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Abstract: 

 

 
ADHD affects 5% of children world-wide. Of these, two-thirds continue to have impairing symptoms of ADHD 
into adulthood. Although a large literature implicates structural brain differences in the pathophysiology of the 
disorder, it is not clear if adults with ADHD have similar neuroanatomical impairments as those seen in children 
with recent reports from the large ENIGMA-ADHD consortium finding structural abnormalities for children but 
not for adults. This paper uses deep learning neural network classification models to determine if there are 
neuroanatomical changes in the brains of children with ADHD that are also observed for adult ADHD, and vice 
versa. We found that structural MRI data can significantly separate ADHD from control participants for both 
children and adults. Consistent with the prior reports from ENIGMA-ADHD, prediction performance and effect 
sizes were better for the child than the adult samples. The model trained on adult samples significantly 
predicted ADHD in the child sample, suggesting that our model learned anatomical features that common to 
ADHD in childhood and adulthood. These results support the continuity of ADHD’s pathophysiology from 
childhood to adulthood. In addition, our work demonstrates a novel use of neural network classification models 
to test hypotheses about developmental continuity. 
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Introduction 

ADHD is a common disorder affecting 5% of children and 3% of adults 1. It is associated with injuries 2, traffic 
accidents 3, increased health care utilization 4, 5, substance abuse 6, 7, criminality 8, unemployment 9, divorce 10, 
suicide 11, 12, AIDS risk behaviours 13 and premature mortality 14. The cost of adult ADHD to society is between 
$77.5 and $115.9 billion each year 15.  

After decades of work documenting ADHD’s high heritability (76%) 16, we now know from a genome wide 
association study (GWAS) of over 50,000 samples that the common DNA variants associated with ADHD’s 
significant polygenic risk are highly enriched for genes expressed in brain 17 and that many of these genes are 
expressed in pathways crucial for neurodevelopment 18. A role for brain dysfunction in the aetiology of ADHD 
was suspected for some time by the mechanism of action of the medications that treat ADHD 19.  

Because many structural magnetic resonance imaging (sMRI) studies had been published with conflicting 
results, the Enhancing Neuro Imaging Genetics Through Meta-Analysis (ENIGMA) ADHD Working Group 
create a large collaborative data set with sufficient power to detect small effects. The ENIGMA-ADHD working 
group found small, statistically significant sub-cortical volumetric reductions 20, cortical thinning and reduced 
surface area 21 to be associated with ADHD in children but not adults. Using data from the Allen Brain Atlas, 
Hess et al. 22, 23 subsequently compared gene expression profiles between brain regions that were and were 
not implicated in the ENIGMA-ADHD subcortical analyses.  Gene expression profiles for three pathways were 
significantly correlated with ADHD-associated volumetric reductions: apoptosis, oxidative stress, and 
autophagy. These results suggest that variability of structural brain anomalies in ADHD might be explained, in 
part, by the differential vulnerability of these regions to mechanisms mediating apoptosis, oxidative stress, and 
autophagy.  Hess et al.’s findings also provide some validation of the ENIGMA-ADHD findings. 

An intriguing finding from the ENIGMA-ADHD results was that all significant findings were for childhood 
ADHD. They found no significant findings for adult ADHD. We use the term childhood ADHD to refer to ADHD 
ascertained in childhood, understanding from our meta-analysis that two-thirds will persist into young 
adulthood and that persistence continues to decline with age 1. We use the term adult ADHD to refer to 
childhood onset ADHD that has persisted into adulthood, which is how it is defined in DSM 5 and in the 
ENIGMA-ADHD sub-studies. The ENIGMA-ADHD results are partly consistent with longitudinal studies show 
decreases in ADHD vs. control differences in regional volumes and cortical thicknesses 24-26. Those ADHD 
participants whose brains become more neurotypical were more likely than others to show remission of 
symptoms 27, 28. But, although these longitudinal studies show reductions in case vs control differences, they 
also suggest that those difference should be evident to some degree in cases that persist into adulthood.  

Although the expectation of finding substantial continuity between childhood and adult ADHD has been 
widely accepted 29-31 and recently confirmed by a large GWAS 32, this idea has been challenged 33.  Thus, 
given these prior data and the controversy about the continuity of ADHD into adulthood, we sought to test the 
idea that the ADHD-associated volumetric reductions seen in children with ADHD would be detected in adults 
with ADHD by applying machine learning algorithms. Given that symptoms and impairments persist into 
adulthood for most children with ADHD 1, 34, we hypothesized that ADHD-related brain structure differences in 
adults would be consistent with those observed in children.  

