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Abstract:  

Most human decision-making takes place in a social context, which could influence individual 15 

decisions. Using a novel probabilistic reversal learning task in a social setup, we observed opposite 

effects of social influence on choice and confidence. People succumb to the group when confronted 

with dissenting information whereas increase their confidence when observing confirming 

information. Using computational modeling and functional neuroimaging of goal-directed 

learning, we were able to separate normative influence leading to changes in choice behavior and 20 

informational influence resulting in changes in value computations, and identified their unique 
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neural representations. Subsequent valuation was accommodated by both reward prediction error 

and social prediction error. Moreover, we established an interaction of two brain networks related 

to processing reward and social information, which modulates behavioral adjustment. 

 

One Sentence Summary:  5 

Social influence modulates goal-directed learning and the interaction between the brain’s reward 

hub and social hub.  
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Main Text:  

Most of our everyday decisions are made in a social context. This affects both big and small 

decisions alike: we care about what our family and friends think of which major we choose in 

college, and we also monitor other peoples’ choice at the lunch counter in order to obtain some 5 

guidance for our own menu selection. Behavioral studies have examined social influence as 

expressed by conformity (1) and have classified two major sources of social influence: normative 

and informational influence (2–4). Normative influence leads to public compliance, but individuals 

may maintain private beliefs; whereas informational influence hypothesizes that social information 

is integrated into the own valuation process. Neuroscience studies have recently attempted to 10 

assess the neurobiological underpinnings of both two types of influence (5–8). However, results 

are inconclusive, and more importantly, few of them have addressed the neurocomputational 

interaction between normative and informational influence in conjunction with individuals’ own 

valuation processes. This is largely due to the challenge that most studies (5–8) relied on subjective 

judgment tasks where no feedback was given, which hindered the investigation of private belief, 15 

and due to a lack of a comprehensive computational model that quantifies and isolates latent 

determinants relevant to behavioral change.  

 

Here we seek to establish such a comprehensive account of social influence in decision-making at 

the behavioral, computational, and neurobiological level including distinct, yet interacting brain 20 

regions instantiating social decision-making in humans. We ask whether social influence has a 

distinct neurocomputational representation, and how it is integrated with an individual’s own value 

computation. Our model recapitulates crucial decision variables associated with behavioral 
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adjustments, allowing us to directly probe the network of interacting regions. We hypothesize that 

normative influence has its basis in mentalizing processes encoded in the right temporal parietal 

junction (rTPJ; 9–11). Besides, we hypothesize that informational influence involves modulation 

of social learning signals by the anterior cingulate cortex (ACC; 12, 13). In addition, we anticipate 

that an individual’s own valuation is computed via direct reinforcement learning (RL; 14) encoded 5 

in the ventromedial pre-frontal cortex (vmPFC; 15). We also propose an interaction of two brain 

networks related to processing social information (e.g., rTPJ) and to reward information (e.g., 

striatum), whose coupling is modulated by behavioral adjustment (16).  

 

We test these hypotheses by employing a novel paradigm that allows multiple players to interact 10 

with each other in real-time while engaging in a probabilistic reversal learning task (PRL; 17) 

using functional magnetic resonance imaging (fMRI). The task design of our multi-phase paradigm 

(fig. S1) enables us to tease apart every crucial behavior under social influence. Participants in 

groups of five (one in the MRI scanner) began each trial with their initial choice between two 

abstract fractals with complementary reward probabilities, followed by their first post-decision 15 

wager (an incentivized confidence rating; 18). After sequentially uncovering their peers’ first 

decisions in order of their subjective preference, participants had the opportunity to adjust both 

their choice and bet. The final choice and bet were then multiplied to determine the outcome on 

that trial (Fig. 1A). It is worth noting that participants’ actual choices were communicated via 

intranet connection to every other participant, thus increasing the ecological validity of the task. 20 

These dynamically evolving group decisions allowed us to parametrically test the effect of group 

consensus, although participants were aware that outcomes were only dependent on their own 

choice and not that of the group, which prevented cooperative and competitive motives.  
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PRL requires participants to learn and continuously update action-outcome associations, thus 

creating enough uncertainty such that group decisions are likely to influence the choice and bet in 

the 2nd decision (i.e., inferring normative influence), and examine whether the others’ learning 

behavior at the end of the trial was integrated into their own learning (i.e., implying informational 5 

influence).  

