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HIGHLIGHTS 

- Unsupervised learning detects enriched gene expression (GE) trajectories in disease 

- These plasma and brain GE trajectories predict neuropathology and future cognitive 

impairment 

- Most predictive molecular functions/pathways in the brain are also top predictors in the 

plasma 

- By identifying plasma GE trajectories, patients can be easily screened and follow dynamic 

treatments 

 

SUMMARY 

Neurodegenerative disorders take decades to develop and their early detection is challenged by 

confounding non-pathological aging processes. For all neurodegenerative conditions, we lack 

longitudinal gene expression (GE) data covering their large temporal evolution, which hinders the 

fully understanding of the underlying dynamic molecular mechanisms. Here, we aimed to 

overcome this limitation by introducing a novel GE contrastive trajectory inference (GE-cTI) 

method that reveals enriched temporal patterns in a diseased population. Evaluated on 1969 

subjects in the spectrum of late-onset Alzheimer’s and Huntington’s diseases (from ROSMAP, 

HBTRC and ADNI studies), this unsupervised machine learning algorithm strongly predicts 

neuropathological severity (e.g. Braak, Amyloid and Vonsattel stages). Furthermore, when 

applied to in-vivo blood samples (ADNI), it predicts 97% of the variance in memory deterioration 

and its future declining rate, supporting the identification of a powerful and minimally invasive 

(blood-based) tool for early clinical screening and disease prevention. This technique also allows 

the discovery of genes and molecular pathways, in both peripheral and brain tissues, that are 

highly predictive of disease evolution. Eighty percent of the most predictive molecular pathways 

identified in the brain were also top predictors in the blood. The GE-cTI is a promising tool for 
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revealing complex neuropathological mechanisms, with direct implications for implementing 

personalized dynamic treatments in neurology. 

 

INTRODUCTION 

In recent decades, we have witnessed an accelerated characterization of the molecular and 

neuropathological mechanisms underlying neurodegenerative progression. Thanks to cutting-

edge technological and methodological advances in genomic and proteomic analysis, we foresee 

unlimited methodological possibilities for understanding and modifying the role of genes and 

protein in disease (Esvelt and Wang, 2012; Mostafavi et al., 2018; Smith et al., 2016; Tan et al., 

2012). Gene expression (GE) examination has been of crucial value, revealing disease-specific 

differentiated genes/molecular-pathways and gene-gene networks with a direct effect in 

neuropathological and cognitive/clinical deterioration (Mostafavi et al., 2018; Zhang et al., 2013). 

However, neurodegenerative conditions may take decades to develop and GE mapping 

techniques are quite recent, hence the unavailability of individual GE datasets covering a given 

disease’s whole evolution. All reported studies are based on cross-sectional or short-term 

longitudinal data, while we continue to lack long-term datasets covering the several phases 

underlying neurodegeneration.  

In addition, due to its highly invasive nature, brain GE studies in neurodegeneration are based on 

post-mortem tissue samples. There are major challenges associated with the 

translation/extrapolation of ex-vivo results to in-vivo conditions (Ferreira et al., 2018). This could 

imply that disease mechanisms (e.g. gene-gene causal networks) and potential biomarkers 

identified with post-mortem data may well not be entirely generalizable to live patients. In this 

sense, peripheral molecular measurements (e.g. plasma GE) may be used to cross-validate post-

mortem based methodologies and findings, potentially providing minimally invasive in-vivo 

biomarkers for accurate patient screening in the daily clinic and clinical trials implementation. 

Nevertheless, the lack of comprehensive longitudinal peripheral datasets, covering multiple 

disease stages at the individual level, makes in-vivo dynamic molecular analyses unpractical. 

Consequently, this affects the identification of robust peripheral biomarkers across continuous 

disease stages and variants. 

Due to the proven ability to disentangle temporal components from high-dimensional cross-

sectional data, novel unsupervised Machine Learning (ML) techniques offer a viable opportunity 

for dealing with the previous limitations. The data-driven reconstruction of pseudo-temporal paths 

to order observations (e.g. cells, subjects) is revolutionizing omics studies, enabling for the first 

time the mapping of complex dynamic processes using cross-sectional “snapshots” (Cannoodt et 

al., 2016; Gupta and Bar-Joseph, 2008; Magwene et al., 2003; Welch et al., 2016). Based on the 

ML inference of a low dimensional space embedded in a population’s omics data, and by creating 

a relative ordering of the individuals, we can accurately identify a series of molecular states that 

constitute a longitudinal trajectory for a process of interest (Campbell and Yau, 2018). When used 

in RNA-seq studies, this novel technique has provided an unprecedented insight into the evolution 

of multiple pathologies. It has also allowed tracking and dissecting differentiated spatiotemporal 

programs in single-cell analysis (Briggs et al., 2018). 

