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ABSTRACT 49 

INTRODUCTION: Altered regulation of lipid metabolism in Alzheimer disease (AD) can 50 

be characterized using lipidomic profiling.  51 

METHOD: 349 serum lipids were measured in 806 participants enrolled in the 52 

Alzheimer Disease Neuroimaging Initiative Phase 1 (ADNI1) cohort and analysed using 53 

lipid regression models and lipid set enrichment statistics.  54 

RESULTS: AD diagnosis was associated with 7 of 28 lipid sets of which four also 55 

correlated with cognitive decline, including polyunsaturated fatty acids. CSF amyloid 56 

beta Aβ1-42 correlated with glucosylceramides, lysophosphatidyl cholines and 57 

unsaturated triacylglycerides; CSF total tau and brain atrophy correlated with 58 

monounsaturated sphingomyelins and ceramides, in addition to EPA-containing lipids.  59 

DISCUSSION: Lipid desaturation, elongation and acyl chain remodeling are 60 

dysregulated across the spectrum of AD pathogenesis. Monounsaturated lipids were 61 

important in early stages of AD, while polyunsaturated lipid metabolism was associated 62 

with later stages of AD.   63 

SIGNFICANCE 64 

Both metabolic genes and co-morbidity with metabolic diseases indicate that lipid 65 

metabolism is critical in the etiology of Alzheimer’s disease (AD). For 800 subjects, we 66 

found that sets of blood lipids were associated with current AD-biomarkers and with AD 67 

clinical symptoms. Our study highlights the role of disturbed acyl chain lipid remodelling 68 

in several lipid classes. Our work has significant implications on finding a cure for AD. 69 

Depending on subject age, human blood lipids may have different effects on AD 70 

development. Remodelling of acyl chains needs to be studied in relation to genetic 71 
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variants and environmental factors. Specifically, the impact of dietary supplements and 72 

drugs on lipid remodelling must be investigated. 73 

ABBREVIATIONS 74 

FA – fatty acids 75 

AC – acetyl carnitine 76 

PC phosphatidylcholine 77 

CE – cholesteryl esters 78 

SM – sphingomyelins 79 

Cer – Ceramide 80 

PE – phosphatidylethanolamine 81 

TG – triacylglycerol  82 

PI – phosphatidylinositol 83 

DG – diacylglycerol 84 

LPC – lysophosphatidylcholine 85 

Aβ – Amyloid Beta 86 

SPARE-AD - Spatial Pattern of Abnormality for Recognition of Early Alzheimer's 87 

disease 88 

LCRS – Lipid Co-Regulatory Set 89 

MUFA – mono unsaturated fatty acid 90 

PUFA – poly unsaturated fatty acid 91 

ADASCog13 - Alzheimer’s Disease Assessment Scale–Cognitive subscale 92 

ADNI – Alzheimer’s disease neuroimaging initiative 93 

EPA – eicosapentaenoic acid 94 
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DHA – docosahexaenoic acid 95 

CSF – cerebrospinal fluid 96 

1. Introduction 97 

The failure of clinical trials of disease modifying agents in Alzheimer's disease (AD) 98 

highlights our limited knowledge about underlying pathophysiological mechanisms. AD 99 

often presents with diabetes co-morbidity and a wide range of metabolic perturbations 100 

occurring early in the disease process (1). APOE-ε4 is by far the strongest single gene 101 

variant contributing to increased AD risk and plays key roles in lipid transport and 102 

metabolism. Presence of the APOE-ε4 variant is correlated with higher cholesterol levels 103 

in the blood (2). More than twenty additional genes have recently been implicated in AD 104 

with functional roles in lipid processing, immune regulation and phagocytosis. Hence, 105 

both co-morbidities and known gene variants support the idea that metabolic 106 

dysfunctions may contribute to AD onset and progression.  107 

Lipidomics methods using liquid chromatography and mass spectrometry (LC/MS) yield 108 

reliable measurements of hundreds of lipids in biological samples.  LC/MS methods have 109 

been used in AD studies in attempts to define possible risk factors (3-7), diagnostic 110 

