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Originality-Significance Statement 22 

This study establishes, for the first time, CSR life-history strategies in the context of bacterial 23 

communities. This framework is explained using community aggregated traits in an environment other 24 

than soil, also a first, using a combination of ordination methods, network analysis, and genotypic 25 

information from shotgun metagenomics and 16S rRNA gene amplicon sequencing.   26 
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Summary 27 

Trait-based approaches are increasingly gaining importance in community ecology, as a way of finding 28 

general rules for the mechanisms driving changes in community structure and function under the 29 

influence of perturbations. Frameworks for life-history strategies have been successfully applied to 30 

describe changes in plant and animal communities upon disturbance. To evaluate their applicability to 31 

complex bacterial communities, we operated replicated wastewater treatment bioreactors for 35 days 32 

and subjected them to eight different disturbance frequencies of a toxic pollutant (3-chloroaniline), 33 

starting with a mixed inoculum from a full-scale treatment plant. Relevant ecosystem functions were 34 

tracked and microbial communities assessed through metagenomics and 16S rRNA gene sequencing. 35 

Combining a series of ordination, statistical and network analysis methods, we associated different life-36 

history strategies with microbial communities across the disturbance range. These strategies were 37 

evaluated using tradeoffs in community function and genotypic potential, and changes in bacterial genus 38 

composition. We further compared our findings with other ecological studies and adopted a semi-39 

quantitative CSR (competitors, ruderals, stress-tolerants) classification. The framework reduces 40 

complex datasets of microbial traits, functions, and taxa into ecologically meaningful components to 41 

help understand the system response to disturbance, and hence represents a promising tool for managing 42 

microbial communities.   43 
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Introduction 44 

Biogeochemical cycles are primarily driven by microbial activity (Widder et al. 2016), and the 45 

ever increasing anthropogenic impact on the biosphere calls for a better understanding of the 46 

mechanisms that structure microbial communities in response to human-induced disturbances 47 

(Falkowski et al. 2008). Disturbance in general is deemed a major factor influencing variations in 48 

species diversity (Mackey and Currie 2001) and structuring of ecosystems (Shade et al. 2012a, Shade 49 

et al. 2012b). Additionally, unravelling what drives patterns of community succession and structure 50 

remains a central goal in ecology (Powell et al. 2015, Zhou et al. 2014), especially since community 51 

diversity is thought to regulate community function (Mouillot et al. 2013). The challenge of finding 52 

general rules in community ecology (Lawton 1999, Simberloff 2004) has fuelled a growing interest in 53 

the role of functional traits in community ecology (McGill et al. 2006, Westoby and Wright 2006). Such 54 

traits are defined as morphologic, physiologic, genomic or phenotypic attributes that affect the fitness 55 

(growth, reproduction and survival) of an organism (Violle et al. 2007). Organisms face tradeoffs to 56 

allocate resources into certain traits to maximize their fitness, which depends on abiotic and biotic 57 

interactions within the environment they inhabit.  Trait-based approaches in community ecology have 58 

been applied to eukaryotic microbial communities like phytoplankton (Edwards et al. 2011, Litchman 59 

and Klausmeier 2008, Litchman et al. 2007) and fungi (Chagnon et al. 2013, Crowther et al. 2014, 60 

Treseder and Lennonb 2015). More recently, trait-based approaches have been proposed for the study 61 

of bacterial community dynamics to link biodiversity and ecosystem functioning, with an emphasis on 62 

tradeoffs (Krause et al. 2014) and phylogenetic conservation of traits (Martiny et al. 2013, Martiny et 63 

al. 2015). Given the challenges of defining species for prokaryotes (Rossello-Mora and Amann 2015), 64 

there is a trend to shift the focus from ‘who are they’ to ‘how will they respond’ (Boon et al. 2014). In 65 

this regard, ecological theory can help to elucidate the underlying mechanisms structuring communities 66 

in studies of complex microbial dynamics (Prosser et al. 2007).  67 

The theoretical CSR framework for plant communities developed by Grime (1977) constitutes a 68 

classic trait-approach and proposes three types of life-history strategies: competitors (C) who maximize 69 

resource acquisition and control in consistently productive niches, stress-tolerants (S) who can maintain 70 

metabolic performance in unproductive niches, and ruderals (R) who have good growth rates but 71 
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inefficient resource uptake in niches where events are frequently detrimental to the individual. Such 72 

strategies depend on varying intensities of disturbance (biomass destruction), stress (biomass 73 

restriction), and competition for resources (Fig. S1). The application of the CSR framework has been 74 

expanded from plants to other organisms (Grime and Pierce 2012) and it has proven to be a useful tool 75 

for conservation and ecosystem management (Grime 2013), despite some criticism (Wilson and Lee 76 