Driven by the imperative of a better understanding and an earlier detection of neurodegeneration, 

here we extend pseudotemporal trajectory inference (TI) to the analysis of both post-mortem and 

in-vivo (blood) GE neurodegenerative samples. Firstly, to better address important 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted February 13, 2019. ; https://doi.org/10.1101/548974doi: bioRxiv preprint 

https://doi.org/10.1101/548974
http://creativecommons.org/licenses/by-nc-nd/4.0/


3 
 

methodological limitations in data exploration and visualization, we introduce the contrastive 

Trajectory Inference (cTI) algorithm. This allows the unsupervised identification and ordering of 

enriched patterns in a diseased population (e.g. Alzheimer’s and Huntington’s diseases) relative 

to a comparison background population (e.g. healthy elderly). Next, we analyze GE samples from 

blood plasma of 744 subjects in the spectrum of late-onset Alzheimer’s disease (LOAD) and from 

1225 autopsied brains in the spectrum of LOAD and Huntington’s disease (HD). Our method 

provides molecular pathological scores that are highly predictive of neuropathological and 

cognitive/clinical deterioration. The results are strongly consistent for both in-vivo and post-

mortem data. In addition, it allows identification of genes and molecular pathways driving 

neurodegenerative progression, as well as analysis of (dis)similarities in molecular disease 

mechanisms at brain and peripheral tissue levels. The inference of contrasted genetic trajectories 

is a promising tool for understanding complex neuropathological mechanisms and for minimally 

invasive patient screening at the daily clinic, with practical implications for implementing 

personalized medical interventions in neurology. 

 

RESULTS 

Inferring Enriched GE Neurodegenerative Trajectories 

GE, neuropathology and cognitive/clinical deterioration in 1969 demented and non-demented 

subjects from three large-scale studies were assessed (see Figure 1, and Datasets 1-3 in Star 

Methods). GE and neuropathology evaluations from both dataset 1 (N=489, ROSMAP Study) and 

dataset 2 (N=736, HBTRC database) were performed in autopsied brains, with genetic profiling 

from the PFC. GE from Dataset 3 (N=744, ADNI database) was obtained from in-vivo blood 

samples, with all subjects also having brain imaging evaluations including amyloid PET, tau PET 

and/or structural MRI. 

Aiming to uncover the molecular reconfigurations underlying neurodegenerative evolution, we 

proceeded to reorder the GE patterns (Fig. 1). For this, we implemented a novel unsupervised 

algorithm for detecting enriched trajectories in a diseased population relative to a background 

dataset (e.g. normal controls; see cTI subsection in Star Methods). A distinctive feature of cTI is 

the use of a contrastive Kernel PCA algorithm (Abid et al., 2018), which controls by the principal 

components of the background data to optimize the exploration and visualization of the target. It 

is a generic algorithm, adaptable to different types of data (e.g. genomic, proteomic, imaging, 

clinical) and nonlinear effects. Each GE dataset was firstly adjusted for relevant confounding 

covariates (e.g. RIN, age, gender and/or educational level; see details in Statistics, Star Methods). 

Next, the cTI was independently applied to the three populations, providing population-specific 

trajectories starting on the background data. Each trajectory is composed by the concatenation 

of a subset of subjects, which follows a given behavior in the data’s dimensionally reduced space. 

We hypothesized that the position of each subject in these GE trajectories would reflect individual 

proximity to the pathology-free state (the background) or, if analyzed in the inverse direction, 

proximity to advanced disease states. Correspondingly, a GE-pseudotime value ([0,1] range) is 

calculated for each subject, with relatively low values for subjects with final positions close to the 

background data, and high values for subjects on the distant extremes of the population. Notice 

that GE-pseudotime could then be assumed as an individual molecular score of pathological 

progression, whose validity is tested in the following subsections. See also Figure 1. 
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Figure 1. Schematic approach for GE-trajectories analysis in neurodegeneration. a) In-vivo blood 

(N=744) and post-mortem brain (N=1225) tissues collected. b) RNA expression for around 40,000 

transcripts (dataset-specific). c) The high dimensional data is automatically reduced to an 

enriched space (~5 features) via a contrastive Kernel PCA algorithm (cKPCA (Abid et al., 2018)), 

which optimizes the exploration and visualization of the target population’s data. d) In the 

contrasted Principal Components (cPC) space, each subject is assigned to a GE-trajectory. The 

subject’s position in the corresponding GE-trajectory reflects the individual proximity to the 

pathology-free state (the background) and, if analyzed in the inverse direction, to the advanced 

disease state. An individual GE-pseudotime score is calculated, reflecting the distance to these 

two extremes (background or disease). e) When taken as an individual molecular score of disease 

evolution, the GE-pseudotime strongly predicts neuropathological and/or cognitive 

measurements. f) Both in peripheral and brain tissues, the cKPCA’s loadings (or weights) allow 

the identification and posterior functional analysis of most informative genes in terms of 

pathological evolution. 

 

Post-mortem GE Trajectories Predict Neurodegenerative Severity 
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Firstly, we analyzed the GE trajectories obtained for the ROSMAP study (dataset 1, N=489). The 

results (Figs. 2a-c) showed a clear association between the obtained molecular disease score 

(GE-pseudotime) and the autopsied tau and amyloid assessments, with a higher GE-pseudotime 

value implying an advancer neuropathologic state. Group differences in GE-pseudotime values 

were statistically tested via ANOVA tests with permutations. We found robust significant 

associations between the GE-pseudotimes and Braak stages (Fig. 2a; F=5.57, P<0.001, FEW-

corrected), Cerad stages (Fig. 2b; F=8.39, P<0.001, FEW-corrected), and a composite variable 

(Braak+Cerad) reflecting the simultaneous presence of tau and amyloid (Fig. 2c; F=5.82, 

P<0.001, FEW-corrected). Notice (Fig. 2c) a clearer GE-pseudotime correspondence with the 

composite (Braak+Cerad) variable than with Braak and Cerad stages separately. This is in line 

with the concurrent accumulation of both amyloid and tau in LOAD, considered indispensable 

markers for characterizing this disorder’s progression (Serrano-pozo et al., 2011). 