markers (8)  and for highlighting novel drug targets (9-11). Perturbations in ceramides 111 

and related sphingomyelin metabolism (4, 7) were noted in many of these studies 112 

pointing towards a possible role of these lipids in aberrant signalling pathways, 113 

membrane remodelling, and apoptotic cascades during AD progression. 114 

Changes in phosphatidylcholines were observed in several studies (11-13) pointing to a 115 

possible role for phospholipid metabolism in AD pathogenesis. Yet, AD risk prediction 116 

failed to replicate using a phosphatidylcholine (PC) biomarker panel(11, 14). Partial 117 

correlation network analysis indicated early AD biomarker Aβ1-42 was associated with PC 118 

and sphingomyelin (SM) (11). These studies support our hypothesis that distinct lipid 119 
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biochemical pathways were dysregulated in early and late phase of AD.  Here, we used 120 

LC-MS/MS based serum lipidomics analysis measured in the ADNI I cohort to define the 121 

lipid co-regulatory network of AD phenotypes, a statistical analysis tool that previously 122 

has been successfully used in the analysis of transcriptomic data (15). We investigated 123 

correlation of lipid sets with (1) Disease diagnosis, (2) CSF markers of disease Aβ1-42 , 124 

CSF total tau and (3) cognitive decline and brain atrophy.  125 

2. Material and methods 126 

2.1. Study cohort  127 

Data used in the preparation of this article were obtained from the Alzheimer’s Disease 128 

Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu). The ADNI was launched in 129 

2003 as a public-private partnership, led by Principal Investigator Michael W. Weiner, 130 

MD. The primary goal of ADNI has been to test whether serial magnetic resonance 131 

imaging (MRI), positron emission tomography (PET), other biological markers, and 132 

clinical and neuropsychological assessment can be combined to measure the 133 

progression of mild cognitive impairment (MCI) and early Alzheimer’s disease (AD). For 134 

up-to-date information, see www.adni-info.org. 135 

The ADNI cohort information was downloaded from the ADNI data repository 136 

(http://adni.loni.ucla.edu/), supplying all the demographic information, 137 

neuropsychological and clinical assessment data, and diagnostic information that was 138 

previously published (16). Prior Institutional Review Board approval was obtained at 139 

each participating institution and written informed consent was obtained for all 140 

participants. Information about the ADNI project is provided on http://www.adni-info.org/ 141 

and the associated publication (17).  142 

2.2. Pathology, clinical and lipidomics data 143 
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Untargeted lipidomics, AD diagnosis, CSF biomarkers including Total Tau (t-tau) and 144 

amyloid beta (Aβ1-42), cognitive decline (ADAScog13), brain atrophy represented by 145 

Spatial Pattern of Abnormality for Recognition of Early Alzheimer’s disease (SPARE-AD)(17) 146 

data were obtained from the ADNI repository (http://www.adni-info.org/). Generation and 147 

quality control of lipidomics data have been described in (18) .  148 

2.3. Detection of sets of co-regulated lipids  149 

A pair-wise Spearman-rank correlation matrix was generated for lipids using the R 150 

function cor.test. The matrix was converted to a hierarchical tree model using the hclust 151 

function in R with the ward linkage method. The resulting tree model was divided into 152 

clusters using the tree cutting algorithm dynamicTreeCut (19). We used a minimum 153 

cluster size of three and a split depth of four in the tree cutting method.  154 

2.4. Association modeling 155 

Linear regression models were established for association of serum lipid abundances 156 

and CSF biomarkers and indices for cognitive decline and brain atrophy. No confounding 157 

variables were included in the regression models. Logistic regression models were 158 

calculated to associate serum lipids with AD diagnosis. Lipid abundances were scaled 159 

by the mean substracting approach. All models were unadjusted to identify all the lipid 160 

co-regulatory sets that were associated specifically with only AD or with AD and other 161 

demographics or confounding factors. Data from all ADNI-1 participants were included 162 

in the analysis.  163 

2.5. Lipid set enrichment analysis 164 

Co-regulatory lipid sets detected by the dynamicTreeCut method (19) were used as an 165 