 

Materials and Methods 
MRI Samples  
The current study was approved by all contributing members of the ENIGMA-ADHD Working Group, which 
provided T1-weighted structural MRI (sMRI) data from 4,183 subjects from 35 participating sites (by Aug 
2019). Each participating site had approval from its local ethics committee to perform the study and to share 
de-identified, anonymized individual data. Images were processed using the consortium’s standard 
segmentation algorithms in FreeSurfer (V5.1 and V5.3) 20. 151 variables were used including 34 cortical 
surface area, 34 cortical thickness measurements and 7 subcortical regions from each hemisphere, and 
intracranial volume (ICV). Subjects missing more than 50% of variables were removed. Remaining missing 
values and outliers (outside of 1.5 times the interquartile range (iqr 1.5)) were replaced with imputed values 
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using multiple imputation with chained equations in STATA15. The final ML dataset consisted 4,042 subjects 
from 35 sites, among which 45.8% were non-ADHD controls (n=1,850, male to female ratio (m/f) = 1.42) and 
54.2% ADHD participants (n=2,192, m/f=2.79). Ages ranged from four to 63 years old; 60.7% were children 
(age<18 years, n=2,454) and 39.3% were adults (age≥18 years, n= 1,588). ADHD diagnosis was significantly 
biased by sex (X2

(1) =  66.9, p<.0001), sites (X2
(1) =  146.73, p<.0001), age (X2

( 1) =4.28, p=0.04).  

To balance the confounding factors, we took the following steps. First, we randomly assigned samples to 
training (~70%), validation (~15%), and test (~15%) subsets within each diagnosis, sex, age subgroup (child vs 
adult) and site to ensure that the train/validation/test subsets have the same composition of these variables. 12 
sites that provided only cases or only controls (total 203 subjects) were excluded during the initial 
train/validation/test split because their samples cannot provide an unbiased learning during the training and 
validation steps. These samples were added to the test set for final test evaluation. Supplementary Table 1 
shows the sample splitting from each site. Next, we balanced the training set for the case and control groups 
within each sex, age and site subgroup by random oversampling of the under-represented diagnostic group, a 
procedure commonly used to deal with class imbalance. The resulting balanced training set is described in 
Table 1. The validation and test sets were not balanced by age, sex and site, however due to our sample 
splitting procedures, they contain the same demographic samples as the training set. In addition, the test set 
also contains samples from sites that had been excluded from the training set due to not having a site-specific 
control group.  

Feature preprocessing 
Principal factors factor analysis (PFFA) with varimax rotation on sMRI features on the training set identified 46 
factors that explained >90% of the variance. Factor scores were computed for all subjects based on the 
training set PFFA. All input features were scaled based on the training set’s minimum and maximum values. 

Neural Network Framework  
We implemented multilayer perceptron (MLP) neural network models using the Keras API (version 2.3.1) and 
the TensorFlow library (version 1.14.0). We used HyperOpt 35 to search the neural network hyperparameter 
spaces including numbers of layers, numbers of units and dropout rates in each layer, learning rate and batch 
normalization size. We also tested different activation functions and optimizers. We used binary cross entropy 
as the loss function. Early stopping was implemented to avoid overfitting. Best model architecture and 
hyperparameters were chosen based on the lowest total validation loss. Final test scores were obtained on the 
test set with ensemble learning approach 36. All machine learning algorithms were written in Python 3.5. 

Analysis Pipeline  

Our analysis pipeline starts with two base models that used data from the corresponding age groups during the 
model training and validation phase and tested also on data from their corresponding age groups. The child 
model used only child samples during model training, validation and hyperparameter optimization, and tested 
on child test set. The adult model, similarly, was trained and validated on the adult samples and tested on the 
adult test set. We examined models using MRI features only, as well as those included age and sex 
information. 

Next, we tested if the model trained and validated on the adult samples, the adult model, could be used to 
predict child ADHD, and vice versa. We hypothesized that if the ADHD vs. control sMRI differences seen in 
children are also present in adult ADHD brains, then the base models for each age group should be able to 
predict ADHD in the other age group. To create the largest test sets possible, we tested the child model on all 
the adult samples, and the adult model on all the child samples.  

