A (between A and B) was defined as follows:  709 
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. (1) 710 

For the 2nd choice, because we coded it as a “switch” (1) or a “stay” (0), it was modeled as 711 

logistic regression with a switch value (V(switch)). On trial t, the probability of switch given the 712 

switch value was defined as follows:  713 

,  (2) 714 

where Φ was the inverse logistic linking function:  715 

.  (3) 716 

It is worth noting that, in both action probability model specifications, we did not include a 717 

commonly-used inverse softmax temperature parameter τ. This was because we explicitly 718 

constructed both the option values in the 1st choice and the switch value in the 2nd choice in a 719 

design-matrix fashion (e.g., Eq. 5; and see the text below). Therefore, including the inverse 720 

softmax temperature parameter would inevitably give rise to a multiplication term, which, as a 721 

consequence, would cause unidentifiable parameter estimation (Gelmam et al., 2013). For 722 

completeness, we also assessed models with the τ parameter, and they performed consistently 723 

worse than our models specified here.  724 

The Category 1 models (M1a and M1b) did not consider any social information. In the 725 

simplest model (M1a), a Rescorla-Wagner model (Rescorla and Wagner, 1972) was used to model 726 

the 1st choice, with only the chosen value being updated via the RPE (δ), and the unchosen value 727 

remaining the same as the last trial.  728 

. (4) 729 

An effect weight was then multiplied by the values before being submitted to Eq. 1, as in: 730 

. (5) 731 

Because there was no social information in M1a, the switch value of 2nd choice was 732 

comprised merely of the value difference of the 1st choice and a switch bias:  733 

pt(A) = eVt(A) + eVt(B)

eVt(A)

=
1 + eVt(B)-Vt(A)

1

pt(switch) = U(Vt(switch))

U(x) = 1 + e-x
1

Vchn
t = Vchn

t-1 + hdt-1

dt-1 = Rt-1 - Vt-1
chn

Vunchn
t = Vunchn

t-1

Vt = bV [Vchn
t Vunchn

t]
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. (6) 734 

In M1b we tested whether the fictitious update could improve the model performance, as the 735 

fictitious update has been successful in PRL tasks in non-social contexts (e.g., Hampton et al., 736 

2007; Gläscher et al., 2009). In M1b, both the chosen value and the unchosen value were updated, 737 

as in: 738 

. (7) 739 

Our Category 2 models (M2a and M2b) tested the role of instantaneous social influence on 740 

the 2nd choice, namely, whether observing choices from the other co-players in the same learning 741 

environment contributed to the choice switching. As compared with M1 (M1a and M1b), only the 742 

switch value of the 2nd choice was modified, as follows:  743 

, (8) 744 

where w.Nagainst denoted the preference-weighted number of against relative to participants’ 1st 745 

choice. This is to reflect the ordering effect based on participants’ preference. Note that the 746 

preference weight were fixed parameters based on each participant’s preference towards the others 747 

when uncovering their choices (see Experimental design): the 1st favored co-player received a 748 

weight of 0.75, the 2nd favored co-player received a weight of 0.5, and the rest two co-players 749 

received a weight of 0.25, respectively. Of note, estimating these preference weights as free 750 

parameters would cause unidentifiable model estimate behavior, thus this is beyond the scope of 751 

this paper. Moreover, this term (w.Nagainst) was normalized to lie between 0 and 1 before entering 752 

Eq. 8. All other specifications of M2a and M2b were identical to M1a and M1b, respectively.  753 

Next, we assessed whether participants learned from their social peers and whether they 754 

updated vicarious action values through observational learning using Category 3 models (M3, M4, 755 

M5, M6a, M6b). It is worth noting that, models belonging to Category 2 solely considered the 756 

instantaneous social effect on the 2nd choice, whereas models in Category 3 tested several 757 

competing hypotheses of the observational learning effect that may contribute to the 1st choice on 758 

the following trial, in combination with individuals’ own valuation processes. In all models within 759 

Vt(switch) = bbias + bvdiff (Vchn
t - Vunchn

t)

Vchn
t = Vchn

t-1 + hdchnt-1

dchnt-1 = Rt-1 - Vt-1
chn

Vunchn
t = Vunchn

t-1 + hdchnt-1

dunchn t-1 =- Rt-1 - Vt-1
unchn

Vt(switch) = bbias + bvdiff (Vchn
t - Vunchn

t) + bagainstw.Nagainst
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this category, the choice value of the 1st choice was specified by a weighted sum between Vself 760 

updated via direct learning and Vother updated via observational learning:  761 

. (9) 762 

M3 tested whether individuals recruited a similar RL algorithm to their own, and therefore 763 

constructed the other co-players as independent RL agents to update their action values 764 

respectively. To be specific, in the principle of M3, participants were assumed to update values 765 

“for” the others using the fictitious update as described above (Eq. 7), and others’ action values on 766 

each C1 were determined by a preference-weighted sum between one’s own value updated via 767 

direct learning (Vself) and the vicarious value updated through the observational learning (Vother). 768 

That is, observing the performance of the other group members was also influencing the learning 769 

(i.e., updating) of expected values from trial-to-trial. The values of each choice option from each 770 

co-player were weighted (by the preference weight w) and then summed to formulate Vother, as 771 

follows: 772 

, (10) 773 

where s denoted the index of the four other co-players. Vother was afterward normalized to lie 774 

between −1 and 1, using Eq. 3:  775 

. (11) 776 

This normalization was to ensure that the numerical magnitude of Vother was comparable to 777 

Vself, and it, therefore, made better sense to compare the size of the corresponding value-related 778 

parameters (βself and βother in Eq. 3). 779 

One may argue that having four independent RL agents as in M3 was cognitively demanding: 780 

in order to accomplish so, participants had to track and update each other’s individual learning 781 

processes together with their own valuation. We, therefore, constructed three additional models 782 

that employed simpler but distinct valuation pathways to update values through observational 783 

learning. In essence, M3 considered both choices and outcomes to determine the action value. We 784 

then asked if using either choices or outcomes alone may perform as well as, or even better than, 785 