input for cluster enrichment analysis using the Kolmogorov–Smirnov test as described 166 

in the ChemRICH method (20). In this test, the distribution of p-values was assumed to 167 

be uniform under a null hypothesis for a lipid cluster. Raw p-values obtained from the 168 
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linear and logistic models were used as input for computing the enrichment statistics by 169 

comparing the experimental p-values with the uniform distribution. Set level p-values 170 

were adjusted for false discovery rate using the Benjamini–Hochberg method.  171 

2.6. Source code  172 

All statistical analyses were performed in R programming language version 3.4.0.  173 

The R-script is available at http://github.com/barupal/ADNI 174 

 175 

3. Results 176 

The main objective of the study was to identify lipid co-regulatory modules that were 177 

associated with AD diagnosis and its clinical and pathological features. In this direction, 178 

we first computed univariate association models and obtained raw p-values for each 179 

lipid. Next, we identified lipid co-regulatory modules, which were then used as set-180 

definitions for a lipid-set enrichment analysis using the raw p-values for lipids. To 181 

minimize the false-negative rate on the set-level statistics, univariate p-values were not 182 

corrected for the multiple hypothesis testing.  183 

3.1. Subject cohort and lipidomics details 184 

Supplement Table 1 summarizes the details for the 806 ADNI participants at baseline 185 

included in the present study.  The baseline ADNI1 serum lipidomics dataset contained 186 

16 different lipid chemical classes summarizing 349 annotated lipids (Table 1).  187 

3.2. Regression models for individual lipids  188 

We first tested all individual lipids for their association with both early and late AD 189 

pathogenic markers and cognitive changes (Supplement Table S2). Raw p-values from 190 

these association models will be used as an input for the lipid set enrichment analysis in 191 

the following section. Figure 1 shows the number of significantly associated lipids in 192 

these regression models. A total of 168 lipids were found to be significant in at least one 193 
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regression model (raw p-value < 0.05), making it difficult to biologically interpret them on 194 

individual lipid level. Two AD phenotypes showed strong positive associations with 195 

individual serum lipids, CSF Total tau and SPARE AD. Conversely, three phenotypes 196 

were mostly negatively associated with individual blood lipids, including the two related 197 

phentoypes AD diagnosis and its major contributor, ADASCog13. Overall, AD diagnosis 198 

was associated with a decline in many lipid levels which could point to lower metabolic 199 

activity in specific lipid metabolic pathways. When analyzing all individual lipids that were 200 

associated with at least one AD-phenotype, we found a very high specificity of lipid 201 

associations with a particular AD-phenotype (Figure 2 and Table S3).  48% (168/349) of 202 

all lipids were associated with at least one AD-phenotype (Table S3). Specifically, for 203 

known lipids, 63% of all AD-phenotype associated lipids were specific to only one 204 

phenotype and not shared with others (Figure 3). 28 % of the detected associations of 205 

known lipids were shared between two phenotypes, driven by lipids shared between the 206 

two related phentoypes AD diagnosis and its major contributor, ADASCog13, in addition 207 

to lipids shared between total tau and SPARE-AD. Conversely, Abeta142 showed few 208 

shared lipids. Importantly, there was no identified lipid that was shared between four 209 

phenotypes, and only one lipid that was associated with all AD-phenotypes (arachidonyl-210 

lysophosphatidylethanolamine; LPE C20:4). Many lipids are co-regulated by the activity 211 

of specific lipases or other enzymes involved in lipid remodeling. Identifying 212 

commonalities of biochemical mechanisms may lead to underlying genetic drivers or 213 

environmental factors implicated in AD-etiology. Therefore, we next focused on 214 

identifying sets of co-regulated lipids associated with AD pathophysiology rather than 215 

interpreting individual lipids.  216 

3.3. Identifying sets of co-regulated lipids 217 
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Lipid classification often uses chemical structure as the only criterion. To specify the 218 

biochemical relationships between circulating blood lipids, we instead used correlation 219 

analysis to determine sets of lipids. A pair-wise Spearman correlation matrix followed by 220 

hierarchical clustering with the DynamicTreeCut dendrogram cutting method (19) yielded 221 

a total of 28 co-regulated lipid sets in the ADNI1 dataset (Figure 3). The mean size was 222 

