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ABSTRACT 
 
Background 
Epigenetic clocks are mathematical models that predict the biological age of an individual 
using DNA methylation data, and which have emerged in the last few years as the most 
accurate biomarkers of the ageing process. However, little is known about the molecular 
mechanisms that control the rate of such clocks. Here, we have examined the human 
epigenetic clock in patients with a variety of developmental disorders, harbouring mutations 
in proteins of the epigenetic machinery. 
 
Results 
Using the Horvath epigenetic clock, we performed an unbiased screen for epigenetic age 
acceleration (EAA) in the blood of these patients. We demonstrate that loss-of-function 
mutations in the H3K36 histone methyltransferase NSD1, which cause Sotos syndrome, 
substantially accelerate epigenetic ageing. Furthermore, we show that the normal ageing 
process and Sotos syndrome share methylation changes and the genomic context in which 
they occur. Finally, we found that the Horvath clock CpG sites are characterised by a higher 
Shannon methylation entropy when compared with the rest of the genome, which is 
dramatically decreased in Sotos syndrome patients. 
 
Conclusions 
These results suggest that the H3K36 methylation machinery is a key component of the 
epigenetic maintenance system in humans, which controls the rate of epigenetic ageing, and 
this role seems to be conserved in model organisms. Our observations provide novel insights 
into the mechanisms behind the epigenetic ageing clock and we expect will shed light on the 
different processes that erode the human epigenetic landscape during ageing.  
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BACKGROUND 
 
Ageing is normally defined as the time-dependent functional decline which increases 
vulnerability to common diseases and death in most organisms [1]. However, the molecular 
processes that drive the emergence of age-related diseases are only beginning to be 
elucidated. With the passage of time, dramatic and complex changes accumulate in the 
epigenome of cells, from yeast to humans, pinpointing epigenetic alterations as one of the 
hallmarks of ageing [1–4].  
 
Our understanding of the ageing process has historically been hampered by the lack of tools 
to accurately measure it. In recent years, epigenetic clocks have emerged as powerful 
biomarkers of the ageing process across mammals [5, 6], including humans [7–9], mouse [10–
14], dogs and wolves [15] and humpback whales [16]. Epigenetic clocks are mathematical 
models that are trained to predict chronological age using the DNA methylation status of a 
small number of CpG sites in the genome. The most widely used multi-tissue epigenetic clock 
in humans was developed by Steve Horvath in 2013 [8]. Interestingly, deviations of the 
epigenetic (biological) age from the expected chronological age (aka epigenetic age 
acceleration or EAA) have been associated with many conditions in humans, including time-
to-death [17, 18], HIV infection [19], Down syndrome [20], obesity [21], Werner syndrome 
[22] and Huntington’s disease [23].  In mice, the epigenetic clock is slowed down by dwarfism 
and calorie restriction [11–14, 24] and is accelerated by ovariectomy and high fat diet [10, 
13]. Furthermore, in vitro reprogramming of somatic cells into iPSCs reduces epigenetic age 
to values close to zero both in humans [8] and mice [11, 14], which opens the door to potential 
rejuvenation therapies [25, 26]  
 
Epigenetic clocks can be understood as a proxy to quantify the changes of the epigenome 
with age. However, little is known about the molecular mechanisms that determine the rate 
of these clocks. Steve Horvath proposed that the multi-tissue epigenetic clock captures the 
workings of an epigenetic maintenance system [8]. Recent GWAS studies have found several 
genetic variants associated with epigenetic age acceleration in genes such as TERT (the 
catalytic subunit of telomerase) [27], DHX57 (an ATP-dependent RNA helicase) [28] or MLST8 
(a subunit of both mTORC1 and mTORC2 complexes) [28]. Nevertheless, to our knowledge no 
genetic variants in epigenetic modifiers have been found and the molecular nature of this 
hypothetical system is unknown to this date.  
 