M3. Following this assumption, M4 updated Vother using only the others’ action preference, 786 

Vt = bselfVself,t + botherVother,t

Vother,t(A) = ws Vs,t-1 (A)
s=1

4

/

Vother,t(A) = 2U(Vother,t(A)) - 1
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whereas M5 considered the others’ current outcome to resemble the value update via observational 787 

learning. 788 

In M4, other players’ action preference is derived from the choice sequence over the last 789 

three trials using the cumulative distribution function of the beta distribution at the value of 0.5. 790 

For instance, if one co-player chose option A twice and option B once in the last three trials, then 791 

the action preference of choosing A for him/her was: betacdf (0.5, frequency of B + 1, frequency 792 

of A + 1) = betacdf (0.5, 1 + 1, 2 + 1) = 0.6875. Those action preferences (ρ) were then used to 793 

update Vother: 794 

, (12) 795 

where C2 denoted the 2nd choice. Note that, in this specification, only when C2s,t-1=A, the action 796 

preference ρs,t-1 was used to update Vother(A). Vother(B) was updated in the same fashion. The values 797 

were then normalized using Eq. 11. 798 

Likewise, M5 tested whether participants updated Vother using only each other’s reward (R): 799 

. (13) 800 

These values were then normalized using Eq. 11. 801 

Moreover, we did not rule out the possibility that participants maintained a cumulated reward 802 

history over the last a few trials instead of monitoring only the most recent outcome of the others. 803 

In fact, a discounted reward history over the recent past (e.g., the last three trials) has been a 804 

relatively common implementation in other RL studies in non-social contexts (e.g., Kennerley et 805 

al., 2006; Scholl et al., 2017). By testing four lengths of trial windows (3, 4, or 5) and using a 806 

nested model comparison, we decided on a window of three past trials to accumulate other co-807 

players’ performance, and constructed such a model as M6a: 808 

, (14) 809 

where i denoted the trial index from T−3 to T−1, and γ denoted the decay factor. The values were 810 

then normalized using Eq. 11. 811 

Vother,t(A) = wsts,t-1, if C2s,t-1 = A
s=1

4

/

Vother,t(A) = ws Rs,t-1, if C2s,t-1 = A
s=1

4

/

Vother,t(A) = ws Rs,ic
T- i,

i=T-3

T-1

/ if C2s,t-1 = A
s=1

4

/
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Lastly, given that M6a was the winning model among all the models above (M1 – M6a) 812 

indicated by model comparison (see below Model selection and posterior predictive check), we 813 

assessed in M6b whether the 1st bet contributed to the choice switching on the 2nd choice as well, 814 

as follows:  815 

. (15) 816 

 817 

Bet model specifications 818 

In all models, both the 1st bet and 2nd bet were modeled as an ordered-logistic regression that is 819 

often used for quantifying discrete variables, like Likert-scale questionnaire data (Greene, 2003; 820 

Greene and Hensher, 2010). We applied the ordered-logistic model because the bets in our study 821 

indeed inferred an ordering effect. Namely, betting on 3 was higher than betting on 2, and betting 822 

on 2 was higher than betting on 1. However, the difference between the bets 3 and 1 (i.e., a 823 

difference of 2) was not necessarily twice as the difference between the bets 3 and 2 (i.e., a 824 

difference of 1). Hence, we needed to model the distance (decision boundary) between them. 825 

Moreover, despite the fact that the bets in our study could only be 1, 2, or 3, we hypothesized a 826 

continuous mental process when individuals were placing bets, which satisfied the general 827 

assumption of the ordered-logistic regression model (Greene, 2003).  828 

There were two key components in the ordered-logistic model, the continuous utility U, and 829 

the set of thresholds θ. As discussed above, we hypothesized a continuous strength of bet utility, 830 

Ubet, which varied between the thresholds to predict the bets. In addition, a set of K−1 thresholds 831 

(θ1, 2, …, K-1) was introduced to quantify the decision boundaries, where K was the level of the 832 

discrete categories. As there were three bet levels (K = 3), we introduced two decision thresholds, 833 

θ1 and θ2, (θ2 > θ1). As such, the predicted bets (bêt) on trial t were then represented as follows:  834 

, (16) 835 

where i indicated either the 1st bêt or the 2nd bêt. Because there were only two levels of threshold, 836 

for simplicity, we set θ1 = 0, and θ2 = θ, (θ > 0). To model the actual bets, a logistic function (Eq. 837 

3) was used to obtain the action probability of each bet, as follows:  838 

Vt(switch) = bbias + bvdiff (Vchn
t - Vunchn

t) + bagainstw.Nagainst + bbet1bet1

bteti,t =

1, if -3 < Ubeti,t < i1

2, if i1 < Ubeti,t < i2

3, if i2 < Ubeti,t < +3

Z

[

\

]]]]]
]]]]]

, i = 1,2
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.  (17) 839 

In our model specification of the 1st bet, the utility Ubet1 was comprised of a bet bias and the 840 

value difference between the chosen option and the unchosen option. The rationale was that, the 841 

larger the value difference, the more confident individuals were expected to be, hence placing a 842 

higher bet. This utility Ubet1 was kept identical across all models (M1a – M6b), as follows: 843 

.  (18) 844 

Note that although the formula was the same as Eq. 6, the βs were independent of each other. 845 

To model the 2nd bet, we were interested in the bet change relative to the 1st bet. Therefore, the 846 

utility Ubet2 was constructed on top of Ubet1. In all non-social models (M1a, M1b), the change term 847 

was represented by an intercept parameter, as follows:  848 

.  (19) 849 

Moreover, in all social models (M2a – M6b), regardless of the observational learning effect, 850 

the change term was specified by the instantaneous social information, as follows: 851 