12.5 lipids per set, ranging from 4 to 28 members. These lipid sets (LM) were named 223 

LM1 to LM28. The average Spearman correlation coefficient rho across sets was 0.63 224 

with a range of 0.19 < rho < 0.82. Figure 3 and Supplemental Table S2 show that some 225 

lipid co-regulatory sets were composed of lipids from the same chemical classes (such 226 

as Set-17 for free fatty acids, Set-1 for triacylglycerides and Set-14 for ceramides) 227 

whereas other sets were heterogeneous (such as Set-3 consisting of ceramides and 228 

sphingomyelins, or Set-7 that includes phosphatidylinositols and phosphatidylcholines). 229 

Interestingly, several classes of lipids were found with distinct co-regulation within each 230 

class. For example, triacylglycerides were not found as one large group of co-regulated 231 

species, but clustered in three specific sets, and similarly, free fatty acids were found in 232 

two different sets, Set-9 consisting only of saturated fatty acids and Set-17 comprised 233 

only of unsaturated fatty acids. Similarly, other lipid classes were distributed across 234 

different sets, too. For example, phosphatidylcholines were found in five sets and 235 

sphingomyelins were co-regulated in three sets, indicating downstream regulation of lipid 236 

biochemistry by specific elongases, desaturases, lipases, acyl-transferases within each 237 

lipid class (Figure 2).  238 

3.4 Associating lipid sets with AD-phenotypes 239 

These lipid groups served as input for a lipid-set enrichment analysis (LSEA)(20)  along 240 

with the p-value and beta coefficient results from the regression models. Overall, 19 out 241 

of 28 lipid sets were significantly associated with at least one AD-phenotype (Figure 4, 242 
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Table S3) using the Kolmogorov-Smirnoff statistical test with FDR-corrections. Eight sets 243 

were uniquely associated with only one specific AD-phenotype, but only one set was 244 

associated with four phenotypes, Set-11, consisting primarily of ceramides and 245 

phosphatidylcholines. Set-11 did not include polyunsaturated acyl chains with three or 246 

more double bonds. Six sets were associated with two AD-phenotypes and four sets 247 

were correlated with three AD-phenotypes, but no set correlated with all five phenotypes. 248 

More than two-thirds of all associations were positively correlated between lipid sets and 249 

phenotypes, mostly driven by the t-tau phenotype that also had the highest number of 250 

correlated lipid sets. Conversely, ADASCog13 showed the highest number of negative 251 

associations with lipid sets. We therefore investigated the individual phenotypes with 252 

respect to the composition of their associated lipid sets.  253 

3.4.1. Lipid sets associated with AD diagnosis 254 

AD-diagnosis was significantly associated with seven distinct lipid sets (Figure 4) after 255 

FDR correction. Specifically, the phenotype was highly significantly negatively correlated 256 

with lipid Set-26 and Set-4. Both sets were comprised of acyl chains with at least one 257 

polyunsaturated fatty acyl chain (PUFA) (see Table S2), either eicosapentaenoic acid 258 

(EPA), docosahexaenoic acid (DHA) or arachidonic acid (AA). Set-26 consisted 259 

exclusively of triacylglycerides that also contained either EPA or DHA, but not a single 260 

saturated fatty acid. Set-4 was mixed between different phospholipid head groups, 261 

cholesteryl esters and free fatty acids, indicating that the co-regulation mechanisms 262 

focused on the modulation and incorporation of acyl chains irrespective of the lipid class. 263 