2000). The CSR framework was recently suggested for microbial communities in a series of reviews 77 

that gathered data from different studies and identified traits and tradeoffs to classify different methane-78 

oxidizing bacteria (Ho et al. 2013) and arbuscular mycorrhizal fungi (Chagnon et al. 2013). Further 79 

reviews emphasized the potential of employing the CSR as a trait approach to anticipate changes in 80 

microbial community structure during succession, proposing some examples of traits that could be 81 

generally related to each life strategy (Crowther et al. 2014, Ho et al. 2017, Krause et al. 2014). 82 

However, meta-analyses of microbial communities to infer CSR strategies can be challenging due to 83 

the different factors related to experimental design and techniques employed across different studies, 84 

which could heavily affect the observations in comparison. Recent studies on soil-bacterial 85 

communities in cadmium-contaminated rhizospheres (Wood et al. 2018) and tillage-disturbed fields 86 

(Schmidt et al. 2018) also suggested the applicability of the CSR approach to soil-microbial 87 

communities. To our knowledge, the CSR framework has not yet been employed within a single study 88 

to changes in microbial communities upon disturbance in any microbiome other than soil.  89 

Analysing tradeoffs in traits and functions on the level of a whole community by identifying 90 

community aggregated traits (CATs) (Shipley et al. 2006) represents an additional opportunity to tackle 91 

the complexity of microbial community dynamics. Community-level traits arise from an array of 92 

diverse organisms interacting in a direct and indirect way under environmental gradients, resulting in 93 

an overall ecosystem function that can greatly differ from the ecological attributes of individual taxa 94 

(Fierer et al. 2014). Beyond measuring ecosystem function, metagenomics data can be used to infer 95 

CATs assuming that the metagenomes represent a random sampling of all microbial genomes, from 96 

which we can gather genotypic traits of interest (Barberan et al. 2012). Based on CATs, the CSR life-97 

history strategies framework could be applied to whole communities, to identify life-history strategies 98 

beyond specific taxa. This has not been assessed yet in any study of microbial communities. 99 
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Here we investigate the effect of disturbance in bacterial community structure, genotypes and 100 

function within a framework of three-way CSR life-history strategies. We conducted a 35-day 101 

laboratory study using sequencing batch bioreactors inoculated with activated sludge from an urban 102 

wastewater treatment plant. The experiment involved different frequency levels of augmentation with 103 

toxic 3-chloroaniline (3-CA) as disturbance, with triplicate reactors receiving 3-CA either never (L0, 104 

undisturbed), every seven, six, five, four, three, and two days (L1-6, intermediately-disturbed), or every 105 

day (L7, press-disturbed). Sludge reactors are model systems for microbial ecology (Daims et al. 2006), 106 

harbouring complex microbial communities with defined and measurable ecosystem functions (Seviour 107 

and Nielsen 2010). Chloroanilines are xenobiotic, carcinogenic and toxic substances, known to hinder 108 

both nitrogen and carbon removal in sludge bioreactors (Falk and Wuertz 2010). A microcosm design 109 

allowed us to test a wide range of disturbances with good replication, while minimizing confounding 110 

factors across replicates (Drake and Kramer 2012). Our approach combined analyses of variations in 111 

ecosystem function, bacterial composition and abundances, and genotypic traits across a wide gradient 112 

of disturbances. We hypothesized that the extreme sides of our proposed disturbance range would 113 

favour two distinct life-history strategies (competitors, C, and stress-tolerants, S), while intermediate 114 

levels of disturbance will harbour a gradient of ruderal (R)-type strategies. We further hypothesized that 115 

such differentiation in life-history strategies would be attributable at the whole bacterial community 116 

level.  117 
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Results 118 

Patterns of community structure and functional tradeoffs across disturbance 119 

 Bacterial communities differentiated in terms of -diversity across disturbance levels and with 120 

time, as revealed by community analysis through 16S rRNA amplicon sequencing. There was a 121 

temporal separation of communities at the undisturbed level 0, the intermediately disturbed levels 1 to 122 

6, and the press-disturbed level 7 as shown by unconstrained ordination (Fig. 1a). Furthermore, 123 

differences in community structure assessed through PCR-independent shotgun metagenomics were 124 

marked across different disturbance levels as shown by constrained ordination on d35. The primary axis 125 

(Fig. 1b) differentiates the intermediately disturbed levels (L1-6) from the press-disturbed one (L7), 126 

while the secondary axis highlights the separation of the undisturbed level (L0). Multivariate tests 127 

yielded significant results for disturbance levels (PERMANOVA-P = 0.0003), but with a significant 128 

effect of heteroscedasticity (PERMDISP-P = 0.014). However, GLMMs tests after fitting data to a 129 

negative-binomial distribution yielded significant results (P = 0.015), confirming that the observed 130 

differences among groups were due to disturbance levels and not only to heteroscedasticity.  131 

 Variations in diversity corresponded with tradeoffs in community-level function, indicated by 132 

Pearson’s correlation vectors (Fig. 1b). Ecosystem function parameters measured across reactors at 133 

different levels of disturbance were significantly different (Table S1). Undisturbed reactors (L0) 134 

displayed maximum soluble chemical oxygen demand (COD) and NH3-N removal, and maximum NO3-135 