.  (20) 852 

It should be noted that, however, despite the anticorrelation between w.Nwith and w.Nagainst, 853 

the parameter estimation results showed that the corresponding effects (i.e., βwith and βagainst) did 854 

not rely on each other (Pearson’s R = 0.04, p > 0.05). In fact, as shown in Figure S1F, w.Nwith 855 

predicted bet increase, whereas w.Nagainst predicted bet decrease, suggesting their independent 856 

contributions to the bet change during the adjustment. Additionally, we constructed two other 857 

models using either w.Nwith or w.Nagainst, but the model performance was dramatically worse than 858 

including both of them (∆LOOIC > 1000).  859 

 860 

Model estimation with hierarchical Bayesian analysis 861 

In all models, we simultaneously estimated both choices (C1, C2) and bets (B1, B2). Model 862 

estimations of all aforementioned candidate models were performed with hierarchical Bayesian 863 

analysis (HBA) (Gelman et al., 2013) using a newly developed statistical computing language Stan 864 

p(beti,t = 1) = U(- Ubeti,t)

p(beti,t = 2) = U(i - Ubeti,t) -U(- Ubeti,t)

p(beti,t = 3) = 1 -U(i - Ubeti,t)

Z

[

\

]]]]]
]]]]]

, i = 1,2

Ubet1t = bbias + bvdiff (Vchn
t - Vunchn

t)

Ubet2t = Ubet1t + bchange

Ubet2t = Ubet1t + bwithw.Nwith + bagainstw.Nagainst
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(Carpenter et al., 2017) in R. Stan utilizes a Markov Chain Monte Carlo (MCMC) sampling scheme 865 

to perform full Bayesian inference and obtain the actual posterior distribution. We performed HBA 866 

rather than maximum likelihood estimation (MLE) because HBA provides much more stable and 867 

accurate estimates than MLE (Ahn et al., 2011). Following the approach in the “hBayesDM” 868 

package (Ahn et al., 2017), we assumed, for instance, that a generic individual-level parameter ϕ 869 

was drawn from a group-level normal distribution, namely, ϕ ~ Normal (μϕ, σϕ), with μϕ  and σϕ. 870 

being the group-level mean and standard deviation, respectively. Both these group-level 871 

parameters were specified with weakly-informative priors (Gelman et al., 2013): μϕ  ~ Normal (0, 872 

1) and σϕ.~ half-Cauchy (0, 5). This was to ensure that the MCMC sampler traveled over a 873 

sufficiently wide range to sample the entire parameter space. All parameters were unconstrained 874 

except for η / γ (both [0 1] constraint, with inverse probit transform) and θ (positive constraint, 875 

with exponential transform). 876 

In HBA, all group-level parameters and individual-level parameters were simultaneously 877 

estimated through the Bayes’ rule by incorporating behavioral data. We fit each candidate model 878 

with four independent MCMC chains using 1000 iterations after 1000 iterations for the initial 879 

algorithm warmup per chain, which resulted in 4000 valid posterior samples. Convergence of the 880 

MCMC chains was assessed both visually (from the trace plot) and through the Gelman-Rubin R̂ 881 

Statistics (Gelman and Rubin, 1992). R̂ values of all parameters were close to 1.0 (at most smaller 882 

than 1.1 in the current study), which indicated adequate convergence. 883 

 884 

Model selection and posterior predictive check 885 

For model comparison and model selection, we computed the Leave-One-Out information 886 

criterion (LOOIC) score per candidate model (Vehtari et al., 2016). The LOOIC score provides 887 

the point-wise estimate of out-of-sample predictive accuracy in a fully Bayesian way, which is 888 

more reliable compared to point-estimate information criterion (e.g., Akaike information criterion, 889 

AIC; deviance information criterion, DIC). By convention, lower LOOIC score indicates better 890 

out-of-sample prediction accuracy of the candidate model. Plus, a difference score of 10 on the 891 

information criterion scale is considered decisive (Burnham and Anderson, 2004). We selected the 892 

model with the lowest LOOIC as the winning model. We additionally performed Bayesian model 893 

averaging (BMA) with Bayesian bootstrap (Yao et al., 2018) to compute the probability of each 894 
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candidate model being the best model. Conventionally, the BMA probability of 0.9 (or higher) is 895 

a decisive indication.  896 

Given that model comparison provided merely relative performance among candidate 897 

models (Palminteri et al., 2017), we then tested how well our winning model’s posterior prediction 898 

was able to replicate the key features of the observed data (a.k.a., posterior predictive check, PPC). 899 

To this end, we applied a post-hoc absolute-fit approach (Steingroever et al., 2014) that factored 900 

in participants’ actual action and outcome sequences to generate predictions with the entire 901 

posterior MCMC samples. Namely, we let the model generate choices and bets as many times as 902 

the number of samples (i.e., 4000 times) per trial per participants and we asked whether the 903 

generated data could reproduce the behavioral pattern in our behavioral analysis.  904 

Lastly, we tested how specific model parameters linked with model-free behavior to assess 905 

individual differences (Figure 2B). In the choice model, we tested the simple Pearson’s correlation 906 

between β(w.Nagainst) and the 1st-order polynomial slope derived from the choice switch probability 907 

as a function of the group consensus in the “against” condition (see above Behavioral analysis). 908 

Likewise, in the bet model, we tested the simple Pearson’s correlation between β(w.Nwith) and the 909 

1st-order polynomial slope derived from the bet difference as a function of the group consensus in 910 

the “with” condition (see above Behavioral analysis). 911 

 912 

Parameter recovery 913 

Considering that there were multiple free parameters in the winning model, we verified whether 914 

parameters were identifiable using parameter recovery after the model fitting. In the first step, we 915 

randomly drew a set of group-level parameters from the joint posterior group-distribution of M6b. 916 

Next, we simulated 80 synthetic participants, whose parameters were randomly drawn from this 917 

set of group-level parameters. Then, we used the model (M6b) as a generative tool to simulate 918 

behavioral data for our social influence task, namely, to simulate 1st choice, 2nd choice, 1st bet, and 919 