Set-23 was also negatively correlated with AD-diagnosis and comprised of DHA-264 

containing choline- and ethanolamine-plasmalogens. Conversely, two other sets of lipids 265 

were positively associated with AD-diagnosis, most significantly for Set-5 and Set-20, 266 

and less significantly with Set-11 and Set-12. Set-5 contained co-regulated di- and 267 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted February 18, 2019. ; https://doi.org/10.1101/550723doi: bioRxiv preprint 

https://doi.org/10.1101/550723
http://creativecommons.org/licenses/by-nc-nd/4.0/


11 
 

triacylglycerols with acyl groups that did not contain any PUFA with four or more double 268 

bonds, and only one single lipid with linolenic acid (C18:3). Set-20 was exclusively 269 

composed of unsaturated choline-plasmalogens, but not containing any EPA or DHA 270 

acyl chain.  271 

 272 

3.4.2 Lipid sets associated with CSF Aβ1-42 273 

CSF Aβ1-42 was significantly associated with four lipid sets (Figure 4). Three sets were 274 

negatively correlated, Set-11, Set-7 and Set-8. Set-7 was the only lipid set that contained 275 

phosphatidylinositols, in addition to phosphatidyl cholines. Acyl chains were primarily 276 

saturated or mono- and di-unsaturated.  Similarly, Set-8, consisted mostly of desaturated 277 

acyl groups with less than four double bonds, exclusively found as lyso-278 

phosphatidylcholines. In the same way, no PUFA-acyl chains were found in Set-11, a 279 

heterogenous set of ceramides and choline-plasmalogens.  Importantly, the only positive 280 

association of a lipid set with CSF Aβ1-42 was Set-26 that was completely made of PUFA- 281 

triacylglycerides.  282 

 283 

3.4.3 Lipid sets associated with CSF tau 284 

CSF total tau correlated with 12 lipid sets, the highest number of associated lipid sets 285 

among all phenotypes (Figure 4). All sets except Set-1 were positively correlated with 286 

CSF-total tau. Three unique sets that were not shared with other phenotypes. Set-16 287 

was composed of acylcarnitines with increasing degree of desaturation, and Set-17 was 288 

a set of monounsaturated fatty acids. Set-1 was less significant in comparison to other 289 

set associations. Four sets were shared with brain atrophy, four sets were shared with 290 

AD-diagnosis, two sets with amyloid beta and four lipid sets were shared with cognitive 291 

decline. Notably, set-19 was also associated with brain atrophy and contained mostly 292 
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EPA-side chain phosphatidylcholines. Set-3 was composed of sphingomyelins and 293 

ceramides that were not associated with diagnosis or amyloid beta, but instead was also 294 

linked with cognitive decline and SPARE-AD.    295 

 296 

3.4.4 Lipid sets associated with Brain atrophy (SPARE-AD) 297 

Brain atrophy was most significantly associated with Set 27, 19, 11 and 2 (Figure 4). 298 

Three sets (Set 2, Set 11, Set 27) were void of PUFA-side chains with either 299 

phosphoplipid or sphingolipid head groups.  Conversely, Set 19 contained mostly EPA-300 

side chain phosphatidylcholines and was further associated with CSF total tau. Similarly, 301 

Set 21 was associated with both phenotypes, containing phospholipids and their lyso-302 

forms with the PUFA acyl chain arachidonic acid.  303 

 304 

3.4.5 Lipid sets associated with cognitive functions 305 

Most of the lipid sets associated with cognitive decline were also associated with AD 306 

diagnosis (Figure 4). Additionally, it was negatively associated with set Set-22 which 307 

consisted of ethanolamine-plasmalogens. 308 

 309 

4. Discussion 310 

We here focused on associations between blood lipids and five AD-phenotypes guided 311 

by known contributions of lipids and metabolic co-morbidities to Alzheimer’s disease. We 312 

systematically tested both the association of individual lipids and the association with 313 

sets of co-regulated lipids. This approach showed an important advantages over 314 

previous “feature” based lipidomics-AD studies (9), (21) that did not focus on specific 315 

lipid groups, their side chains or their biological regulation. Without clear lipid 316 

identification, feature-based associations miss biological insights and have a high risk of 317 
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not being validated in subsequent studies because each individual lipid may cause more 318 

than one feature in LC-MS based lipidomics(21, 22). Instead we used the largest 319 