N production without any detectable NO2-N residual. At the other extreme, press-disturbed reactors 136 

(L7) had a high COD removal, but the worst NH3-N removal with no detectable NOX-N concentrations. 137 

Intermediately disturbed levels (L1-6) displayed variable NO2-N effluent concentrations across 138 

replicates, which decreased with increasing disturbance. The maximum values of NO2-N coincided with 139 

minimum COD removal, suggesting a tradeoff between such functions under disturbance. NO3-N 140 

production for L1-6 was minimal, but with a similar trend than for NO2-N. Total (TSS) and biomass 141 

(VSS) values were lowest for the press-disturbed level (L7) and highest for the lowest disturbance level 142 

(L1). Differences in PO4-P removal were not significant, despite being 20-30% higher on average for 143 

L6 and L7. All disturbed reactors (L1-7) showed complete 3-CA degradation, a metabolic capacity that 144 
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was initially absent and later acquired by the community during the experiment (see Santillan et al. 145 

(2019) for detailed information of temporal ecosystem function changes). 146 

Genera abundances are differentially distributed across the disturbance range 147 

 Relative abundance comparisons revealed diverse bacterial taxa prevailing at different levels of 148 

disturbance, as shown for the 25 most abundant genera after 35 days assessed through metagenomics 149 

(Fig. 2). Genera like Nitrospira, Paracoccus, and Dehalobacter were enriched in the undisturbed 150 

treatment (L0), while Gemmatimonas and Mesorhizobium were favoured at the press-disturbed level 151 

(L7). Other organisms like Nitrosomonas, Labilithrix and Nakamurella benefited at intermediate levels 152 

of disturbance (L1-6). Tetrasphaera and Pyrinomonas decreased in abundance with disturbance, while 153 

the opposite trend was found for taxa like Thauera and Ca. Contendobacter. Extreme conditions of no 154 

disturbance (L0) and press disturbance (L7) favoured Microlunatus and Bosea. Genera clusters were 155 

evident across the disturbance range in a heat map analysis of the top 100 genera (Fig. S2). 156 

 Most of the top 25 metagenomics genera were also detected through 16S rRNA gene amplicon 157 

sequencing, showing similar compositional trends across disturbance levels (Fig. 2). For some genera, 158 

like Nitrospira and Gemmatimonas, the relative abundances nearly coincided for both sequencing 159 

methods. The ranking of the top 25 genera detected by 16S rRNA amplicon sequencing (Fig. S3) 160 

differed from that detected by metagenomics, but similar abundance patterns across disturbance levels 161 

were observed. Taxa like OLB17, Paraccocus, and env.OPS_17 prevailed at the undisturbed level (L0); 162 

while others like OLB1, Nakamurella and Plasticicumulans did so at intermediately-disturbed levels 163 

(L1-6). Thauera and SBR1031 increased their abundances with disturbance, while Actinomycetaceae 164 

and Saccharimonadales were favoured at undisturbed (L0) and press-disturbed (L7) levels. Changes in 165 

relative abundances of bacterial genera across time and disturbance levels were marked for all reactors 166 

(Fig. S4). Still, several relevant genera (i.e., Nitrospira, Nitrosomonas, Kouleothrix, Ca. 167 

Contendobacter) had comparable relative abundances to that of the full-scale plant inoculum (d0) for at 168 

least one of the disturbance levels assessed on d35 (Fig. 2, Figs. S2-4).  169 
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Different genotypic traits favoured with varying disturbance 170 

 Functional analysis of the metagenomics dataset revealed groups of genotypic traits associated 171 

with different levels of disturbance. In order to capture broad changes favoured by different life-history 172 

strategies we focused on trait complexes, which are a product of the expression of multiple true traits 173 

(Crowther et al. 2014), grouping different sets of genes into categories. A double-clustered heat map, 174 

including 57 trait complexes mapped from the InterPro2Go (IP2G) database (Finn et al. 2017), showed 175 

that replicate reactors at the undisturbed (L0) and press-disturbed level (L7) formed two separated 176 

clusters (Fig. 3). The differential prevalence of community-aggregated genotypic traits (Fierer et al. 177 

2014) provided additional support for different life-history strategies across the disturbance range. 178 

Following the CSR framework, we classified these traits as C, CR, R, SR, S, or CS according to z-score 179 

values ≥ +1.0 on the heat map (see Fig. S5 for relative abundances). Only differences in the gene traits 180 

of cell communication, hydrolase activity, and enzyme regulator activity were found not to be 181 

significant after univariate testing (Table S2). Similar clustering trends emerged for trait complexes 182 

obtained from additional functional databases like COG, KEGG and SEED (Fig. S6). 183 

 The relationships among observed community structure patterns and different community-level 184 

genotypes across disturbance levels was assessed using distance-based redundancy analysis (dbRDA) 185 

using the IP2G trait complexes as predictor variables (Fig. 4). Up to 71.4% of the variance could be 186 

fitted in the first two axes of the dbRDA, which is considered a good model fit (Clarke et al. 2014). 187 