2nd bet for 100 trials per participant. Once having the behavioral data, we fit M6b to the simulated 920 

data in the same way as we did for the real data. And finally, we compared whether the posterior 921 

group-distribution given the simulated data recovered the actual group-level parameters that were 922 

used to simulate those data (Figure S2).  923 
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 924 

MRI data analysis 925 

 926 

Deriving internal computational signals 927 

Based on the winning model (Table 1) and its parameter estimation (Figure S2C-F), we 928 

derived the trial-by-trial computational signals for each individual MRI participant using the mean 929 

of the posterior distribution of the parameters. We used the mean rather than the mode (i.e., the 930 

peak) because in MCMC, especially HMC implemented in Stan, the mean is much more stable 931 

than the mode to serve as the point estimate of the entire posterior distribution (Carpenter et al., 932 

2017). In fact, as we modeled all parameter as normal distributions, the posterior mean and the 933 

posterior mode are highly correlated (Pearson’s R = 0.99, p < 0.001).  934 

 935 

First-level analysis 936 

fMRI data analysis was performed using SPM12. We conducted model-based fMRI analysis 937 

(Gläscher et al., 2009; Gläscher and O’Doherty, 2010) containing the computational signals 938 

described above (Table S6). We set up two event-related general linear models (GLM1 and GLM2) 939 

to test our hypotheses.  940 

GLM1 assessed the neural representations of valuation resulted from participants’ direct 941 

learning and observational learning in Phase 1, as well we the instantaneous social influence in 942 

Phase 3. The first-level design matrix in GLM1 consisted of constant terms, nuisance regressors 943 

detected by the “Spike Analyzer”, plus the following 22 regressors: 5 experimentally measured 944 

onset regressors for each cue (cue of the 1st choice, cue of the 2nd choice, cue of the 1st bet, cue of 945 

the 1st bet, and cue of the outcome); 6 parametric modulators (PM) of each corresponding cue 946 

(𝑉 , 𝑉 , belonging to the cue of the 1st choice; w.N  belonging to the cue of the 947 

2nd choice; 𝑈 , 𝑈 , belonging to the cue of the 1st bet and the 2nd bet, respectively; and RPE 948 

belonging to the cue of the outcome); 5 nuisance regressors accounted for all of the “no-response” 949 

trials for each cue; and 6 movement parameters. Note that for the two value signals, 𝑉  was 950 

orthogonalized with respect to 𝑉 . This allowed to obtain as much variance as possible on the 951 𝑉  regressor, and then any additional (explainable) variance was accounted for by the 𝑉  952 
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regressor (Mumford et al., 2015; Norbury et al., 2018). Also, we intentionally did not include the 953 

reward outcome at the outcome cue. This was because (1) the RPE and the reward outcome are 954 

known to be correlated in goal-directed learning studies using model-based fMRI (e.g., Chien et 955 

al., 2016), and (2) we sought to explicitly verify RPE signals by its hallmarks using the ROI time 956 

series extracted from each participant given the second-level RPE contrast (see below ROI time 957 

series analysis below).  958 

GLM2 was set up to examine the neural correlates of choice adjustment in Phase 4. To this 959 

end, GLM2 was identical to GLM1, except that the PM regressor of w.N  under the cue of 960 

the 2nd choice was replaced by the PM regressor SwSt.  961 

 962 

Second-level analysis 963 

The resulting β images from each participant’s first-level GLM were then used in a random-964 

effects group analyses at the second level, using one-sample two-tailed t-tests for significant 965 

effects across participants. To correct for multiple comparisons of the functional imaging data, we 966 

employed the threshold-free cluster enhancement (TFCE; Smith and Nichols, 2009) implemented 967 

in the TFCE Toolbox (dbm.neuro.uni-jena.de/tfce/). TFCE is a cluster-based thresholding method 968 

that aims to overcome the shortcomings of choosing an arbitrary cluster size (e.g., p < 0.001, 969 

cluster size k = 20) to form a threshold. The TFCE takes the raw statistics from the second-level 970 

analysis and performs a permutation-based non-parametric test (i.e., 5000 permutations in the 971 

current study) to obtain robust results. According to previous work on the direct value signal in 972 

the vmPFC (Bartra et al., 2013) and vicarious value of the social information in the ACC (e.g., 973 

Behrens et al., 2008; Boorman et al., 2013), we performed small volume corrections (SVC) using 974 

10-mm search volumes around the peak MNI coordinates of the vmPFC and the ACC in the 975 

corresponding studies with the TFCE correction at p < 0.05, FWE (family-wise error) corrected. 976 

For the otherwise whole-brain analysis, we performed whole-brain TFCE correction at p < 0.05, 977 

FWE corrected.  978 

 979 

Follow-up ROI analysis 980 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted May 24, 2019. ; https://doi.org/10.1101/551614doi: bioRxiv preprint 

https://doi.org/10.1101/551614


38 
 

Depending on the hypotheses, the research question, and the corresponding PM regressors, we 981 

employed two types of follow-up ROI analyses, the time series estimates and percent signal change 982 

(PSC) estimates. In both types of ROI analyses, participant-specific masks were created from the 983 

second-level contrast. For each participant, we first defined a 10-mm search volume around the 984 

peak coordinate of the second level contrast (threshold: p < 0.001, uncorrected); within this search 985 

volume, we then searched for each participant’s individual peak and created a new 10-mm sphere 986 

around this individual peak as the ROI mask. Finally, supra-threshold voxels in the new 987 

participant-specific ROI were used for the ROI analyses. 988 

First, the ROI time series estimates were applied when at least two PMs were associated with 989 

each ROI. Namely, we were particularly interested in how the time series within a specific ROI 990 

correlated with all the PM regressors. In the current studies, we defined 3 ROIs to perform the time 991 

series estimates, the vmPFC, the ACC, and the VS/NAcc.  992 

We followed the procedure established by previous studies (Behrens et al., 2008; Jocham et 993 

al., 2014; Klein et al., 2017) to perform the ROI time series estimates. We first extracted raw 994 