Model evaluation 

The sigmoid function in the output layer of the neural network generates a continuous score that assesses the 
probability for each individual to be classified as ADHD. We name this continuous output the brain risk score. 
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Using the brain risk scores, we calculated Cohen’s d effect sizes for child and adult test sets. We computed 
receiver operating characteristic (ROC) curves and used the area under the ROC curve (AUC) as our primary 
measure of accuracy. The AUC and its confidence intervals were calculated in Stata 15 using the empirical 
method and compared with nonparametric approach by DeLong et al. 37. We also computed precision-recall 
(PR) curves and reported the area under the PR curves, as well as the Brier loss for the final models as 
measures of accuracy and goodness of fit.  

Results 
Figure 1A Top portion shows the test set AUCs (as dots) and their 95% confidence intervals (as horizontal 
lines) for the base models using only MRI factors. The model trained and validated on child data predicted 
child ADHD with a significant AUC 0.64 (95%CI 0.58-0.70). In contrast, the model trained and validated on 
adult data resulted in a marginally significant AUC (0.56, 95%CI 0.49- 0.62, p= 0.057). The difference between 
the two base models’ AUCs was also marginally significant (X2

(1) = 3.4, p= 0.065). The areas under the 
precision-recall curve (AUPRC) were higher for the adult model (AUPRC = 0.74) than the child model 
(AUPRC= 0.68). Using the model predicted brain risk scores, we calculated the Cohen's d effect sizes in the 
test set to be 0.47 for child samples (95%CI: 0.27 - 0.68) and 0.15 (-0.08 - 0.39) for the adult samples. 

After adding age and sex as predictors, the adult model (Figure 1B Top) increased the AUC to 0.62 (95%CI 
0.56 - 0.69). The AUPRC for the adult model also slightly increased (to 0.79. Adding age and sex as predictors 
to the child model did not affect either the AUC, nor the AUPRC. The Cohen's d effect sizes in the test set 
were 0.48 for children (95%CI: 0.27-0.69) and 0.39 (0.15-0.63) adults. All above models had similarly small 
Brier scores (0.25). 

It is worth noting that, because the training samples had been balanced for age and sex, these variables are 
not predictive of ADHD for either the child and adult test sets. To verify this, linear regression using only age 
and sex and their interactions to predict ADHD in the child and adult samples resulted in non-significant AUCs 
(child AUC 0.51, 95%CI: 0.45-0.57; adult AUC 0.46, 95%CI: 0.39-0.53). 

Tests of Hypotheses  
For models using only MRI features, neither the adult, nor child models were successful at predicting ADHD in 
the other age group (Figure 1A Bottom). However, the adult model that used both MRI features and age and 
sex was able to predict the child samples significantly (AUC = 0.60, 95%CI: 0.58-0.62, Figure 1B Bottom). In 
contrast, the child model did not significantly predict ADHD when applied to the adult samples (AUC = 0.52, 
95%CI: 0.49, 0.55, Figure 1B Bottom).  

 

Discussion 
Consistent with previous ENIGMA ADHD findings 20, 38, we found that the ability of structural MRI data to 
discriminate people with and without ADHD is much stronger for children than adults, which is consistent with a 
broader literature showing that ADHD-associated structural brain differences diminish with age 24-28. While the 
ENIGMA ADHD study did not find any significant differences between ADHD and control subjects for adults, 
our adult model did achieve a significant AUC 0.62 (95%CI 0.56-0.69) and a high area under the PR curve 
(AUPRC=0.79). Consistent with the ENIGMA findings, our model-predicted brain risk scores had a larger effect 
size for the children than adults in both the models using MRI features and those with age and sex added. 
Notably, our effect sizes were two times greater than the largest of those individual regions reported in prior 
ENIGMA ADHD studies for both children (Cohen’s d = -0.21) and adults (Cohen’s d =-.16)20, 38.  

Although the results from the child and adult base models indicate that sMRI data are not sufficiently predictive 
to be useful in clinical practice, they provide three crucial pieces of evidence that will be useful in future 
attempts at predictive modeling.  First, our results are the first to confirm in the largest possible adult ADHD 
MRI sample available, that adults with ADHD differ significantly from adults without ADHD on sMRI features.  
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Second, the improvements we found by adding age and sex to the adult model indicate that these 
demographic variables must moderate the predictive ability of sMRI features. We believe that these 
demographics moderate the sMRI effects because our regression models show that the demographic variables 
on their own have no predictive utility (which was fixed in advance by balancing the case and control training 
samples by age and sex). Third, we have shown that machine learning methods dramatically increase the 
ADHD vs. Control effect size compared with the univariate ENIGMA analyses. 