Significant Pearson’s correlations highlighted some traits favoured by bacterial communities at 188 

different levels of disturbance (Fig. 4). Furthermore, correlation-based network analysis showed 189 

comparable clusters based on node modularity for bacterial taxa and genes at different levels of 190 

resolution. There were similar clusters for the top 200 metagenomics genera and top 57 trait complexes 191 

from the IP2G database (Fig. 5), as well as for the top 200 16S rRNA gene amplicon sequence variants 192 

and top 200 individual genes from the IP2G database (Fig. S7).  193 
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Discussion 194 

Disturbance, succession, and community-level life-history strategies 195 

 We employed sludge for wastewater treatment as a model system (Daims et al. 2006), under a 196 

successional study in which the inoculum community was taken from a full scale plant and then used 197 

to seed our microcosm bioreactors. The experiment purposely lacked an acclimation phase, hence the 198 

following alterations were expected to promote succession within microbial communities: feeding 199 

scheme (continuous to batch), volume (full scale to microcosm), cell residence time (low to high), feed 200 

type (natural to synthetic wastewater), immigration (open to closed system). Furthermore, the effect of 201 

disturbance within succession was assessed by varying frequencies of toxic 3-CA included in the 202 

synthetic feed for the reactors. Indeed, bacterial community succession was observed through 16S 203 

rRNA sequencing analysis, in terms of temporal patterns of -diversity (Fig. 1a) and genus-level 204 

relative abundances (Fig. S4). Metagenomics data also displayed changes in bacterial community 205 

structure between the inoculum (d0) and all reactors at d35 (Fig. 2, Fig. S2). We expected to observe 206 

changes in community structure after 35 days, considering that activated sludge contains bacteria with 207 

generation times varying from 20 minutes to days, with most relevant bacteria doubling in less than 24 208 

hours (Tchobanoglous et al. 2003). Hence, this study constituted an appropriate scenario for the CSR 209 

framework, as one of its main applications lies in predicting community shifts during succession after 210 

disturbance (Caccianiga et al. 2006, Grime and Pierce 2012). 211 

 There were clear differences among sludge reactors that had been exposed to varying disturbance 212 

frequencies, in terms of community structure, function, and genotypic traits on d35. We therefore 213 

propose that microbial communities adopted different CSR life-history strategies under the disturbance 214 

regime imposed in our study, with undisturbed L0 as competitors, the press-disturbed L7 as stress-215 

tolerants, and the remaining intermediately disturbed levels as ruderals. Community-level functional 216 

tradeoffs across life-history strategies were marked: organic carbon removal was higher for competitors 217 

and stress-tolerants; complete nitrification was only achieved by competitors; incomplete (inefficient) 218 

nitrification prevailed among ruderals; and biomass productivity was higher for ruderals and 219 

competitors than for stress-tolerants (Table S1). 220 
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 There were different community-level (Fierer et al. 2014) trait complexes (Crowther et al. 2014) 221 

prevailing at different levels of disturbance, which also showed a three-way CSR clustering by means 222 

of network analysis (Fig. 5, Fig. S7) and heat maps (Fig. 3, Figs. S2 and S6). It was also evident by 223 

means of two different sequencing techniques (Knight et al. 2018), that different bacterial genera were 224 

favoured at different level of disturbance (Fig. 2, Figs. S2-4). Furthermore, ordination methods showed 225 

CSR-like -diversity distinctions among communities across disturbance levels. Different ordination 226 

methods for species and trait abundances datasets have been widely employed in ecology to identify 227 

and validate three-way life-history strategies. For example, a combination of DCA, NMDS, and PCA 228 

was employed to describe patterns of grass vegetation succession in a glacier foreland (Caccianiga et 229 

al. 2006); a meta-study on reef corals used PCO (Darling et al. 2012); and PCA was used on fish survey 230 

datasets (Pecuchet et al. 2017). We found that bacterial communities grouped in three major -diversity 231 

clusters using NMDS and CAP ordinations on datasets arising from different sequencing techniques 232 

(Fig. 1). Overlaid correlation vectors of process performance highlighted tradeoffs in ecosystem 233 

function on d35 across those clusters (Fig. 1b). Likewise, a distance-based redundancy analysis showed 234 

a relationship for community -diversity patterns and genotypic traits (Fig. 4).  235 

Combining functional, taxonomical and genotypic analysis into a CSR framework 236 