BOLD time series from the ROIs. The time series of each participant was then time-locked to the 995 

beginning of each trial with a duration of 30s, where the cue of the 1st choice was presented at 0s, 996 

the cue of the 1st bet was presented at 2.92s, the cue of the 2nd choice was displayed at 12.82s, the 997 

cue of the 2nd bet was displayed at 16.25s, and the outcome was presented at 21.71s. All these time 998 

points corresponded to the mean onsets for each cue across trials and participants. Afterward, time 999 

series were up-sampled to a resolution of 250ms (1/10 of TR) using 2D cubic spline interpolation, 1000 

resulting in a data matrix of size m x n, where m is the number of trials, and n is the number of the 1001 

up-sampled time points (i.e., 30s / 250ms = 120 time points). A linear regression model containing 1002 

the PMs was then estimated at each time point (across trials) for each participant. It should be 1003 

noted that, although the linear regression here took a similar formulation as the first-level GLM, it 1004 

did not model any specific onset; instead, this regression was fitted at each time point in the entire 1005 

trial across all the trials. The resulting time courses of effect sizes (regression coefficients) were 1006 

finally averaged across participants. Because both the time series and the PMs were normalized, 1007 

these time courses of effect sizes, in fact, reflected the partial correlation between the ROI time 1008 

series and PMs.  1009 
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To test group-level significance, we employed a permutation procedure. For the time sources 1010 

of effect sizes for each ROI, we defined a time window of 3-7s after the corresponding event onset, 1011 

during which the BOLD response was expected to peak. In this time window, we randomly flipped 1012 

the signs of the time courses of effect sizes for 5000 repetitions to generate a null distribution, and 1013 

asked whether the mean of the generated data from the permutation procedure was smaller or larger 1014 

than 97.5% of the mean of the empirical data.  1015 

Second, the Percent signal change (PSC) estimates were applied when only one PM was 1016 

associated with each ROI. Particularly, we asked whether there was a linear trend of the PSC for 1017 

each ROI as a function of the PM. In the current study, we defined 7 ROIs to perform the PSC 1018 

estimates. Among them, four ROIs were associated with the PM regressor of w.Nagainst, being the 1019 

rTPJ, the ACC/pMFC, the right aINS and the FPC; two ROIs were associated with the PM 1020 

regressor of SwSt, being the left dlPFC and the ACC; and one ROI was associated with the inverse 1021 

contrast of SwSt (i.e., StSw, stay vs. switch), being the vmPFC. 1022 

To compute the PSC, we used the “rfxplot” toolbox (Gläscher, 2009) to extract the time 1023 

series from the above ROIs. The “rfxplot” toolbox further divided the corresponding PMs into 1024 

different bins (e.g., 2 bins, the 1st 50% of the PM and the 2nd 50% of the PM) and computed the 1025 

PSC for each bin, which resulted in a p x q PSC matrix, where p is the number of participants, and 1026 

q is the number of bins. To test for significance, we performed a simple 1st-order polynomial fit 1027 

using the PSC as a function of the binned PM, and asked whether the slope of this polynomial fit 1028 

was significantly different from zero. 1029 

 1030 

Connectivity analysis 1031 

We employed two types of connectivity analyses (Friston, et al., 1997) in the current study, the 1032 

psychophysiological interaction (PPI) and the physiophysiological interaction (PhiPI) to test the 1033 

functional network using fMRI (O’Reilly et al., 2012). 1034 

The psychophysiological interaction (PPI) analysis aims to uncover how the functional 1035 

connectivity between BOLD signals in a particular ROI (seed region) and BOLD signals in the 1036 

(to-be-detected) target region(s) is modulated by a psychological variable. We used as a seeded 1037 

the entire BOLD time series from a 10-mm spherical ROI in the rTPJ, centered at the peak 1038 
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coordinates for w.Nagainst (threshold: p < 0.001, uncorrected), which was detected at the onset cue 1039 

of the second choice. Next, we constructed the PPI regressor by combining the rTPJ ROI signals 1040 

with the SwSt variable that took place after the cue of the 2nd choice (Figure 4A-B). The first-level 1041 

PPI design matrix consisted of three PPI regressors (the BOLD time series of the seed region, the 1042 

modulating psychological variable, and their interaction) and all the same nuisance regressors as 1043 

the above first-level GLMs. The first-level interaction regressor was then submitted to a second-1044 

level t-test to establish the group-level connectivity results, with TFCE correction p < 0.05, FWE 1045 

corrected. 1046 

The Physiophysiological interaction (PhiPI) analysis follows the same principles as the PPI 1047 

analysis, except that the psychological variable in the PPI regressors is replaced by the BOLD time 1048 

series from a second seed ROI. We performed two PhiPI analyses. In the first PhiPI, we used as 1049 

seeds the entire BOLD time series in two 10-mm spherical ROIs in the vmPFC and the ACC, both 1050 

of which were detected at the cue of the 1st choice (Figure S6). In the second PhiPI, we seeded 1051 

with the entire BOLD time series from an identical 10-mm spherical ROI in the rTPJ as described 1052 

in our PPI, and from a 10-mm spherical ROI in the left dlPFC, which was detected at the cue of 1053 

the 2nd choice (Figure 4D-F). The setup of the first-level PhiPI design matrix and the statistical test 1054 

procedure on the second-level were the same as for the PPI analysis.  1055 

 1056 

  1057 
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DATA AND SOFTWARE AVAILABILITY 1058 

Raw behavioral data and custom code to perform analyses can be accessed on the GitHub 1059 

repository: https://github.com/lei-zhang/zhang_glaescher_socialinfluence. 1060 

 1061 

SUPPLEMENTARY INFORMATION: 1062 

Supplementary Information includes 6 figures and 5 tables can be found with this article at 1063 

https://xxx. 1064 
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KEY RESOURCES TABLE 1085 