Next, we explored the generalizability of these results in the considerably more heterogeneous 

database from HBTRC (dataset 2, N=736), including two different disorders (LOAD and HD) and 

nondemented controls. In consistence with the previous findings, we observed (Figs. 2d-e) a 

positive association between the individual molecular disease score and the levels of 

neuropathologic affectation in both disorders. The GE-pseudotimes were significantly associated 

with the Braak stages (Fig. 2d; F=7.87, P<0.001, FEW-corrected) and the Vonsattel stages (Fig. 

2e; F= 18.80, P<0.001, FEW-corrected). The fact that this population included multiple disorders 

did not seem to affect the robustness of the subject ordering in relation with disease progression, 

which supports the identification of a promising biomarker for the analysis of comorbid 

neurological conditions. 
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Figure 2. GE-based predictions of neurodegenerative severity for ROSMAP, HBTRC and ADNI 

populations. a-e) GE-pseudotime predictive associations with Braak (a,d), Cerad (b), Braak for 

Aβ-/Aβ+ (c), and Vonsattel (e) stages in ROSMAP (a-e) and HBTRC (d-e). f-i) GE-pseudotime 

predictive associations with Tau positivity (f), Aβ positivity, Tau-Aβ comorbidity, cerebral infarcts 

occurrence and clinical diagnosis in ADNI. Data is GE-pseudotime mean (± standard error). All P 

values are FEW-corrected (see reported values in Results). 
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Blood GE as a Robust Biomarker of Neuropathological Severity and Cognitive/Clinical 

Deterioration 

Next, we aimed to investigate if the unsupervised ordering of GE patterns present in the blood 

can reflect neuropathological severity and, importantly, if it could be used as a marker of present 

and future cognitive deterioration. If successful, the latter could have strong implications for the 

in-vivo detection of future disease evolution in the clinic and to decide if a patient should be 

therapeutically treated or not. To test this, we identified the enriched GE trajectories in the plasma 

of 744 participants in the spectrum of LOAD from ADNI (dataset 3), taking as background those 

subjects without cognitive/clinical alterations or any evidence of cerebral infarcts, amyloid or tau 

deposition (see amyloid/tau PET imaging and neuropathology evaluation for Dataset 3, in Star 

Methods). 

In line with our previous findings with the ROSMAP and HBTRC post-mortem data, the ADNI-

based results (Figs. 2f-j) showed a significant predictive power of pathological severity. The 

individual GE-pseudotime values vastly reflected the differences in tau positivity (Fig. 3f; F=22.12, 

P<0.001, FEW-corrected), amyloid positivity (Fig. 3g; F=23.03, P<0.001, FEW-corrected), tau-

amyloid comorbidity (Fig. 3h; F=26.38, P<0.001, FEW-corrected) and brain infarcts (Fig. 3i; 

F=5.65, P<0.05, FEW-corrected). In addition, we tested if the identified subject ordering based on 

enriched GE patterns was predictive of the individual clinical and cognitive properties (Figs. 2j 

and 3a-d). We observed that the molecular disease score values were significantly associated 

with the individual clinical diagnosis (Fig. 2j; F=7.46, P<0.001, FEW-corrected). Also, they 

predicted 97% of the population variance in the memory (MEM) performance (Fig. 3a; R2
adj=0.97, 

P<0.001) and, notably, a similar variance of MEM’s future rate of change in an average period of 

5.35 years (Fig. 3b; R2
adj=0.97, P<0.05). Interestingly, this GE-based disease progression variable 

showed a considerably lower predictive power for executive function (EF) in the participants, 

although still presenting a significant association (Fig. 3c; R2
adj=0.008, P<0.05). However, it 

predicted around 98% of the population variance in EF’s future rate of change (Fig. 3d; R2
adj=0.98, 

P=0.06). Altogether, these results support that, in the context of LOAD and the ADNI population, 

the subject’s temporal ordering based on enriched blood GE patterns is strongly reflective of 

neuropathological, clinical, and memory severity, being also a solid early predictor of future 

memory and executive function loss. It is, however, a considerably less powerful predictor of 

cross-sectional cognitive control. 
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Figure 3. Blood GE-based predictions of Cognitive Deterioration for ADNI data. a-d) Scatter plots 

showing negative associations between molecular disease progression (reflected in GE-

pseudotime) and measurements of cognitive integrity: MEM (a), future slope in MEM (b), EF (c) 

and future slope in EF (d). 

 

In-Vivo and Post-Mortem Molecular Pathways Underlying LOAD Progression 

Next, we aimed to identify the genes, molecular functions and pathways responsible for the 

accurate prediction of neurodegenerative progression. We also intended to clarify if similar 

predictive mechanisms were common to the periphery (blood) and brain tissues. In this context, 

the GE-cTI can provide a quantitative mapping of the most influential genes during the process 

of diseased trajectories inference. Specifically, the cKPCA’s loadings (or weights) reflect how 

much each specific gene, in the original high dimensional space (i.e. ~40K transcripts), 

contributed to the reduced low dimensional space from which the trajectories were obtained. 

Thus, we used these weights to select the genes most influential on the subject’s ordering, i.e. 

those genes driving the observed population differences predictive of neuropathological and 

cognitive/clinical alterations across the disease’s evolution (see Statistical Analysis, Star 

Methods). Based on the dataset-specific identified genes, we then performed large-scale gene 

functional analyses with the Protein Annotation Through Evolutionary Relationship (PANTHER) 

classification system (Mi et al., 2013). Of note, this analysis was restricted to ROSMAP and ADNI 

populations, mostly related to LOAD evolution (unlike the HBTRC database, also including HD 

patients). 
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For the ROSMAP brains, we found 87 highly influential genes with 26 functional pathways (Figs. 