 We combined all the evidence gathered in this study into a schematic drawing to conceptualize 237 

the CSR life-history strategies adopted by the bacterial communities (Fig. 6). This framework aims to 238 

provide ecological guidance to understand the observed changes in community structure, genotypes and 239 

function with varying levels of disturbance, by incorporating a trait-based analysis on a whole 240 

community level.  241 

 Competitors: The undisturbed reactors (L0) harboured a community with little variability across 242 

replicates and taxa well adapted to the prevailing conditions. The theoretical high efficiency associated 243 

with this life strategy (Grime and Pierce 2012) was reflected by the best NH3 and COD removal rates, 244 

the latter also having been highlighted as a C-trait (Chagnon et al. 2013), with a high biomass in 245 

comparison to the other disturbance levels. In terms of genotype, such efficiency was supported by an 246 

increase in abundance of genes associated with metabolic processes (biosynthesis, amino acids, 247 
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nucleotides, RNA, sulfur compounds) and the cell wall. Nitrospira was the dominant nitrifier, possibly 248 

carrying the complete nitrification process (Daims et al. 2015) as we found NO3-N without NO2-N in 249 

the effluent for these reactors. The high abundance of Paracoccus could be related to denitrification 250 

processes, given the high NO3 availability. The dominance of some organisms under undisturbed 251 

conditions is an indication of strong competition (Hodgson et al. 1999). 252 

 Ruderals: Intermediately disturbed levels (L1-6) showed how disturbance prevented competitive 253 

advantages, thus allowing less prevalent seed-bank species to grow. However, variability across 254 

replicate reactors within the same disturbance levels increased for L1 to L6. This was reflected by higher 255 

standard deviations for ecosystem functions (Table S1) and dissimilarity in composition (Fig. 2, Fig. 256 

S3). Disturbance likely promoted a higher growth rate at low disturbance frequencies, since the highest 257 

biomass value was found in L1 reactors. The inefficient nutrient uptake of ruderals (Grime and Pierce 258 

2012) was evident in the lower COD removal and partial nitrification (NO2 only) across some 259 

intermediately disturbed reactors. Furthermore, genes associated with metabolic processes 260 

(carbohydrates, lipids, and small molecules), as well as energy generation (electron transport chain, 261 

cellular respiration, and oxidation-reduction processes) were favoured by ruderals, which is in 262 

agreement with the notion that disturbance disrupts competition for organisms in the seed-bank 263 

(Connell 1978). Reserve material traits were suggested to be R-type (Krause et al. 2014), which relates 264 

to the increase in abundance of Nakamurella, a polysaccharide accumulator. The increase in genotypic 265 

traits of ribosome, transcription, and translation was shared among C- and R-strategists, suggesting that 266 

ribosomal activity was higher for communities at zero or low disturbance. Disturbance also promoted 267 

an increase in genes related to metabolism of aromatics and xenobiotic compounds (Fig. S6). 268 

 Stress-tolerants: At a high disturbance frequency organisms are expected to perform more 269 

maintenance functions to survive (Krause et al. 2014). Such tradeoffs between growth and survival 270 

might explain the low biomass value in the press-disturbed reactors (L7). Despite being slow growers 271 

and low biomass producers (Grime and Pierce 2012), S-strategists should have an efficient uptake of 272 

nutrients, which we observed as high COD and P removal values. The highest GC content was also 273 

found for this group, which might be related to higher stability as it was shown that the environment 274 

has an effect on this trait (Barberan et al. 2012, Foerstner et al. 2005). Resistance to abiotic stressors 275 
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(Chagnon et al. 2013) as well as maintenance, membrane chemistry and uptake systems (Krause et al. 276 

2014) were suggested as traits enriched in stress-tolerants. We also found increased prevalence of ATP-277 

binding cassette transporter genes, which is reasonable as transporters are known to be vital for cell 278 

survival by counteracting undesirable changes in the cell. Sporulation was expected to increase 279 

according to Krause et al. (2014), but it was marked as a ruderal trait for fungi by Chagnon et al. (2013). 280 

We observed an increase in sporulation genes for both ruderals and stress-tolerants, as well as in genes 281 

for chemotaxis and cell motility (proposed R-traits (Krause et al. 2014)), suggesting that these are SR-282 

related traits more than purely R- or S-types. 283 

 However, if communities at the maximum disturbance level of our study (L7) are identified as 284 

stress-tolerants under the CSR framework, then L7 has to be a condition of high-stress rather than high-285 

disturbance. Grime (1977) related disturbance with biomass destruction and stress with biomass 286 

restriction. We did observe the lowest biomass for L7 reactors, but also the highest biomass for 287 

disturbed L1 ones. Thus, one could question the ability to relate our findings as CSR life-history 288 

strategies by only focusing on disturbance. How disturbance and stress are defined has been, and 289 

continues to be, debated as there is recognized inconsistency and ambiguity across studies in ecology 290 

(Borics et al. 2013, Rykiel 1985) and microbial ecology (Plante 2017, Sousa 1984). Our study employed 291 

varying 3-CA frequencies across disturbance levels, and higher frequencies also implied a higher 292 

capability for communities to adapt to it. Reactors at L7 experienced a continuous long-term effect of 293 