 1086 

REAGENT or RESOURCE SOURCE IDENTIFIER 
Deposited Data 
Raw behavioral data  This paper https://github.com/lei

-
zhang/zhang_glaesc
her_socialinfluence

fMRI data This paper N/A 
Software and Algorithms 
Statistical Parametric Mapping 12 (SPM12) 
 

Wellcome Trust, London https://www.fil.ion.ucl
.ac.uk/spm/software/
spm12/ 

TFCE Toolbox TFCE Toolbox developers dbm.neuro.uni-
jena.de/tfce/

rfxplot Gläscher, 2009 http://rfxplot.sourcefo
rge.net/ 

MATLAB R2014b MathWorks https://www.mathwor
ks.com/ 

Cogent 2000 Cogent 2000 developers http://www.vislab.ucl.
ac.uk/cogent_2000.p
hp 

R Version 3.3.1 R development core team https://www.r-
project.org/ 

LME4 Bates et al., 2014 https://cran.r-
project.org/web/pack
ages/lme4/ 

Stan/RStan Version 2.17.0 Carpenter et al., 2017 https://mc-stan.org/ 
MRIcroGL McCausland Center for 

Brain Imaging
https://www.nitrc.org/
projects/mricrogl

Custom code (to run analyses and produce figures) This paper https://github.com/lei
-
zhang/zhang_glaesc
her_socialinfluence

 1087 
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 1281 

 1282 

 1283 

Figure 1. Experimental task and behavioral results. (A) Experimental procedure (see Star 1284 

Methods). (B) Example reward structure. Reward contingency reverses after every 8-12 trials. (C) 1285 

Group consensus (view from a participant). (D) Switch probability at 2nd choice and bet difference 1286 

(2nd bet – 1st bet) as a function of the majority of the group’s 1st decision (with vs. against) and the 1287 

group consensus. All black lines indicate actual data (mean ± within-subject SEM). Shaded error 1288 

bars represent the 95% highest density interval (HDI) of the mean effect computed from the 1289 

winning model’s posterior density (posterior predictive check).  1290 
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 1292 

 1293 

Figure 2. Computational model and its relation to behavior. (A) Schematic of the 1294 

computational model (see main text and Star Methods). (B) Left: Relationship between 1295 

contradicting social information (preference-weighted Nagainst) and the susceptibility to social 1296 

influence (slope of switch probability). Right: Relationship between confirming social information 1297 

(preference-weighted Nwith) and the bet difference. 1298 
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 1300 

 1301 

 1302 

Figure 3. Neural substrates of dissociable value signals and reward prediction error. (A) The 1303 

neural representation of Vself and Vother are encoded in the vmPFC (red/yellow) and the ACC 1304 

(blue/light blue), respectively. Sagittal slice at x = 3. (B, C) Time series estimates (Behrens et al., 1305 

2008) demonstrate a double dissociation of the neural signatures of the value signals. The vmPFC 1306 

is positively correlated with Vself, but not with Vother, whereas the ACC is positively correlated with 1307 

Vother, but not with Vself. (D) The neural representation of reward prediction error (RPE) is encoded 1308 

in the VS/NAcc. Coronal slice at y = 10. (E) The time series in the left VS/NAcc is sensitive to 1309 

both component of the RPE: positive correlation with reward (green line), and negative correlation 1310 

with value (red line). 1311 
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 1313 

 1314 

 1315 

Figure 4. Functional connectivity between reward-related regions and social-related regions. 1316 

(A) The functional connectivity between the left putamen (green) and the seed region rTPJ (blue) 1317 

is modulated by the choice adjustment (switch vs. stay). (B) Correlation of activity in seed and 1318 

target region for both switch and stay trials in an example subject and histogram of coupling 1319 

strength across all participants for switch and stay trials. (C) The BOLD time series in the left 1320 

putamen (PPI target) exhibits a social prediction error (positive correlation with the actual 1321 

agreement, and negative correlation with the expected agreement) (mean effect across participants 1322 

± SEM). (D) Two seed regions, the rTPJ (blue), which responds to the social information, and the 1323 

left dlPFC (yellow), which encodes the choice adjustment, elicit connectivity activations in the 1324 

vmPFC and the pMFC (both in green), which partially overlap with the latent value signals (i.e., 1325 

Vself; red; and Vother; blue), as in Figure 3A. Sagittal slice at x = 0. (E, F) Correlation plots of seed 1326 

and target regions for both high and low dlPFC activity in an example subject and histograms of 1327 

seed-target coupling strengths across all participants for high and low dlPFC activity. 1328 
  1329 
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 1330 

 1331 

 1332 

Figure 5. Schematic of the of the network supporting social influence in decision-making as 1333 

uncovered in this study (for details see main text). 1334 
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Table 1. Candidate computational models and model comparison 1336 

Class Model Description ΔLOOIC 

Non-social models 
M1a simple RL 0 

M1b M1a + fictitious update −1245 

Social models with 

instantaneous effect 

M2a M1a + instantaneous social influence −1893 

M2b M1b + instantaneous social influence −2889 

Social models with 

instantaneous effect 

and observational 

learning 

M3 M2b + OL (others’ RL update) −3089 

M4 M2b + OL (others’ action preference) −2869 

M5 M2b + OL (others’ current reward) −3203 

M6a M2b + OL (others’ cumulative reward) −3450 

M6b M2b + OL (others’ cumulative reward) + bet1 −3507 

 1337 

Note: RL = reinforcement learning, OL = observational learning. LOOIC = leave-one-out 1338 

information criterion; lower LOOIC value indicates better out-of-sample predictive accuracy. M6b 1339 

(in bold) is the winning model. 1340 
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Supplementary Information 
 
 

 
 