published AD-lipidomics data set (18) to date with 349 identified lipids belonging to 13 320 

major lipid classes, identified by extensive MS/MS fragmentation analysis (23) and 321 

enabling analyses reaching to the level of acyl chains.  A second difference to previous 322 

efforts was a focus on summarizing lipids by statistical co-regulation instead of only 323 

relying on univariate analysis or grouping by lipid head groups. This expansion of classic 324 

statistical analysis was critical to extend from diagnostic biomarkers (that need 325 

correctiong for multiple testing using false discovery rate (FDR) adjustments) to revealing 326 

underlying biological mechanisms. The axiom of univariate analyses, the mutual 327 

independence of variables, is untrue in lipid biology. Moreover, stringent FDR corrections 328 

lead to an increased number of false negative results and compromise the statistical 329 

power to investigate the biological mechanisms and pathways. As lipids are poorly 330 

presented in biochemical pathway databases (20), classic metabolic pathway 331 

enrichment analysis (24) ignores a majority of detected lipids and is unsuitable for 332 

lipidomics. Instead, Spearman-rank correlation based matrices yielded specific clusters 333 

of lipids associated with Alzheimer’s disease phenotypes by using the robust 334 

Kolmogorov-Smirnov test for p-value distributions. These lipid sets showed very distinct 335 

metabolic features that we identified as preferential use of specific polyunsaturated fatty 336 

acids that replaced saturated or monounsaturated fatty acids for distinct lipid classes. 337 

These mechanisms of lipid desaturation, elongation, and acyl-chain remodeling were 338 

disturbed in early and later stages of Alzheimer disease. A minimal overlap among lipid 339 

sets was observed (Figure 3) with respect to statistical associations with AD phenotypes, 340 

indicating that quite distinct lipid biochemical processes were involved in the early and 341 

later stages of AD. Lipid metabolic pathways associated with the early stage, in 342 
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particular, may provide new therapeutic targets to stop AD progression. MUFA-343 

containing lipids were positively associated with the brain atrophy and tau accumulation 344 

whereas PUFA-containing lipids were negatively associated with AD diagnosis and 345 

cognitive decline. Therapeutic strategies targeting MUFA lipid pathways at the early 346 

stages of AD could therefore be potentially more effective in delaying the progression of 347 

the disease.  348 

4.1 Lipids linked to the amyloid beta clearance pathway 349 

A decrease in the CSF Aβ1-42 peptide marker is indicating a poor clearance of the peptide 350 

in the brain, leading to its extra-neuronal accumulation. In our study, poor clearance was 351 

indicated by negative associations with lipids sets, including sets that contained 352 

phosphatidylinositols, lysoPCs, ceramides and choline-plasmalogens and PUFA TGs. 353 

The amyloid β peptide is known to cause mitochondrial dysfunction (25) which can lead 354 

to neurodegeneration via autophagic cascades (26, 27). The associated lipids, 355 

specifically ceramides and phosphatidylinositols and lysoPCs have been linked with cell 356 

death and may also contribute in the Amyloid Beta mediated toxicity in neurons (28-30). 357 

Higher levels of ceramides containing oleic acid (C18:1) have been shown to increase 358 

AD risk (4, 5). We validate this finding in our study and also observed lower levels of 359 

phosphoinositols containing polyunsaturated fatty acids to correlate with poor Amyloid-360 

beta clearance. An alternative explanation to our data is an impaired amyloid beta 361 

clearance in the liver(31)that subsequently leads to dysregulation of lipid metabolism in 362 

the liver. Overall, our data suggest that these lipid sets can serve as serum biomarkers 363 

for disturbed Amyloid beta pathway regulation in brain and can complement Amyloid 364 

beta imaging assays.  365 

 366 

4.2 Cerebrospinal fluid total tau  367 
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CSF tau is a marker for accumulating tau tangles in the brain tissues, causing 368 

neurodegeneration. We found that the total CSF tau marker was significantly associated 369 

with lipid sets enriched in monounsaturated fatty acids, acyl-carnitines, ceramides, 370 

sphingomyelins, and EPA containing phosphatidylcholines. Increased fatty acids and 371 

acyl-carnitines are known markers of impaired fatty acid beta oxidation in 372 

mitochondria(32), specially during metabolic diseases such as diabetes and obesity(33, 373 