4a,c, and Tables S2-3). These GO overrepresented pathways were highly sensitive for the 

detection of biological processes that are commonly associated with neuropathological and 

cognitive deterioration mechanisms, including oxidative stress response, axon guidance, 

histamine H1 receptor mediation, angiogenesis, inflammation mediated by chemokine and 

cytokine signaling, Wnt and VEGF signaling, apoptosis, and Alzheimer’s disease-amyloid 

secretase. Notably, 80% of these 26 highly predictive molecular pathways in the 

neurodegenerating brain (ROSMAP) were also among the most relevant pathways detected in 

the blood data (ADNI). The common blood-brain functional pathways relevant for LOAD 

progression included gastrin and cholecystokinin (CCKR) signaling, platelet derived growth factor 

(PDGF) signaling, B cell activation, angiogenesis, Wnt signaling, vascular endothelial growth 

factor (VEGF) signaling, among others (Fig. 4c and Table S4).  

Common functional pathways CCKR (associated with appetite control and body weight regulation 

(Perry and Wang, 2012)), PDGF (with a significant role in blood vessel formation (Amaral et al., 

2018), B cell activation (involved in immune system response), and VEGF and angiogenesis 

(linked to the formation of new blood vessels), evidenced the direct relationship between the 

central nervous system and the body, both in health and in disease. Their unsupervised data-

driven identification is, therefore, supporting the crucial importance of studying the periphery-brain 

axis (e.g. bidirectional gut, immune and vascular interactions with brain integrity) for a better 

understanding of systemic pathological mechanisms underlying neurodegeneration. Interestingly, 

we also found another 20 highly influential molecular pathways in the blood that were not identified 

in the brain (Figs. 4b,c and Tables S2,5). This finding may be associated with multiple causes, 

including an increased pathological comorbidity in the periphery relative to the brain and/or crucial 

methodological limitations (i.e. the analysis of two different populations with divergent disease 

characteristics, and the use of different GE mapping techniques with dissimilar 

sensitivity/specificity capacities). 
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Figure 4. Ontology analysis of top predictor genes of LOAD development. Significant molecular 

functions (a,b) and pathways (c) identified in the brain’s PFC (ROSMAP) and the blood plasma 

(ADNI). In (a-b), the bars show the number of genes associated to the main GO overrepresented 

categories. In (c), the color scale indicates the presence level (in %) of each functional pathway 

(e.g. dark blue for absent pathways, red for highly represented pathways). For lists of genes and 

pathways, see Tables S2-5. 

 

Discussion 

Due to the typically long developing period of most prevalent neurodegenerative disorders, we 

lack exhaustive longitudinal datasets covering the continuous molecular transitions underlying 

disease progression. Consequently, almost all our knowledge of the subjacent pathological 

mechanisms is based on data “snapshots” taken and analyzed at a few disease stages. Here, we 

aimed to overcome this crucial gap by inferring the intrinsic temporal information contained in 

large-scale neurodegenerative datasets. For that, we implemented a novel pattern analysis 

method that detects enriched GE trajectories in a diseased population (e.g. subjects progressing 

towards dementia) relative to a background population (e.g. a clinically normal control group). Our 

results in three different GE datasets (ROSMAP, HBTRC, ADNI) support the strong predictive 

power of this technique for identifying individual neuropathological stages and/or cognitive 

deterioration. This may well have broad implications for uncovering the dynamic mechanisms of 

molecular pathology, patient stratification in the clinic, and monitoring response to personalized 

treatments in neurodegeneration. 

A minimally invasive molecular test for neurodegeneration could lead to better treatment and 

therapies (Ray et al., 2007). An additional aim of this study was to identify an in-vivo peripheral 
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biomarker able to predict the individual’s pathophysiology and cognitive decline. When tested in 

744 blood samples from ADNI, the proposed GE-cTI showed a significant association with both 

amyloid and tau positivity (Figs. 3a-c). Furthermore, it was able to strongly predict both the current 

cognitive function and its future decline (Figs. 3e-h). The fact that the proposed ML model is un-

supervised (i.e. the neuropathological and cognitive variables are not used to train a predictive 

model), guarantees absence of possible circularity or data overfitting. Consequently, we can infer 

that the obtained genetic trajectories and the associated GE-pseudotime values are direct 

measures of molecular integrity, obtained independently of phenotypic variables, and would 

therefore be useful as unbiased biomarkers in clinical applications.  

Our analysis of most relevant molecular pathways for predicting LOAD progression revealed a 

striking similarity between peripheral and intra-brain pathological mechanisms. Eighty percent of 

the most predictive molecular pathways identified in the brain were also identified as top 

predictors in the blood. These pathways support the importance of studying the peripheral-brain 

axis (see Results, last subsection), providing further evidence for a key role of gut-brain 

interactions (Mayer et al., 2014; Westfall et al., 2017), vascular structure and functioning (Bell and 

Zlokovic, 2009; Iturria-Medina et al., 2017, 2016), and immune system response (Gendelman, 

2002; Labzin et al., 2018; Streit et al., 2004). The multi-tissue analysis based on genetic 

trajectories may be particularly useful for clarifying both local (tissue-specific) and systemic (inter-

organs) neurodegenerative mechanisms. 