Figure S1.  
Social information enhances learning and associated model parameters, related to Figures 1-
2 and Star Methods. (A) Choice accuracy across reversal. Participants’ choice accuracy as a 
function of the choice type (1st choices, light blue; 2nd choices, dark blue) and the trials positions 
relative to the reversal (−3, −2, −1, 0, 1, 2, 3). All error bars indicate within-subject SEM. The 
gray vertical line indicates the reversal. (B) Bet magnitude across reversal. Participants’ bet 
magnitude as a function of the bet type (1st bet, light green; 2nd bet, dark green) and the trials 
positions relative to the reversal (−3, −2, −1, 0, 1, 2, 3). All error bars indicate within-subject 
SEM. The gray vertical line indicates the reversal. (C-F) Model parameters. Parameters’ posterior 
density for (C) first choice, (D) second choice, (E) first bet, and (F) second bet. Shaded areas 
depict 95% of the highest density interval (HDI). 
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Figure S2.  
Parameter recovery, related to Figure2 and Star Methods. A random sample of group-level 
parameters is drawn from the joint posterior group-level distribution to simulate 80 synthetic 
participants’ behavioral data for the social influence task. All parameters could be accurately and 
selectively recovered (“true” parameters falling between the 95% HDI of each posterior 
distribution), suggesting the proper identifiability of model parameters.  
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Figure S3.  
Neural substrates of dissenting social information, related to Figures 4-5. (A) Activities 
(red/yellow) in the rTPJ, the ACC/pMFC, bilateral aINS and the FPC scaled parametrically with 
the dissenting social information (i.e., w.Nagainst). Color coding indicates the SPM thresholds 
corresponding to p < 0.001 and p < 0.0001 uncorrected. (B-E) Percent signal change (PSC) of 
BOLD time series in the corresponding ROI for trials in which w. Nagainst is low, medium, and 
high (33rd, 66th, and 100th percentile range). All show a significant linear increasing trend (F test, 
ps < 0.001). For the sub-figure D, we chose the right aINS because its supra-threshold cluster was 
larger than the left one (Table S4). Using the left aINS yielded similar results. All error bars 
indicate SEM.   
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Figure S4.  
Neural substrates of choice adjustment, related to Figures 4-5. (A, C) Bilateral dlPFC and the 
ACC (red) are more activated when individuals made a switch during the choice adjustment. (E) 
The vmPFC (blue) is more activated when individuals made a stay during the choice adjustment. 
Color coding indicates the SPM threshold corresponding to p < 0.05 FWE corrected. (B, D, F) 
Percent signal change (PSC) of BOLD time series in the corresponding ROI for switching trials 
as opposed to staying trials. All show a significant difference (paired t-test, ps < 0.001). For the 
sub-figure B, we chose the left dlPFC because its supra-threshold cluster was larger than the right 
one (Table S4). Using the right dlPFC yielded similar results. All error bars indicate SEM.  
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Figure S5.  
PhiPI between vmPFC and ACC, related to Figures 3-5. Two seed regions, the vmPFC (red), 
which is associated with 𝑉 , and the ACC (blue), which is linked with 𝑉 , elicit 
connectivity activations in the (rostral) mPFC (magenta). Color coding indicates the SPM 
thresholds corresponding to p < 0.001 uncorrected, p < 0.0001 uncorrected, respectively. 
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Figure S6.  
(Non-)Association between left putamen and components of reward prediction error, related 
to Figure 4. The BOLD time series in the left putamen is only positively correlated with the actual 
reward outcome (green line; p < 0.0001, permutation test), but not negatively correlated with the 
expected outcome (i.e., value; red line, p =0.4854, permutation test).  
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Table S1.  
Mixed-effect models for the measurement of choice switch probability and bet difference, 
related to Figure 1 and Figure S1. 
 

Model AIC p 

Choice Switch Probability   
y ~ dir*con + (1|sub) −506.75 --
y ~ dir*con + (1|sub) + (1|gender) + (1|group) −502.84 .956
y ~ dir*con + (1|sub) + (1|gender) + (1|group) + (1|dir:sub)  −526.13 < .001
y ~ dir*con + (1|sub) + (1|gender) + (1|group) + (1|con:sub) −500.84 1.000
y ~ dir*con + (1|sub) + (1|gender) + (1|group) + (1|dir:sub) + (1|con:sub) −524.13 < .001

Bet Difference  
y ~ dir*con + (1|sub)  101.21 --
y ~ dir*con + (1|sub) + (1|gender) + (1|group) 105.21 1.000
y ~ dir*con + (1|sub) + (1|gender) + (1|group) + (1|dir:sub) 107.21 .983
y ~ dir*con + (1|sub) + (1|gender) + (1|group) + (1|con:sub) 107.21 1.000
y ~ dir*con + (1|sub) + (1|gender) + (1|group) + (1|dir:sub) + (1|con:sub) 109.21 .937

 
Note: Models are specified in the “lme4” syntax: “A*B” denotes the main effect plus the 
interaction effect between variables A and B; “(1|var)” denotes the single random effect; 
“(1|A*B)” denotes the interaction random effect between variables A and B. “dir” = direction 
(with vs. against the group). “con” = group consensus level (2:2, 3:1, 4:0). “sub” = subject. 
“gender” = gender (female vs. male). “group” = measurement group (fMRI vs. behavioral). AIC 
= Akaike Information Criterion. Lower AIC value indicates better model. p values are calculated 
with χ2 test. Models that best capture the random structure of the data are indicated by a left-
pointing arrow sign ().  
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Table S2.  
Mixed-effect models for the measurement of choice accuracy and bet magnitude, related to 
Figure 1 and Figure S1. 
 