We decided to take a reverse genetics approach and look at the behaviour of the epigenetic 
clock in patients with developmental disorders, many of which harbour mutations in proteins 
of the epigenetic machinery [29, 30]. We performed an unbiased screen for epigenetic age 
acceleration and found that Sotos syndrome accelerates epigenetic ageing, potentially 
revealing a role of H3K36 methylation maintenance in the regulation of the rate of the 
epigenetic clock.  
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RESULTS 
 
Screening for epigenetic age acceleration (EAA) is improved when correcting for batch 
effects 
 
The main goal of this study is to identify genes, mainly components of the epigenetic 
machinery, that can affect the rate of epigenetic ageing in humans (as measured by Horvath’s 
epigenetic clock) [8]. For this purpose, we conducted an unbiased screen for epigenetic age 
acceleration (EAA) in samples from patients with developmental disorders that we could 
access and for which genome-wide DNA methylation data was available (Table 1, Additional 
file 2). All the DNA methylation data were generated from blood using the Illumina 
HumanMethylation450 array (450K array). 
 
 

Developmental 
disorder 

Gene(s) 
involved Gene(s) function Molecular 

cause N Age range 
(years) 

Angelman UBE3A Ubiquitin protein 
ligase E3A 

Imprinting, 
mutation 14 1 to 55 

Autism spectrum 
disorder (ASD) - - - 119 1.83 to 

35.16 
Alpha 

thalassemia/mental 
retardation X-linked 
syndrome (ATR-X) 

ATRX Chromatin 
remodelling Mutation 15 0.7 to 27 

Claes-Jensen KDM5C H3K4 demethylase Mutation 10 2 to 42 

Coffin-Lowry RPS6KA3 Serine/threonine 
kinase Mutation 10 1.3 to 22.8 

Floating-Harbour SRCAP Chromatin 
remodelling Mutation 17 4 to 42 

Fragile X syndrome 
(FXS) FMR1 Translational 

control 

Mutation 
(CGG 

expansion) 
32 0.08 to 48 

Kabuki KMT2D H3K4 
methyltransferase Mutation 46 0 to 24.1 

Noonan 
PTPN11, 

RAF1, 
SOS1 

RAS/MAPK 
signalling Mutation 15,11,14 0.2 to 49 

Rett MECP2 Transcriptional 
repression Mutation 15 1 to 34 

Saethre-Chotzen TWIST1 Transcription factor Mutation 22 0 to 38 

Sotos NSD1 H3K36 
methyltransferase Mutation 20 1.6 to 41 

Weaver EZH2 H3K27 
methyltransferase Mutation 7 2.58 to 43 

 
Table 1. Overview of the developmental disorders that were included in the screening (total 
N = 367) after quality control (QC) and filtering (see Methods and Fig. 1a).  
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The main step in the screening methodology is to compare the EAA distribution for the 
samples with a given developmental disorder against a robust control (Fig. 1a). In our case, 
the control set was obtained from human blood samples in a healthy population of individuals 
that matched the age range of the developmental disorder samples (Additional file 3). Given 
that the EAA reflects deviations between the epigenetic (biological) age and the chronological 
age of a sample, we would expect the EAA distributions of the controls to be centred around 
zero, which is equivalent to the situation when the median absolute error (MAE) of the model 
prediction is close to zero (see Methods). This was not the case for the samples obtained from 
several control batches (Additional file 1: Figure S1A, Additional file 1: Figure S1B), both in the 
case of EAA models with and without cell composition correction (CCC). It is worth noting that 
these results were obtained even after applying the internal normalisation step against a 
blood gold-standard suggested by Horvath [8]. Therefore, we hypothesised that part of the 
deviations observed might be caused by technical variance that was affecting epigenetic age 
predictions in the different batches. 
 
We decided to correct for the potential batch effects by making use of the control probes 
present on the 450K array, which have been shown to carry information about unwanted 
variation from a technical source (i.e. technical variance) [31–33]. Performing principal 
components analysis (PCA) on the raw intensities of the control probes showed that the first 
two components (PCs) capture the batch structure in both controls (Fig. 1b) and cases 
(Additional file 1: Figure S1C). Including the first 17 PCs as part of the EAA modelling strategy 
(see Methods), which together accounted for 98.06% of the technical variance in controls and 
cases (Additional file 1: Figure S1D), significantly reduced the median absolute error (MAE) of 
the predictions in the controls (MAE without CCC = 2.8211 years, MAE with CCC = 2.7117 
years, mean MAE = 2.7664 years, Fig. 1c). These values are below the original MAE reported 
by Horvath in his test set (3.6 years) [8].  
 