 

Model-free analyses showed that 185 healthy participants indeed altered both their first choice and 

bet after observing the group decision, but in the opposite direction. Both second choices and bets 

were modulated by a significant interaction between the relative direction of the group (with vs 10 

against the participant’s 1st choice) and the group consensus (2:2, 3:1, 4:0, view of each participant, 

fig. S2). Participants showed an increasing trend to switch their choice toward the group decision 

when faced with more dissenting social information, whereas, they were more likely to persist 

when observing agreement with the group (direction x consensus interaction, F1,574 = 55.82, P < 

0.001) (Fig. 1B and table S1). Conversely, participants tended to increase their bets as a function 15 

of group consensus when observing confirming opinions, but sustained their bets when being 

contradicted by the group (F1,734 = 4.67, P < 0.05) (Fig. 1C and table S2). We further verified the 

benefit of behavior adjustment: social information facilitated learning (fig. S3, table S3, table S4), 

demonstrating that the adjustment is not a result of perceptual salience. Next, we sought to uncover 

what computations underlay these behavioral adjustments. 20 

 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted February 18, 2019. ; https://doi.org/10.1101/551614doi: bioRxiv preprint 

https://doi.org/10.1101/551614


 

6 
 

Using computational cognitive modeling, we aimed to formally quantify the latent mechanisms by 

dissociating the two types of social influence at the computational level, and particularly, by 

unraveling how informational influence was incorporated into one’s own learning process. In 

addition to existing RL models on social influence (19, 20), our model accommodates multiple 

players, and is able to simultaneously estimate participants’ two choices and two bets under the 5 

hierarchical Bayesian analysis workflow (21). Our efforts to construct these models were guided 

by two design principles: (1) separating of the individual’s own value (Vself) and the vicarious value 

of others (Vother), which were combined into a choice value for the 1st choice (Vcombined) using linear 

weighting, and (2) separating instantaneous normative social influence on the second choice and 

social learning from observing the performance of other players. We modeled the second choice 10 

as a function of two counteracting influences: (1) the group dissension (Nagainst) representing the 

instantaneous influence and (2) the difference between the participants’ action values in the 1st 

choice (Vchosen – Vunchosen) representing the distinctiveness of the current value estimates. When this 

value difference is large, participants are less likely to succumb to social influence from dissenting 

information. When all outcomes were delivered at the end of the trial, both own and vicarious 15 

value were updated on a trial-by-trial basis: Vself was updated with a reward prediction error (RPE; 

22); meanwhile, Vother was updated through tracking a preference-weighted discounted reward 

history of all four other group members (Fig. 1D). By validating the necessity of the social learning 

aspect and ruling out four other competing observational learning processes (fig. S4 and table S5), 

we demonstrated that the above model provided the best out-of-sample predictive power, and its 20 

posterior prediction indeed captured behavioral findings of our model-free analyses (Fig. 1B and 

1C, 23).  
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We then sought to establish the functional association between model parameters and the model-

free behaviors. Parameter results (fig. S5 and S6) hinted that the extent to which participants 

learned from themselves and from the others was on average comparable, suggesting that an 

integrated value from one’s direct learning and informational influence was computed to guide 

future decisions. Furthermore, parameters related to normative influence were well-capable of 5 

predicting the individual difference of participant’s behavioral adjustment (Fig. 1E and 1F). Once 

we had uncovered the latent elements of the decision processes under social influence, we were 

then able to test how they were computed and implemented at the neural level using model-based 

fMRI (24). 

 10 

The first part of our imaging analyses focused on how distinctive decision variables (table S6) 

were parametrically modulated in the brain. Our model distinguished between two value signals 

and suggested that an integrated signal was associated with participants’ initial action and bet. 