Model AIC p 

Choice Accuracy   
y ~ typ*pos + (1|sub)  −1559.9 --
y ~ typ*pos + (1|sub) + (1|gender) + (1|group) −1555.9 1.000
y ~ typ*pos + (1|sub) + (1|gender) + (1|group) + (1|typ:sub)  −1553.9 1.000

Bet Magnitude   
y ~ typ*pos + (1|sub) 713.16 --
y ~ typ*pos + (1|sub) + (1|gender) + (1|group) 712.83 .115
y ~ typ*pos + (1|sub) + (1|gender) + (1|group) + (1|typ:sub)  656.75 < .001

 

Note: Models are specified in the “lme4” syntax: “A*B” denotes the main effect plus the 
interaction effect between variables A and B; “(1|var)” denotes the single random effect; 
“(1|A*B)” denotes the interaction random effect between variables A and B. “typ” = choice type 
(1st choice vs. 2nd choice). “pos” = relative trial position (−3, −2, −1, reversal, +1, +2, +3). “sub” 
= subject. “gender” = gender (female vs. male). “group” = measurement group (fMRI vs. 
behavioral). AIC = Akaike Information Criterion. Lower AIC value indicates better model. p 
values are calculated with χ2 test. Models that best capture the random structure of the data are 
indicated by a left-pointing arrow sign (). 
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Table S3.  
Neural substrates of value and reward prediction error (RPE) signals, related to Figure 3. 
 

  MNI coordinates (peak)   

Contrast Region x y z Cluster size Zmax 𝑉  vmPFC (BA11) 4 46 −14 49a 3.91* 𝑉  ACC (BA32) 2 10 36 55a 3.94* 

RPE 
left VS/NAcc (BA48) −10 8 −10 199b 7.07** 

right VS/NAcc (BA52) 12 10 −12 171b 7.35** 

 vmPFC (BA10) −10 62 2 62b 6.01** 

 
Note: *: TFCE with small volume correction (SVC), at p < 0.05, FWE corrected; **: whole-brain 
TFCE correction, at p < 0.05, FWE corrected; a: cluster size obtained at p < 0.001, uncorrected; 
b: cluster size obtained at p < 0.05, FWE corrected. 𝑉  = chosen “self value” updated from 
individuals’ own valuation; 𝑉  = chosen “other value” updated from the others’ cumulative 
reward history; RPE = reward prediction error; vmPFC = ventromedial prefrontal cortex; ACC = 
anterior cingulate cortex; VS = ventral striatum; NAcc = nucleus accumbens. 
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Table S4.  
Neural substrates of instantaneous social information and behavioral adjustment, related to 
Figure 4, Figure S1 and Figure S4. 
 

  MNI coordinates (peak)   

Contrast Region x y z Cluster size Zmax 

w.N  

rTPJ (BA39) 50 −60 34 214a 4.44** 

lTPJ (BA39) -48 -62 30 167a 3.06** 

ACC/pMFC (BA8) 4 28 44 238a 5.03** 

left aINS (BA13) −30 18 −14 56a 3.90** 

right aINS (BA13/47) 32 24 −10 163a 5.13** 

FPC (BA10) 22 60 18 140a 4.97** 

Frontal-mid L (BA10) −26 50 16 124a 4.75** 

right-Fusiform (BA37) 30 −68 −12 238a 5.44** 

SwSt 

left dlPFC (BA10) −32 48 16 27b 5.23** 

right dlPFC (BA9) 26 42 32 21b 5.56** 

ACC (BA8) −4 16 44 166b 6.13** 

left Thalamus (BA50) −12 −18 10 156b 6.50** 

left Lingual (BA19) −24 −68 −10 113b 6.81** 

left su. Occip. (BA19) 28 −78 20 110b 6.87** 

left su. Pariat. (BA7) −26 −48 50 117b 6.39** 

StSw 

vmPFC (BA11) 6 46 −16 4b 5.07** 

left mid. Tem. (BA22) −62 −28 6 7b 5.68** 

right rol. Oper. (BA6) 58 2 8 8b 5.28** 

 

Note: **: whole-brain TFCE correction, at p < 0.05, FWE corrected; a: cluster size obtained at p 
< 0.001, uncorrected. b: cluster size obtained at p < 0.05, FWE corrected. w.N  = preference-
weighted number of against options from the other co-players; SwSt = switch > stay; StSw = stay 
> switch. rTPJ = right Temporal Parietal Junction; ACC = anterior cingulate cortex; pMFC = 
posterior medial frontal cortex; aINS = anterior insula; FPC = frontopolar cortex; dlPFC = 
dorsolateral prefrontal cortex; ACC = anterior cingulate cortex; vmPFC = ventromedial prefrontal 
cortex; su. Occip. = superior occipital gyrus. su. Pariat. = superior parietal lobule; mid. Tem. = 
middle temporal gyrus; rol. Oper. = Rolandic Operculum. 
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Table S5.  
Functional connectivity, related to Figure 4. 
 

  MNI coordinates (peak)   

Connectivity Region x y z Cluster size Zmax 

vmPFC ~ ACC 

mPFC (BA32) 10 40 10 170a 4.62** 

l-Caudate (BA48) −10 4 20 130a 4.87** 

r-Insula (BA13) 38 6 4 191a 5.18** 

rTPJ ~ SwSt 

l-putamen (BA49) −20 12 −4 104b 6.08** 

l-su.Pra. (BA40) −56 −34 36 37b 6.00** 

l-Thalam. (BA50) −6 −14 10 26b 5.80** 

rTPJ ~ left 
dlPFC 

vmPFC (BA10) 0 48 −12 23b 5.26** 

ACC (BA24) 0 0 40 12b 5.12** 

r-Insula (BA13) 44 6 −10 214b 6.57** 

l-Insula (BA13) −46 8 −8 185b 6.37** 

 
Note: **: whole-brain TFCE correction, at p < 0.05, FWE corrected; a: cluster size obtained at p 
< 0.001, uncorrected; b: cluster size obtained at p < 0.05, FWE corrected. SwSt = switch > stay; 
vmPFC = ventromedial prefrontal cortex; ACC = anterior cingulate cortex; rTPJ = right temporal 
parietal junction; dlPFC = dorsolateral prefrontal cortex; mPFC = medial prefrontal cortex; l-
putamen = left putamen; ACC = anterior cingulate cortex; Su.Pra. = supramarginal gyrus; 
Thalam. = Thalamus. 
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