3-CA toxicity from the beginning of the experiment, a condition known as a press disturbance (Shade 294 

et al. 2012a). However, it was suggested that frequency is actually the key to differentiating stress from 295 

disturbance (Borics et al. 2013). There is stress if events are so frequent that they prevent community 296 

structure and/or function from returning to similar pre-event dynamics, and rather shift the system 297 

toward a new course. Thus, the press-disturbed L7 communities are actually under 3-CA stress, which 298 

explains why they fit the stress-tolerant category of the CSR framework.   299 

Life-history strategies as valuable guidance, but not a one-size-fits-all solution 300 

  Ecological theory can provide tools to classify and interpret our observations so as to make 301 

testable predictions (Prosser et al. 2007). We showed here that the CSR analogy can be applied to 302 
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understand ecological aspects of changes in bacterial sludge communities under varying disturbances. 303 

A separate analysis of the same experiment showed that both stochastic and deterministic assembly 304 

mechanisms were important depending on the extent of disturbance frequency, and a hump-backed -305 

diversity pattern was observed (Santillan et al. 2019). It is not surprising to find a range of mechanisms 306 

driving community succession and ecosystem responses to disturbance, as it has been shown in ecology 307 

that many post-disturbance theories can apply simultaneously to the same system (Pulsford et al. 2016). 308 

Their application can be intensified in microbial systems featuring characteristics (i.e. wide metabolic 309 

potential, short turnover times, genetic material transfer) that allow for the convergence of ecological 310 

and evolutionary mechanisms (Hanson et al. 2012). Indeed, it has been suggested that microbial 311 

community response is affected by multiple mechanisms acting concurrently (Ho et al. 2017).  312 

 Our proposed scheme for this study constitutes a semi-quantitative classification of life-history 313 

strategies (Fig. 6), based on results obtained through a combination of techniques. A quantitative 314 

method to allocate plant functional types in a CSR ordination triangle has been developed for grasses 315 

and other herbaceous species (Hodgson et al. 1999), which was tested in a study of vegetation 316 

succession in a glacier foreland (Caccianiga et al. 2006). The development of a similar method of CSR 317 

ordination for microorganisms could be the focus of further research efforts, but care should be taken 318 

to avoid cursory classification (Wilson and Lee 2000). More effort should be put into identifying the 319 

most relevant traits driving microbial life-history strategies (Chagnon et al. 2013), thus a taxonomically 320 

oriented classification within a CSR ordination (as is done for plants) may not always be relevant for 321 

microbial systems. The focus should be on reducing the vast taxonomic and functional microbial 322 

complexity, and on understanding the mechanisms driving the changes observed in ecosystem function. 323 

Concluding remarks 324 

 Life-history strategies frameworks enable the simplification of complex trait information into 325 

a few ecologically relevant elements, and at the same time offer a suitable management tool for 326 

characterizing changes in community structure and ecosystem function in response to perturbations 327 

(Grime 2013, Pecuchet et al. 2017). The results from this work are relevant for microbial ecology and 328 

represent the first time that CSR life-history strategies are: (i) proposed at the whole-community level 329 
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by assessing CATs; (ii) supported by a combination of ordination methods, network analysis, and 330 

genotypic information from metagenomics and 16S rRNA gene amplicon sequencing; and (iii) 331 

evaluated for microbial communities in an environment other than soil. We contend that three-way life-332 

history strategies using CATs can indeed reduce system complexity while offering a qualitative basis 333 

for managing microbial communities in the face of inherent uncertainty. Ultimately, they constitute a 334 

valuable and suitable tool for the exploration of microbial community changes upon disturbance, with 335 

the potential to advance the search for the mechanisms operating on a community level.  336 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted February 18, 2019. ; https://doi.org/10.1101/546416doi: bioRxiv preprint 

https://doi.org/10.1101/546416
http://creativecommons.org/licenses/by-nc-nd/4.0/


16 

 

Experimental Procedures 337 

Experimental design and functional parameters 338 

A microcosm experimental setup was operated through time using different levels of 3-CA 339 

disturbance as described by Santillan et al. (2019). Briefly, sequencing batch bioreactors (20-mL 340 

working volume) were inoculated with activated sludge from a full-scale plant in Singapore and 341 

operated for 35 days. The daily complex synthetic feed targeted concentrations of 590 (±15.4) mg COD 342 

L-1 and 92 (±2.5) mg N L-1 in mixed liquor, and included 3-CA (70 mg L-1) at varying frequencies. 343 

Whenever 3-CA was added, the C- and N-containing compounds in the feed were proportionally 344 

reduced to maintain the above COD and N target concentrations. Phosphates (357 ±8.4 mg P L-1) were 345 

used to buffer the medium and maintain a pH of around 7.5 to facilitate the nitrification process. Eight 346 

levels of disturbance were set in triplicate independent reactors (n = 24), which received 3-CA either 347 

never (undisturbed, L0), every 7, 6, 5, 4, 3, or 2 days (intermediately-disturbed, L1-6), or every day 348 