The results from our hypothesis testing provide further information that is useful in understanding the continuity 
of child and adult ADHD. Consistent with our hypothesis, the adult model, trained only on adult samples, 
significantly predicted ADHD in the child samples. This suggests that the adult model was able to learn 
combinations of structural features that are relevant for discriminating the structural MRI scans from children 
with and without ADHD. This implies that some of ADHD’s sMRI pathophysiology that is relevant for persistent 
cases is also relevant in childhood (only some of which will be persistent into adulthood). This conclusion must, 
however, be considered equivocal because the child model did not successfully predict ADHD in the adult 
samples. To resolve this issue, future studies will need to find a way to better discriminate sMRI features 
associated with the onset of ADHD and those associated with the persistence of ADHD. 

Our work should be interpreted in the context of several limitations. First, because we combined data across 
many sites, we inherit all the limitations of the original studies. Heterogeneity of methods across studies may 
have added noise to the combined data set that made it difficult to discriminate the data from people with and 
without ADHD. Second, we only used structural imaging data. Incorporating other imaging modalities might 
provide clearer results and conclusions. Third, we used pre-defined structures from ENIGMA standard image 
processing pipeline as features. It is possible that other methods such as one using 3D images as input 
features, in a convolutional neural network would uncover useful features leading to increased classification 
accuracy. However, the 3D images are not available. Finally, our use of neural networks makes it difficult to 
clarify the importance of each brain region in the model's algorithm.  

Despite these limitations, we have shown that a neural network approach is able to detect case-control sMIR 
differences in adults with ADHD that could not be detected with standard analyses. We have also provided 
some evidence for the continuity of sMRI findings from childhood into adulthood.  
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A. AUC comparison of the models using only MRI features. B. AUC comparison of the models using MRI 
features plus age and sex. In both A and B, Top portion shows the base models, where models were trained 
and validated in child or adult samples and tested on their corresponding age groups; Bottom portion tests the 
hypotheses that if model trained/validated on child samples can also predict adult ADHD and vice versa. Note 
that test sample consists of combined training, validation and test sets from the other age group because they 
are not used in the model optimization and training.  
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Tables 
Table 1. Training set sample characteristics after balancing for age and sex 

Diagnosis 
 

Child (Age <18) Adult (Age ≥18) 

Female Male Female Male 

Control 

N of Subjects 352 714 224 373 

Mean Age 11.3 11.6 31.9 28.1 

SD of Age 2.9 2.9 11.5 9.4 

ADHD 

N of Subjects 352 714 224 373 

Mean Age 11.0 11.8 32.2 28.8 

SD of Age 2.6 2.7 10.6 9.4 

 

*Note: SD, standard deviation; N, total numbers. 
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Figure 1. Area Under the Receiver Operating Characteristic Curve for the Test Results 

A. MRI Features Only 
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B. MRI Features plus Age and Sex 
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Supplementary Table 1. Total sample and train/validation/test splits from each site 

Sites Training Validation Test Excluded Total 

ACPU 46 11 9 1 67 

ADHD_WUE 75 18 14 0 107 

ADHD-DUB1 56 14 10 0 80 

ADHD-DUB2 0 0 0 20 20 

ADHD-Mattos 0 0 0 31 31 

ADHD200_KKI 61 14 10 0 85 

ADHD200_NYU 158 36 31 3 228 

ADHD200_OHSU 61 16 12 0 89 

ADHD200_Peking 139 31 27 0 197 

ADHDKonrad 100 24 20 1 145 

ADHD_Rubia1 45 11 9 6 71 

ADHD_Russia 0 0 0 10 10 

Barcelona 51 12 10 0 73 

Bergen_SVG 35 10 6 0 51 

Bergen_adultADHD 55 15 11 0 81 

CAPS_UZH 41 9 5 0 55 

DAT_london 38 11 7 0 56 

Dundee 32 8 4 1 45 

EPOD 0 0 0 92 92 

Hartford_Olin 125 31 25 0 181 

IMpACT_NL 188 42 38 0 268 

MGH_ADHD 100 24 20 0 144 

MTA 91 21 17 0 129 

NICAP 102 24 20 0 146 

NIH 282 63 59 9 413 

NYU_ADHD 56 14 10 0 80 

NeuroImage_ADAM 118 29 21 0 168 

NeuroImage_NIJM 120 30 22 0 172 

OHSU2018 161 36 32 0 229 

SAOPAULO 92 22 18 1 133 

Sussex 40 11 7 0 58 

Tuebingen 0 0 0 28 28 

UAB-ADHD 138 34 26 0 198 

UCHZ 54 16 8 0 78 

ZI-CAPS 24 7 3 0 34 

Total 2,684 644 511 203 4,042 
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