Finally, deviations from a median EAA close to zero in some of the control batches after batch 
effect correction (Fig. 1d, Additional file 1: Figure S1E) could be explained by other variables, 
such as a small batch size or an overrepresentation of young samples (Additional file 1: Figure 
S1F). The latter is a consequence of the fact that Horvath’s model underestimates the 
epigenetic ages of older samples, a phenomenon which has also been observed by other 
authors [34, 35]. If there is a high number of old samples (generally > 60 years) in the control 
model, this can lead to a lower model slope, which would incorrectly assign negative EAA to 
young samples. This highlights the importance of having an age distribution in the control 
samples that matches that of the cases to be tested for differences in EAA. 
 
Thus, we have shown that correcting for batch effects in the context of the epigenetic clock 
is important, especially when combining datasets from different sources for meta-analysis 
purposes. Batch effect correction is essential to remove technical variance that could affect 
the epigenetic age of the samples and confound biological interpretation. 
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Fig. 1. Screening for epigenetic age acceleration (EAA) is improved when correcting for batch effects. a. Flow 
diagram that portrays an overview of the different analyses that are carried out in the raw DNA methylation 
data (IDAT files) from human blood for cases (developmental disorders samples) and controls (healthy samples). 
The control samples are filtered to match the age range of the cases (0-55 years). The cases are filtered based 
on the number of ‘adult’ samples available (for each disorder, at least 5 samples, with 2 of them with an age ³ 
20 years). More details can be found in the Methods. QC: quality control. DMPs: differentially methylated 
positions. b. Scatterplot showing the values of the first two principal components (PCs) for the control samples 
after performing PCA on the control probes of the 450K arrays. Each point corresponds to a different control 
sample and the colours represent the different batches. The different batches cluster together in the PCA space, 
showing that the control probes indeed capture technical variation. Please note that all the PCA calculations 
were done with more samples from cases and controls than those that were included in the final screening since 
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it was performed before the filtering step (see Methods and Fig. 1a). c. Plot showing how the median absolute 
error (MAE) of the prediction in the control samples, that should tend to zero, is reduced when the PCs capturing 
the technical variation are included as part of the modelling strategy (see Methods). The dashed line represents 
the optimal number of PCs (17) that was finally used. The optimal mean MAE is calculated as the average MAE 
between the green and purple lines. CCC: cell composition correction. d. Distribution of the EAA with cell 
composition correction (CCC) for the different control batches, after applying batch effect correction. 
 
 
Sotos syndrome accelerates epigenetic ageing 
 
Once we had corrected for potential batch effects in the data, we compared the epigenetic 
age acceleration (EAA) distributions between each of the developmental disorders studied 
and our control set. For a given sample, a positive EAA indicates that the epigenetic 
(biological) age of the sample is higher than the one expected for someone with that 
chronological age. In other words, it means that the epigenome of that person resembles the 
epigenome of an older individual. The opposite is true when a negative EAA is found (i.e. the 
epigenome looks younger than expected).  
 
For the main screen, we selected those control samples with the same age range as the one 
present when aggregating all the cases (0 to 55 years), since this permits the development of 
a common control (background) model and to compare the statistical significance of the 
results across developmental disorders. Only those developmental disorders that satisfied 
our filtering criteria were considered for the screen (at least 5 samples available for the 
developmental disorder, with 2 of them presenting a chronological age ³ 20 years, Fig. 1a, 
Table 1 and Additional file 2). Given that the blood composition changes with age (changes in 
the different cell types proportions, which can affect bulk DNA methylation measurements), 
we used models with and without cell composition correction (CCC), correcting for batch 
effects in both of them (see Methods). It is important to mention that EAAwith CCC is 
conceptually similar to the previously reported measure of ‘intrinsic EAA’ (IEAA) [18, 36]. 
 
The results from the screen are portrayed in Fig. 2a. Most syndromes do not show evidence 
of accelerated epigenetic ageing, but Sotos syndrome presents a clear positive EAA (median 
EAAwith CCC = + 7.64 years, median EAAwithout CCC = + 7.16 years), with p-values considerably 
below the significance level of 0.01 after Bonferroni correction (p-valuecorrected, with CCC = 3.40 × 
10-9, p-valuecorrected, without CCC = 2.61 × 10-7). Additionally, Rett syndrome (median EAAwith CCC = + 
2.68 years, median EAAwithout CCC = + 2.46 years, p-valuecorrected, with CCC = 0.0069, p-valuecorrected, 

without CCC = 0.0251) and Kabuki syndrome (median EAAwith CCC = - 1.78 years, median EAAwithout 