Our method built on the pseudotemporal trajectory inference field (Cannoodt et al., 2016; Gupta 

and Bar-Joseph, 2008; Magwene et al., 2003; Welch et al., 2016). Modeling the dynamics of gene 

regulation, rather than focusing on static time points, is crucial for clarifying cellular transitions 

and what goes wrong in the case of disease (Cannoodt et al., 2016). We attempted to extend 

previous models by incorporating the use of a novel contrastive dimensionality reduction 

technique (Abid et al., 2018), which allows detecting enriched patterns in the population of interest 

while adjusting by confounding components in the background population (e.g. concurrent aging 

effects). In a set of complementary analyses (data not known), we observed that, in comparison 

with other state-of-the-art TI methods (Campbell and Yau, 2018; Welch et al., 2016), this 

extension provides a considerably higher sensitivity to detect diseased GE components (i.e. other 

methods could not predict neuropathology, nor cognition). In addition to uncovering disease 

dynamics, cTI may enable the data-driven identification of new subpopulations within a 

heterogeneous neurodegenerative population (Cannoodt et al., 2016; Trapnell, 2015; Trapnell et 

al., 2014), with strong implications for precision medicine and the selective enrollment of patients 

in clinical trials. Furthermore, once the data is ordered, it could also improve the inference of 

causative regulatory interactions underlying a disorder (Cannoodt et al., 2016). 

Another advantage of cTI (and TI in general) is the ability to deal with high dimensional data. This 

is a key feature for the concurrent analysis of multi-omics, potentially allowing the exploration of 

multiple and complementary modalities, such as transcriptomics, proteomics, metabolomics and 

epigenomics. Contrastive trajectory inference can be also applied to the analysis of data from 

other fields, including multi-modal brain imaging, environmental and cognitive/clinical information. 

Finally, although our study is focused on neurodegenerative evolution, in general, cTI can be 

applicable to the study of multiple neurological and neuropsychiatric conditions. 

 

STAR METHODS 
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Study Participants  

This study used GE data (Ntotal=1969) from three large-scale databases (see Table S1 for 

demographic characteristics). Each dataset was processed and analyzed independently: 

Dataset 1. RNA expression data from the prefrontal cortex (PFC) of a subset of 489 autopsied 

subjects were downloaded from the Religious Orders Study (ROS; (Bennett et al., 2012a)) and 

the Memory and Aging Project Study (MAP; (Bennett et al., 2012b)). This data (Bennett et al., 

2018) is available at the Accelerating Medicines Partnership Alzheimer’s Disease (AMP-AD) 

knowledge portal (https://www.synapse.org/#, Synapse ID 3800853). ROS (Bennett et al., 2012a) 

and MAP (Bennett et al., 2012b).  are longitudinal clinical-pathologic cohort studies of aging, 

Alzheimer's disease (AD) and related disorders. Enrollment required no known sign of dementia. 

Upon death, a post-mortem neuropathologic evaluation is performed that includes a uniform 

structured assessment of AD pathology, cerebral infarcts, Lewy body disease, and other 

pathologies common in aging and dementia. The pathologic diagnosis of AD uses NIA-Reagan 

and modified CERAD criteria, and the staging of neurofibrillary pathology uses Braak Staging 

(Braak H, 1991). An RNA integrity (RIN) score >5 and a quantity threshold (5 mg) for each sample 

were required (Bennett et al., 2014). cRNA was hybridized to Illumina HT-12 Expression Bead 

Chip (48,803 transcripts) via standard protocols using an Illumina Bead Station 500GX (Webster 

et al., 2009; Zhang et al., 2013). 

Dataset 2. 736 individual post-mortem tissue samples from the dorsolateral prefrontal cortex BA9 

of LOAD patients (N=376), HD patients (N=184) and nondemented subjects (N=173) were 

collected and analyzed (Zhang et al., 2013). All autopsied brains were collected by the Harvard 

Brain Tissue Resource Center (HBTRC; GEO accession number GSE44772), and include 

subjects for whom both the donor and the next of kin had completed the HBTRC informed consent 

(http://www.brainbank.mclean.org/). Correspondingly, tissue collection and the research were 

conducted according to the HBTRC guidelines (http://www.brainbank.mclean.org/). Postmortem 

interval (PMI) was 17.8 ± 8.3 hr, sample pH was 6.4 ± 0.3 and RNA integrity number (RIN) was 

6.8 ± 0.8 for the average sample in the overall cohort.  

As previously described in (Zhang et al., 2013), RNA preparation and array hybridizations applied 

custom microarrays manufactured by Agilent Technologies consisting of 4,720 control probes and 

39,579 probes targeting transcripts representing 25,242 known and 14,337 predicted 

genes. Arrays were quantified on the basis of spot intensity relative to background, adjusted for 

experimental variation between arrays using average intensity over multiple channels, and fitted 

to an error model to determine significance (Emilsson et al., 2008). Braak stage, general and 

regional atrophy, gray and white matter atrophy and ventricular enlargement were assessed and 

cataloged by pathologists at McLean Hospital (Belmont, MA, USA). In addition, the severity of 

pathology in the HD brains was determined using the Vonsattel grading system (Vonsattel et al., 

1985). 