(press-disturbed, L7). Community-level function, in the form of process performance parameters, was 349 

measured weekly in accordance with Standard Methods (APHA-AWWA-WEF 2005) where 350 

appropriate, and targeted soluble chemical oxygen demand (COD), nitrogen species (ammonium, 351 

nitrite, and nitrate ions), phosphorus (phosphate ions), volatile (VSS) and total suspended solids (TSS), 352 

and 3-CA. Sludge samples (2 mL) were collected initially (d0) and weekly from d14 onwards for DNA 353 

extraction. Temporal dynamics of ecosystem function are detailed in Santillan et al. (2019), while only 354 

functional data from d35 were employed for this study. 355 

16S rRNA amplicon sequencing and reads processing 356 

 Bacterial 16S rRNA amplicon sequencing was done at the SCELSE sequencing facility in two 357 

steps (for details see Supporting Methods). Primer set 341f/785r targeted the V3-V4 variable regions 358 

of the 16S rRNA gene (Thijs et al. 2017). The libraries were sequenced on an Illumina MiSeq platform 359 

(v.3). Sequenced sample libraries were processed following the DADA2 bioinformatics pipeline 360 

(Callahan et al. 2016) using the dada2 R-package (v.1.3.3). DADA2 allows inference of exact amplicon 361 

sequence variants (ASVs) providing several benefits over traditional OTU clustering methods (Callahan 362 

et al. 2017). Illumina sequencing adaptors and PCR primers were trimmed prior to quality filtering. 363 
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Sequences were truncated after 280 and 255 nucleotides for forward and reverse reads, respectively, the 364 

length at which average quality dropped below a Phred score of 20. After truncation, reads with 365 

expected error rates higher than 3 and 5 for forward and reverse reads were removed. After filtering, 366 

error rate learning, ASV inference and denoising, reads were merged with a minimum overlap of 20 bp. 367 

Chimeric sequences (0.07% on average) were identified and removed. For a total of 99 samples, 12291 368 

reads were kept on average per sample after processing, representing 13.2% of the average input reads. 369 

Taxonomy was assigned using the SILVA database (v.132) (Glöckner et al. 2017). 370 

Metagenomics sequencing and reads processing 371 

Metagenomics library preparation and sequencing were as described by Santillan et al. (2019). 372 

Briefly, libraries were sequenced in one lane on an Illumina HiSeq2500 sequencer in rapid mode at a 373 

read-length of 250 bp. Taxonomic assignment of metagenomics reads was done following the method 374 

described by Ilott et al. (2016). The lowest common ancestor approach implemented in MEGAN 375 

(Community Edition v.6.5.5 (Huson et al. 2016)) was used to assign taxonomy to the NCBI-NR aligned 376 

reads. On average, 48.2% of the high-quality reads were assigned to cellular organisms, from which in 377 

turn 98% were assigned to the bacterial domain. Additionally, functional potential data were obtained 378 

from the metagenomics dataset using MEGAN. Analysis was done at a level of trait complex 379 

classification to capture broad changes in genotypes due to disturbance. From the four databases 380 

available in MEGAN, InterPro2Go (Finn et al. 2017) (IP2G) had the most hits with regards to the total 381 

bacterial reads (91.5%), and was thus employed for the main analysis. Other available databases had 382 

fewer hits: 38.4% (COG), 26.8% (SEED), and 25.9% (KEGG). 383 

Bacterial community and genotypic analysis 384 

Community structure was assessed on genus-level metagenomics and 16S rRNA gene amplicon 385 

sequencing data by a combination of ordination methods and multivariate tests employing PRIMER 386 

(v.7) (Clarke and Gorley 2015). Normalized abundance data were employed, with square root 387 

transformation applied to reduce the weight of the most abundant genera. To evaluate how community 388 

function related to changes in community structure patterns across disturbance levels, constrained 389 

canonical analysis of principal coordinates (CAP) ordination including Pearson’s correlation vectors of 390 
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normalized community function data were used. Permutational multivariate analysis of variance 391 

(PERMANOVA) was performed on Bray-Curtis dissimilarity matrixes (Anderson and Walsh 2013) to 392 

test whether communities at the metagenomics genus-level differed with disturbance. Factors were 393 

considered fixed. Homogeneity of multivariate dispersions was tested by PERMDISP (Anderson 2006). 394 

P-values were calculated using 9,999 permutations. Community changes due to disturbance were 395 

further assessed by general linear multivariate models (GLMMs) to deal with mean-variance 396 

relationships (Warton et al. 2012), using the mvabund R package (Wang et al. 2012) to fit the 500 most 397 

abundant metagenomics genera to a negative binomial distribution as described by Santillan et al. 398 