Consequently, we now aimed to test the hypothesis that distinct and dissociable brain regions were 

recruited to implement these computational signals. Indeed, using a double-dissociation approach, 15 

we found that the chosen Vself was exclusively encoded in the vmPFC and the chosen Vother was 

exclusively mediated by the ACC gyrus (ACCg) (Fig. 2 and table S7). In addition, the medial 

prefrontal cortex (mPFC) was functionally coupled with both vmPFC and ACCg (fig. S11 and 

table S10), suggesting a neural encoding for the integrated value signal. Besides, the RPE was 

firmly associated with activities in the nucleus accumbens (NAcc), a region that is well-studied in 20 

the literature (22). However, to qualify as a region encoding an RPE signal, activities in the NAcc 

ought to covary positively with the actual outcome (i.e., reward) and negatively with the 
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expectation (i.e., value) (fig. S8 and table S7). This property thus provides a common framework 

to test the neural correlates of any error-like signal (12).  

 

We next turned to disentangle the neural substrates of the instantaneous social influence and the 

subsequent behavioral adjustment. As we have validated enhanced learning using such social 5 

information (fig. S3), we reasoned that participants might process other co-players’ intentions 

relative to their own first decision to make subsequent adjustments. Based on this reasoning, we 

assessed the parametric modulation of preference-weighted Nagainst, and found that activity in rTPJ 

and other regions was positively correlated with the dissenting social information (fig. S9 and table 

S8). In addition, the resulting choice adjustment (switch > stay) covaried with activity in bilateral 10 

dorsolateral prefrontal cortex (dlPFC) (17, 25), commonly associated with executive control and 

behavioral flexibility. In contrast, the vmPFC was more active during stay > switch trials (17), 

reminiscent of its representation of one’s own valuation (fig. S10 and table S9). In summary, our 

model-based fMRI analysis (24) revealed two distinct brain networks representing social 

information and reward and value processing. 15 

 

In a next step, we sought to establish how these network nodes are functionally coupled to bring 

about socially-induced behavioral change and to uncover additional latent computational signals 

that would otherwise be undetectable by conventional general linear models. Using a psycho-

physiological interaction (PPI, 26) seeded in rTPJ, we investigated how behavioral change at the 20 

2nd decision modulated the functional coupling between the social information represented in rTPJ 

and other brain regions. This analysis identified the left putamen (lPut) (Fig. 3A, 3B and table 

S10). Closer investigations into the computational role of lPut revealed that it did not correlate 
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with the two components of an RPE (fig. S12), but rather positively with the actual agreement 

(approximated by 1-Nagainst) and negatively with the expected agreement (approximated by the 

value difference Vchosen - Vunchosen, as individuals who maintain a larger value difference may expect 

more agreement), effectively encoding a social prediction error (SPE, Fig. 3C). Taken together, 

these analyses demonstrate that functional coupling between neural representations of social 5 

information and an SPE is enhanced, when this social information is leading to a behavioral 

change.  

 

In a last step, using a physio-physiological interaction (26) we investigated how the neural 

representation of switching at 2nd decision in the left dlPFC modulated the functional coupling of 10 

rTPJ and other brain regions. This analysis revealed that activity in rTPJ positively modulated the 

coupling between vmPFC and ACC, which strikingly overlapped with the regions that represented 

the two value signals (Fig. 3D-F, table S10). Therefore, it seems that the interplay of neural 

representations of social information and the propensity for behavioral change leads to the 

updating of both values signals obtained via both direct learning and observational learning. 15 

 

Social influence is a powerful modulator of individual choices (27). In a comprehensive 

neurocomputational approach to social decision-making we were not only able to identify a 

network of brain regions that represents and integrates social information of others, but also 

characterize the computational role of each node in this network in detail (Fig. 4), suggesting the 20 

following process model: one’s own decision is guided by a combination of value signals from 

direct learning (Vself) represented in vmPFC (Fig. 2C; 15) and from observational learning (Vother) 

represented in a section of ACC (Fig. 2B) that is also closely related to estimates of the volatility 
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of others’ choices (12) and to error detection and response conflict resolution (28, 29). The 

decisions of others are encoded with respect to the own choice in rTPJ (fig. S9), an area linked, 

but not limited to representations of social information and agents in a variety of tasks (10–12, 30). 