Dataset 3. This study used a total of 744 individual data with blood GE information, from the 

Alzheimer’s Disease Neuroimaging Initiative (ADNI) (adni.loni.usc.edu). The participants 

underwent multimodal brain imaging evaluations, including amyloid PET, tau PET and/or 

structural MRI. The ADNI was launched in 2003 as a public-private partnership, led by Principal 

Investigator Michael W. Weiner, MD. The primary goal of ADNI has been to test whether serial 

magnetic resonance imaging (MRI), positron emission tomography (PET), other biological 
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markers, and clinical and neuropsychological assessments can be combined to measure the 

progression of mild cognitive impairment (MCI) and early Alzheimer’s disease (AD). 

The Affymetrix Human Genome U219 Array (www.affymetrix.com) was used for gene expression 

profiling from blood samples. Peripheral blood samples were collected using PAXgene tubes for 

RNA analysis (Saykin et al., 2015). The quality-controlled GE data includes activity levels for 

49,293 transcripts. All the participants were characterized cognitively using the mini-mental state 

examination (MMSE), a composite score of executive function (EF), a composite score of memory 

integrity (MEM) (Gibbons et al., 2012), and Alzheimer's Disease Assessment Scale-Cognitive 

Subscales 11 and 13 (ADAS-11 and ADAS-13, respectively). Also, they were clinically diagnosed 

at baseline as healthy control (HC), early mild cognitive impairment (EMCI), late mild cognitive 

impairment (LMCI) or probable Alzheimer’s disease patient (LOAD). 

18F-AV-45 (amyloid specific) and 18F-AV-1451 (tau specific) PET images were acquired for a 

subset of 660 and 166 subjects, respectively. Both amyloid and tau images were preprocessed 

by the Jagust Lab (UC Berkeley, US; Jagust et al., 2010). Using the amyloid images, subjects 

were categorized as amyloid positive (Aβ+) or negative (Aβ-) by applying a cutoff of 1.11 to a 

Florbetapir composite SUVR normalized by the whole cerebellum reference (Described in 

ADNI_UCBERKELEY_AV45_Methods_12.03.15.pdf file, ADNI database). Also, individual 

Freesurfer-defined cortical and subcortical brain regions were used to calculate weighted 

Flortaucipir averages for each region, which were normalized by the weighted Flortaucipir at the 

cerebellum (Described in UCBERKELEY_AV1451_Methods_Aug2018.pdf file, ADNI database). 

Based on the lobar classification topographic staging scheme for tau PET and the corresponding 

cutoff values proposed by (Schwarz et al., 2018), the subjects were staged in Braak 0 (no tau), 

Braak I/II, Braak III/IV or Braak V/VI. Subsequently, they were categorized as tau negative (tau-) 

or positive (tau+) if they were in the stages 0 or I-VI, respectively. Structural MRI images for 741 

subjects were analyzed by a physician specially trained in the detection of MRI infarcts. The 

presence of MRI infarction was determined from the size, location and imaging characteristics of 

the lesion, with only lesions 3mm or larger qualifying for consideration as cerebral infarcts 

(Described in ADNI_UCD_MRI_Infarct_Assessment_Method_201130609.pdf file, ADNI 

database). Finally, a subset of subjects (N=30) was evaluated for pathological brain lesions after 

death. Pathological lesions were assessed using established neuropathologic diagnostic criteria 

(Described in ADNI_Methods_Neuropathology_Core_03-06-2018-2.pdf file, ADNI database). 

The analysis included histopathologic assessments of amyloid β deposits, staging of 

neurofibrillary tangles, scoring of neuritic plaques and assessments of co-morbid conditions such 

as Lewy body disease, vascular brain injury, hippocampal sclerosis, and TAR DNA binding protein 

(TDP) immunoreactive inclusions (Montine et al., 2012). 

Contrastive Trajectories Inference (cTI) 

Given a multi-dimensional population dataset, the inference of contrasted pseudotemporal 

trajectories (and an individual pseudotime value) consists of four main steps:  

(i) For high-dimensional datasets (e.g. ~40,000 transcripts), initial selection of features 

most likely to be involved in a trajectory across the entire population. We apply the 

unsupervised method proposed by (Welch et al., 2016), which does not require prior 

knowledge of features involved in the process or differential expression analysis. 

Features are scored by comparing sample variance and neighborhood variance. A 

threshold is applied to select those features with higher score, e.g. we kept the features 
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with at least a 0.95 probability of being involved in a trajectory (i.e. ~3000 gene 

transcripts).  

(ii) Data exploration and visualization via contrastive Kernel Principal Component 

Analysis (cKPCA; (Abid et al., 2018)). This novel technique identifies nonlinear low-

dimensional patterns that are enriched in a target dataset (e.g. a diseased population) 

relative to a comparison background dataset (e.g. demographically matched healthy 

subjects). By controlling the effects of characteristic patterns in the background (e.g. 

pathology-free and spurious associations, noise), cKPCA (and its linear version cPCA 

(Abid et al., 2018)) allows visualizing specific data structures missed by standard data 

exploration and visualization methods (e.g. PCA, Kernel PCA). When applied to the 

selected GE transcripts (from step i), for each population, we obtained around 4-5 

contrasted principal components capturing the most enriched pathological properties 

relative to the background (i.e. subjects without cognitive deterioration and 

neuropathological signs). 