(2019). To evaluate how genotypes related with the observed differences in bacterial community 399 

structure, distance-based redundancy analysis (dbRDA) (McArdle and Anderson 2001) was employed 400 

using IP2G trait-complexes as predictor variables. Pearson’s correlation vectors (r > 0.20) were overlaid 401 

on the dbRDA plot. 402 

Network analysis was performed with Gephi (v.0.9.2) using Pearson’s correlation matrixes for 403 

the top 200 genera, for both metagenomics and 16S rRNA gene amplicon sequencing datasets, as well 404 

as trait complexes and the top 200 genes from the IP2G database on the metagenomics dataset. Input 405 

correlation matrixes were generated using the Hmisc and corrplot R packages. Non-significant 406 

correlations (r < 0.5, r < 0.6) were filtered out. Node clusters were defined through modularity class 407 

calculated using the Louvain method, and were coloured through identification of representative nodes 408 

at undisturbed, intermediately-disturbed and press-disturbed levels. Layout was adjusted using the 409 

Fruchterman Reingold method with default parameters. Node size was adjusted by degree, while edge 410 

thickness was adjusted by correlation strength. Changes in bacterial genera and genotypes abundances 411 

were assessed through heat maps and cluster analysis using MEGAN (Huson et al. 2016). Univariate 412 

Welch’s ANOVA tests were employed to evaluate the effect of disturbance on IP2G trait complexes, 413 

using IBM SPSS (v.25). All calculated P-values were adjusted for multiple comparisons using a false 414 

discovery rate (FDR) (Benjamini and Hochberg 1995) of 10%. 415 
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  603 

Fig. 1. Bacterial community structure variations with time and disturbance. (a) Community succession 604 

in terms of -diversity patterns, assessed through non-metric multidimensional scaling (NMDS) of 16S 605 

rRNA gene amplicon sequence variant level data. Dashed lines indicate different days. (b) Canonical 606 

analysis of principal coordinates (CAP) on shotgun genus-level metagenomics data at d35. Pearson’s 607 

correlation vectors (r > 0.40) represent community-level functions, highlighting tradeoffs in soluble 608 

organic carbon (%COD), ammonia (%NH3-N), and phosphorus removal (%PO4-P); nitrite (NO2-N) and 609 

nitrate production (NO3-N); GC content in metagenomic DNA (%GC); total (TSS) and volatile solids 610 

(VSS); and biomass fraction (%V/T). Shaded triangle overlaid to highlight CSR life-history strategies: 611 

C, competitors (L0); R, ruderals (L1-6); S, stress-tolerants (L7). Legends: L, disturbance levels 0-7; I, 612 

full-scale plant sludge inoculum.   613 
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  614 

Fig. 2. Relative abundance comparisons to discern taxa prevailing at different disturbance levels across 615 

reactors (n = 24). Top 25 genera assessed through metagenomics (open circles, left y-axis) at d35. 616 

Relative abundances at d0 included for comparison with initial conditions. Relative abundances from 617 

16S rRNA gene amplicon sequencing are included for detected genera (blue crosses, right y-axis when 618 

needed).   619 
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 620 

Fig. 3. Heat map of genotypic potential traits after mapping metagenomes with the IP2G database (Gene 621 

Ontologies) at d35. Functional capacity is classified as trait complexes of biological processes, cellular 622 

component, and molecular function. Only traits with more than 10,000 reads assigned across all 24 623 

reactors were considered. Clustering was applied to differentiate groups of trait complexes and 624 

disturbance levels. Rectangles highlight taxa groups prevailing at different CSR life-history strategies 625 

at the community-level: C, competitors (L0); R, ruderals (L1-6); S, stress-tolerants (L7). 626 
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 627 

Fig. 4. Bacterial genotypic traits relationship with community structure across disturbance. Constrained 628 

ordination of distance-based redundancy analysis (dbRDA) using trait complexes of the IP2G database 629 

(gene ontologies) as predictor variables of metagenomics genus-level community data at d35. Pearson’s 630 

correlation vectors (r > 0.20) represent some of the trait complexes favoured by different bacterial 631 

communities.   632 
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633 

Fig. 5. Correlation networks display separated clusters based on node modularity for bacterial taxa and 634 

genes. (a) Top 200 metagenomics genera. (b) Top 57 genotypic categories (trait complexes) from IP2G 635 

database. Clusters are coloured by modularity class, with green nodes prevailing in undisturbed (L0) 636 

reactors, orange nodes in intermediately disturbed reactors (L1-6), and blue nodes in press-disturbed 637 

reactors (L7). Only significantly strong Pearson’s correlations (r ≥ 0.50) were employed. For each panel, 638 

edge thickness represents correlation strength and node size represents degree.   639 

a b 
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 640 

Fig. 6. Conceptual distribution of trait complexes from IP2G database, community-level function 641 

(bold), and top 25 metagenomics genera (italicized) within the CSR life-history strategies framework. 642 

C, competitors (green); R, ruderals (red); S, stress-tolerants (blue). Intermediate strategies (CR, SR, SC, 643 

CSR) in black. The intent is to provide an interpretation of ecological drivers of changes in bacterial 644 

community structure, functional potential, and ecosystem function after succession under different 645 

levels of disturbance. 646 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted February 18, 2019. ; https://doi.org/10.1101/546416doi: bioRxiv preprint 

https://doi.org/10.1101/546416
http://creativecommons.org/licenses/by-nc-nd/4.0/