34). We found free fatty acids and acylcarnitines to be positively correlated with total tau, 374 

supporting the notion of tau mediated neurodegeneration and mitochondrial 375 

dysfunctions. Mitochondrial impairment was further evidenced by positive associations 376 

of total tau with sets of ceramides, because accumulating ceramide are known to induce 377 

cell death and to increase the AD risk in normal subjects (5) Rozen et al. 2011. Higher 378 

ceramide levels were also reported for early stage Alzheimer’s disease (35-37). These 379 

findings indicate that these lipids may be involved in early neurodegenerative pathways, 380 

and their underlying pathways might lead to candidates for new therapeutic strategies.  381 

 382 

4.3 Lipid sets linked with brain atrophy 383 

SPARE-AD is a composite index of brain atrophy and indicates the neurodegeneration 384 

magnitude. We found a high overlap of lipid sets that were associated with both SPARE-AD and 385 

total tau, reinforcing the usability of these serum lipids as biomarkers for neurodegeneration. 386 

These lipid sets included phosphatidylcholines and sphingolipids that were enriched in 387 

polyunsaturated fatty acyls (PUFA) eicosapentaenoic acid and arachidonic acid (EPA, AA). 388 

These fatty acids are main components of brain lipids(38, 39). The loss of brain tissue may cause 389 

an increase in levels of serum lipids that include EPA and AA as acyl groups through lipid 390 

remodelling (40, 41). We here identify lipid pathways associated with tau-mediated brain atrophy 391 

that eventually contributes to AD.  392 

 393 
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4.4 AD diagnosis and cognitive decline 394 

Previous publications reported that  lower levels of PUFA  in AD subjects across multiple 395 

lipid classes, along with higher levels of monounsaturated lipids (4, 8, 9, 42-46). We 396 

found numerous, very significant associations of omega-3 and omega-6 containing 397 

complex lipids with AD diagnosis and cognitive functions. Our analysis is consistent with 398 

these results as shown by AD associated lipids in Set-4, Set-20, Set-23 (Figure 4). We 399 

here specify that the major difference is not related to total levels of mono- or 400 

polyunsaturated fatty acids, but the extent at which these fatty acids are incorporated 401 

into different complex lipids. Clear differences in circulating PUFA phospholipid and 402 

PUFA triacylglycerol levels in AD subjects in comparison to normal subjects were 403 

observed, likely due to dysregulation of biosynthesis in liver. Here, substrate preference 404 

of MGAT and DGAT enzymes in the liver may play an important role, but the exact 405 

specificities of acyltransferase enzymes (and their corresponding lipase enzymes) are 406 

not well studied. Levels of anti-inflammatory plasmalogens (47), important lipids for brain 407 

membrane functions (45, 48), were decreased in AD patients in comparison to 408 

cognitively normal subjects. Lower levels of plasmalogens have been linked to AD (45). 409 

However, in clinical trials, EPA and DHA supplementation do not improve the cognitive 410 

function of AD subjects (49). Nutritional intervention trials such as the European 411 

LipiDiDiet have failed to show any cognitive improvement in AD subjects. A broad-412 

spectrum effect of FOS on additional lipid pathways may explain the failure of this trial 413 

and warrants further lipidomics studies for serum specimens of this trial’s participants. It 414 

was observed that the incorporation of omega-6 fatty acids was increased in AD 415 

subjects. These fatty acids are well-known precursors to pro-inflammatory molecules 416 

such as leukotrienes. Further studies are needed to test if post-mortem brain tissues of 417 
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AD subjects show similar disruption in fatty acid incorporation and if these patterns 418 

correlate with AD severity or other AD phenotypes.  419 

 420 

5. Conclusions 421 

Using co-regulated sets of lipids enabled us to find significant associations of lipids with 422 