(iii) Subjects ordering and GE-pseudotime calculation according to their proximity to the 

background population in the contrasted Principal Components space. For this, we 

first calculate the Euclidean Distance Matrix among all the subjects and the associated 

Minimum Spanning Tree (MST). The MST is then used to calculate the shortest 

trajectory/path from any subject to the background subjects. Each specific trajectory 

consists of the concatenation of relatively similar subjects, with a given behavior in the 

data’s dimensionally reduced space. The position of each subject in his/her 

corresponding shortest trajectory reflects the individual proximity to the pathology-free 

state (the background) and, if analyzed in the inverse direction, to advanced disease 

state. Thus, to quantify the distance to these two extremes (background or disease), 

an individual GE-pseudotime score is calculated as the shortest distance value to the 

background’s centroid, relative to the maximum population value (i.e. values are 

standardized between 0 and 1). Finally, the subjects are ordered according to their 

GE-pseudotime values, from low (close to the background group) to high values (close 

to the most diseased subjects). 

Statistics 

Genes activity was adjusted for relevant covariates using robust linear models (Street et al., 

1988). Specifically, Dataset 1 GE was adjusted for postmortem interval (PMI) in hours, age, 

gender and educational level. Dataset 2 GE was adjusted for PMI, sample pH, RNA integrity 

number (RIN), age and gender. Dataset 3 GE was controlled for RIN, Plate Number, age, gender 

and educational level. All predictive associations between grouping variables (e.g. Braak stages, 

Cerad stages, clinical diagnosis) and the individual GE-pseudotimes (see first and second Results 

subsections) were tested via ANOVA tests, FEW-controlled by permutations (Legendre and 

Legendre, 1998). For each dataset, a gene’s contribution to the obtained genetic trajectories was 

quantified as the mean of its absolute cKPCA loadings/weights. We considered 2 standard 

deviations over the mean for detecting most influential genes. 

Data and Code availability 

The three datasets used in this study are available at the AMP-AD knowledge portal 

(https://www.synapse.org/#, Synapse ID 3800853), the Gene Expression Omnibus (GEO 

accession number GSE44772) and the ADNI database (www.adni.loni.usc.edu), respectively. We 
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anticipate that the code will be released soon as part of an open-access software. For more 

information, please contact the corresponding author. 
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SUPPLEMENTARY INFORMATION 

Table S1. Main demographic characteristics for the three populations.   

Variable ROSMAP 
(N=489) 

HBTRC 
(N=736) 

ADNI 
(N=744) 

Women 299 (61.1%) 354 (47.9%) 336 (45.1%) 

Age (years) 86.1 (4.81) 70.8 (15.10) 73.1 (7.03) 
Education (years) 16.7 (3.59) - 16.1 (2.77) 

Data are number (%) or mean (std). 

Table S2. Most predictive genes of LOAD progression in brain (ROSMAP) and blood (ADNI) 

tissues. 

Data Genes 

ROSMAP METRNL, RANBP6, GPR89A, HEATR5B, DUSP12, EPYC, CTSL1, HS.66187,  
BAZ1A, WWTR1, GIMAP8, ZFAND3, PRKCE, ASB6, LETMD1, C3ORF59,  
ZNF667, SPOCD1, ABLIM2, RARRES1, LANCL1, PLCG2, TNNC1, TATDN1, 
DCLK1, TNRC6B, BPGM, AMACR, TAC1, MYO9B, UBE2W, KCNIP4, C3ORF38, 
NR1H3, TSPYL1, C6ORF170, WDR61, ATP1B1, PSMC2, CTSL1, LOC220686, 
EVI5, HSPB7, BRMS1, LARGE, SLC7A7, CAMK2A, KIAA1688, RAB11FIP2, 
YME1L1, RAP1GAP, MAP1A, SETBP1, PSMD10, LMO3, SNTG1, ZDHHC3, MMD    
TRIM32, CMTM3, FAM40B, ATXN10, CYCS, DNAJC12, SIL1, HSD17B11, 
NAP1L5, ATP6V1E1, TAC1, DCLRE1C, PAP2D, MFSD4, DNHL1, ZNF223, 
PGM2L1, RBM11, HECTD1, TSC22D1, CDKL2, NUDT11, MOBKL2C, TGFBI 

ADNI G6PD, C11ORF68, SETD5, ENOPH1, SOD1, EDC4, ZSWIM8, ACADSB, ACAP2, 
VPS72, SFSWAP, ZNF302, ZBED5, OS9, SMARCC2, DMTF1, DAXX, STX3, 
BRD2, RTN3, SERP1, SERP1, HNRNPUL2, SMNDC1, UBN1, SLC6A6, PCNX, 
MIDN, CAPZA2, PGD, CHD7, AGPS, DYRK2, WDR44, WDR44, ABI1, PDLIM7, 
EIF4A2, CFP, PRKCD, NFAM1, ABI1, SDCBP, NADK, PNPLA8, ARHGAP26, 
SDCBP, SBDSP1, SBDS, ABI1, KDM5A, S1PR1, CHD8, BRMS1, PRRC2C, 
SSFA2, ANXA11, RASSF2, ANXA11, VTA1, PAF1, TNIP1, GBA, GIGYF2, OS9, 
CHST15, GARS, SDCBP, ARGLU1, PPP1CB, COPS6, VAMP7, SNAP23, 
CNOT6, SDHD, SDCBP, CREBRF, PDLIM7. DOCK5, SMNDC1   

 

Table S3. Molecular pathways underlying GE trajectories associated to LOAD progression in 

brain tissues (ROSMAP). 