In fact, rTPJ is also related to Theory of Mind (9) and other integrative computations such as 

multisensory integration (31) and attentional processing (32). Dissenting social information gives 5 

rise to a novel social prediction error (actual and expected agreement with group decision) 

represented in lPut (Fig. 3A, 3C and fig. S12), unlike the more medial NAcc, which exhibits the 

neural signature of a classic RPE (fig. S8; 22). The interplay of lPut and rTPJ affects behavioral 

change toward the group decision and in combination with its neural representation of choice 

switching in left dlPFC (Fig. 3D). This triggers the update of direct learning in vmPFC (Vself) and 10 

observational learning in ACC (Vother), thus closing the loop of decision-related computations in 

social contexts. 

 

In summary, we show behavioral and computational evidence that normative social influence 

alters individuals’ action and confidence, and informational social influence is incorporated into 15 

their own valuation processes. Moreover, we found a network of distinct, yet interacting brain 

regions substantiating specific computational variables. Such a network is in a prime position to 

process decisions of the sorts mentioned in the beginning, where – as in the example of a lunch 

order – we have to balance our own experienced-based reward expectations with the expectations 

of congruency with others and use the resulting error signals to flexibly adapt our choice behavior 20 

in social contexts. 
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Fig. 1. Experimental task, behavioral results, and computational model. (A) Excerpt of the 

experimental task display (2nd choice). For a full trial display, see fig. S1. (B) Switch probability at 2nd 

choice and (C) bet difference (2nd bet – 1st bet) as a function of the majority of the group’s 1st decision (with, 

against) and the group consensus. All black lines indicate actual data (± within-subject SEM). Shaded error 5 

bars represent the 95% highest density interval (HDI) of the mean effect computed from the winning 

model’s entire posterior samples (posterior predictive check). (D) Schematic of the computational model 

(see main text and supplement for details). (E) Relationship between contradicting social information 

(preference-weighted Nagainst) and the susceptibility to social influence (slope of switch probability). (F) 

Relationship between confirming social information (preference-weighted Nwith) and the bet difference. 10 
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Fig. 2. Neural substrates of dissociable value signals. (A) The neural representation of 𝑉"#$%&'( and 𝑉)*'#+&'(  

are encoded in the vmPFC (red/yellow) and the ACCg (blue/light blue), respectively. (B) and (C) Time 

series estimates (12) demonstrate a double dissociation of the neural signatures of the value signals. (B) 

The vmPFC is positively correlated with 𝑉"#$%&'(, but not with 𝑉)*'#+&'( , whereas (C) the ACCg is positively 5 

correlated with 𝑉)*'#+&'( , but not with 𝑉"#$%&'(. 
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Fig. 3. Functional connectivity between reward-related regions and social-related regions. 

(A) The functional connectivity between the left putamen (green) and the seed region rTPJ (blue) is 

modulated by the choice adjustment (switch vs. stay). (B) Correlation of activity in seed and target region 

for both switch and stay trials in an example subject and histogram of coupling strength across all 5 

participants for switch and stay trials. (C) The BOLD time series in the left putamen (PPI target) exhibits a 

social prediction error (positive correlation with the actual agreement, and negative correlation with the 

expected agreement). (mean effect across participants ± SEM. (D) Two seed regions, the rTPJ (blue), which 

responds to the social information, and the left dlPFC (yellow), which encodes the choice adjustment, elicit 

connectivity activations in the vmPFC and the pMFC (both in green), which partially overlap with the latent 10 

value signals (i.e., 𝑉"#$%&'(; red; and 𝑉)*'#+&'( ; blue), as in Fig. 2A. (E) and (F) Correlation plots of seed and target 

regions for both high and low dlPFC activity in an example subject and histograms of seed-target coupling 

strengths across all participants for high and low dlPFC activity. 
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Fig. 4. Schematic of the of the network supporting social influence in decision-making as 

uncovered in this study (for details see main text). 5 
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