Alzheimer’s disease that led to biochemical mechanisms. Across the spectrum of AD 423 

progression, pathways were dysregulated that pointed to lipid desaturation, elongation 424 

and remodelling. These pathways provide new targets as well candidate biomarkers for 425 

the population screening for AD prevention. Future studies are needed to tease out the 426 

roles of genetic variations, drug, and diet the metabolism of MUFA and PUFAs and their 427 

complex lipids and their roles in AD.  428 
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Figure legends 463 

Figure 1. Co-regulated sets of serum lipids in the ADNI lipidomics dataset. Sets 464 

were detected by the dynamicTreeCut algorithm (see method). Node colors show 465 

different chemical classes. FA – fatty acids, AC – acyl carnitines, PC 466 

phosphatidylcholines, CE – cholesteryl esters, SM – sphingomyelins, Cer – ceramides, 467 

PE – phosphatidylethanolamines, TG – triacylglycerols, PI – phosphatidylinositols, DG 468 

– diacylglycerols, LPC – lysophosphatidylcholines. 469 

Figure 2. Number of significantly different lipids with AD phenotypes in 470 

univariate statistics. Directions of beta coefficients in regression models are given by 471 

colors as blue (negative) and red (positive) associations using uncorrected p < 0.05 472 

values. CN : cognitively normal, LMCI : late mild cognitive impairment, AD : Alzheimer’s 473 

disease. DIAG : linear models for diagnosis, tau – linear model for tau, Aβ1-42 – linear 474 

model for  amyloid beta peptide 42, SPARE-AD – linear model for Spatial Pattern of 475 

Abnormality for Recognition of Early Alzheimer’s disease index, ADASCog13 - 476 

Cognitive Subscale of the Alzheimer’s Disease Assessment Scale index. 477 

 478 

Figure 3. Number of significantly associated lipids across AD-phenotypes.  479 

Uncorrected p<0.05 values for five AD-phenotypes.  DIAG : linear models for 480 

diagnosis, tau – linear model for tau, ABETA142 – linear model for  amyloid beta 481 

peptide 42, SPARE-AD – linear model for Spatial Pattern of Abnormality for 482 

Recognition of Early Alzheimer’s disease index, ADASCog13 - Cognitive Subscale of 483 

the Alzheimer’s Disease Assessment Scale index. 484 
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Figure 4. Co-regulated sets of lipids significantly associated with AD-485 

phenotypes. Direction of associations is given by red (positive) and blue (negative) 486 

edge colors. Line thickness indicates the significance of associations (see 487 

Supplementary Table 4 for details). Lipid compositions for each set are shown in 488 

Figure 1 and Supplementary Table S1. DIAG : linear models for diagnosis, tau – linear 489 

model for tau, ABETA142 – linear model for  amyloid beta peptide 42, SPARE-AD – 490 

linear model for Spatial Pattern of Abnormality for Recognition of Early Alzheimer’s 491 

disease index, ADASCog13 - Cognitive Subscale of the Alzheimer’s Disease 492 

Assessment Scale index.  493 

  494 
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Tables  495 

Table 1. Lipid classes and sub-classes in the ADNI serum lipidomics untargeted 496 

dataset  497 

Class Subclass Count 

Acylcarnitine (AC) Acylcarnitine 9 

Free fatty acid (FA) Fatty acid 29 

Sterol lipids Cholesterol 1 

Cholesteroyl ester (CE) 8 

Phospholipid Lysophosphatidylcholine (LPC) 22 

Lysophosphatidylethanolamine (LPE) 4 

Phosphatidylcholine (PC) 53 

Phosphatidylethanolamine (PE) 11 

Phosphatidylinositol (PI) 11 

Plasmalogen phosphatidylcholine (p-PC) 28 

Plasmalogen phosphatidylethanolamine (p-PE) 15 

Sphingolipid Ceramide (CER) 19 

Glucosylceramide (GluCer) 8 

Sphingomyelin (SM) 34 

Acylglycerols Diacylglycerol (DG) 13 

Triacylglycerol (TG) 84 

 498 

  499 
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