Pathway name Presence 
(%) 

Oxidative stress response                                                     7.7 

Axon guidance mediated by netrin                                              5.1 

Histamine H1 receptor mediated signaling pathway                              5.1 

Angiogenesis                                                                  5.1 

Inflammation mediated by chemokine and cytokine signaling pathway             5.1 

Ubiquitin proteasome pathway                                                  5.1 

EGF receptor signaling pathway                                                5.1 

PDGF signaling pathway                                                        5.1 

Thyrotropin-releasing hormone receptor signaling pathway                      5.1 
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CCKR signaling map                                                            5.1 

Wnt signaling pathway                                                         5.1 

VEGF signaling pathway                                                        5.1 

ATP synthesis                                                                 2.6 

Apoptosis signaling pathway                                                   2.6 

Ionotropic glutamate receptor pathway                                         2.6 

Alzheimer disease-amyloid secretase pathway                                   2.6 

Alpha adrenergic receptor signaling pathway                                   2.6 

Endothelin signaling pathway                                                  2.6 

Gonadotropin-releasing hormone receptor pathway                               2.6 

Nicotinic acetylcholine receptor signaling pathway                            2.6 

Oxytocin receptor mediated signaling pathway                                  2.6 

Muscarinic acetylcholine receptor 1 and 3 signaling pathway                   2.6 

B cell activation                                                             2.6 

Heterotrimeric G-protein signaling pathway-Gq alpha and Go alpha mediated pathway 2.6 

5HT2 type receptor mediated signaling pathway                                 2.6 

FGF signaling pathway                                                         2.6 

 

Table S4. Common molecular pathways underlying GE trajectories associated to LOAD 

progression in blood (ADNI) and brain (ROSMAP) tissues. 

Pathway name Presence 
(%) 

CCKR signaling map                                                                4.85 

PDGF signaling pathway                                                            4.10 

Histamine H1 receptor mediated signaling pathway                                  4.10 

B cell activation                                                                 3.60 

Angiogenesis                                                                      3.30 

Wnt signaling pathway                                                           3.30 

VEGF signaling pathway 3.30 

Thyrotropin-releasing hormone receptor signaling pathway                         3.30 

EGF receptor signaling pathway                                                    3.30 

Ionotropic glutamate receptor pathway                                            2.85 

5HT2 type receptor mediated signaling pathway                                    2.85 

Alzheimer disease-amyloid secretase pathway                                      2.85 

Nicotinic acetylcholine receptor signaling pathway                                2.85 

Gonadotropin-releasing hormone receptor pathway                                   2.85 

Apoptosis signaling pathway                                                      2.05 

Alpha adrenergic receptor signaling pathway                                      2.05 

Heterotrimeric G-protein signaling pathway-Gq alpha and Go alpha mediated pathway 2.05 

FGF signaling pathway                                                          2.05 

Oxytocin receptor mediated signaling pathway                                    2.05 

Endothelin signaling pathway                                                     2.05 

Muscarinic acetylcholine receptor 1 and 3 signaling pathway              2.05 
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Table S5. Molecular pathways underlying GE trajectories associated to LOAD progression in 

blood tissues (ADNI). 

Pathway name Presence 
(%) 

Beta2 adrenergic receptor signaling pathway                                   4.6 

Pentose phosphate pathway                                                     4.6 

B cell activation                                                             4.6 

CCKR signaling map                                                            4.6 

Beta3 adrenergic receptor signaling pathway                                   3.1 

Metabotropic glutamate receptor group III pathway                             3.1 

Beta1 adrenergic receptor signaling pathway                                   3.1 

5HT4 type receptor mediated signaling pathway                                 3.1 

Ionotropic glutamate receptor pathway                                         3.1 

5HT2 type receptor mediated signaling pathway                                 3.1 

Alzheimer disease-amyloid secretase pathway                                   3.1 

5HT1 type receptor mediated signaling pathway                                 3.1 

Integrin signalling pathway                                                   3.1 

PDGF signaling pathway                                                        3.1 

Opioid prodynorphin pathway                                                   3.1 

Histamine H1 receptor mediated signaling pathway                              3.1 

Nicotinic acetylcholine receptor signaling pathway                            3.1 

Muscarinic acetylcholine receptor 2 and 4 signaling pathway                   3.1 

Dopamine receptor mediated signaling pathway                                  3.1 

Gonadotropin-releasing hormone receptor pathway                               3.1 

Apoptosis signaling pathway                                                   1.5 

De novo purine biosynthesis                                                   1.5 

Angiogenesis                                                                  1.5 

5HT3 type receptor mediated signaling pathway                                 1.5 

Alpha adrenergic receptor signaling pathway                                   1.5 

Adrenaline and noradrenaline biosynthesis                                     1.5 

Nicotine pharmacodynamics pathway                                             1.5 

Heterotrimeric G-protein signaling pathway-Gq alpha and Go alpha mediated pathway' 1.5 

Wnt signaling pathway                                                         1.5 

VEGF signaling pathway                                                        1.5 

Thyrotropin-releasing hormone receptor signaling pathway                      1.5 

FGF signaling pathway                                                         1.5 

Oxytocin receptor mediated signaling pathway                                  1.5 

FAS signaling pathway                                                         1.5 

Endothelin signaling pathway                                                  1.5 

EGF receptor signaling pathway                                                1.5 

Opioid proopiomelanocortin pathway                                            1.5 

Opioid proenkephalin pathway                                                  1.5 

Muscarinic acetylcholine receptor 1 and 3 signaling pathway                   1.5 

Cortocotropin releasing factor receptor signaling pathway                     1.5 

Metabotropic glutamate receptor group II pathway                              1.5 
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