CCC = - 2.25 years, p-valuecorrected, with CCC = 0.0011, p-valuecorrected, without CCC = 0.0035) reach 
significance, with a positive and negative EAA respectively. Finally, fragile X syndrome (FXS) 
shows a positive EAA trend (median EAAwith CCC = + 2.44 years, median EAAwithout CCC = + 2.88 
years) that does not reach significance in our screen (p-valuecorrected, with CCC = 0.0680, p-
valuecorrected, without CCC = 0.0693).  
 
Next, we tested the effect of changing the median age used to build the healthy control model 
(i.e. the median age of the controls) on the screening results (Additional file 1: Figure S2A). 
Sotos syndrome is robust to these changes, whilst Rett, Kabuki and FXS are much more 
sensitive to the control model used. This again highlights the importance of choosing an 
appropriate age-matched control when testing for epigenetic age acceleration, given that 
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Horvath’s epigenetic clock underestimates epigenetic age for advanced chronological ages 
[34, 35]. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 2. Sotos syndrome accelerates epigenetic ageing. a. Screening for epigenetic age acceleration (EAA) in 
developmental disorders. The upper panel shows the p-values derived from comparing the EAA 
distributions for the samples in a given developmental disorder and the control (two-sided Wilcoxon’s 
test). The dashed green line displays the significance level of a = 0.01 after Bonferroni correction. The bars 
above the green line reach statistical significance. The lower panel displays the actual EAA distributions, 
which allows assessing the direction of the EAA (positive or negative). In red: EAA model with cell 
composition correction (CCC). In blue: EAA model without CCC. ASD: autism spectrum disorder. ATR-X: 
alpha thalassemia/mental retardation X-linked syndrome. FXS: fragile X syndrome. b. Scatterplot showing 
the relation between epigenetic age (DNAmAge) according to Horvath’s model [8] and chronological age 
of the samples for Sotos (orange) and control (grey). Each sample is represented by one point. The black 
dashed line represents the diagonal to aid visualisation. c. Scatterplot showing the relation between the 
epigenetic age acceleration (EAA) and chronological age of the samples for Sotos (orange) and control 
(grey). Each sample is represented by one point. The yellow line represents the linear model EAA ~ Age, 
with the standard error shown in the light yellow shade. d. Scatterplot showing the relation between the 
score for the epigenetic mitotic clock (pcgtAge) [37] and chronological age of the samples for Sotos 
(orange) and control (grey). Each sample is represented by one point. A higher value of pcgtAge is 
associated with a higher number of cell divisions in the tissue. e. Scatterplot showing the relation between 
the epigenetic mitotic clock (pcgtAge) acceleration and chronological age of the samples for Sotos (orange) 
and control (grey). Each sample is represented by one point. The yellow line represents the linear model 
pcgtAgeacceleration ~ Age, with the standard error shown in the light yellow shade. 
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Moreover, all but one of the Sotos syndrome patients (19/20 = 95%) show a consistent 
deviation in EAA (with CCC) in the same direction (Fig. 2b, c), which is not the case for the rest 
of the disorders, with the exception of Rett syndrome (Additional file 1: Figure S2B). Even 
though the data suggest that there are already some methylomic changes at birth, the EAA 
seems to increase with age in the case of Sotos patients (Fig. 2c). This implies that at least 
some of the changes that normally affect the epigenome with age are happening at a faster 
rate in Sotos syndrome patients during their lifespan (as opposed to the idea that the Sotos 
epigenetic changes are only acquired during prenatal development and remain constant 
afterwards).  
 
Finally, we investigated whether Sotos syndrome leads to a higher rate of (stem) cell division 
in blood when compared with our healthy population. We used a reported epigenetic mitotic 
clock (pcgtAge) that makes use of the fact that some CpGs in promoters that are bound by 
Polycomb group proteins become hypermethylated with age. This hypermethylation 
correlates with the number of cell divisions in the tissue and is also associated with an 
increase in cancer risk [37]. We found a trend suggesting that the epigenetic mitotic clock 
might be accelerated in Sotos patients (p-value = 0.0112, Fig. 2d, e), which could explain the 
higher cancer predisposition reported in these patients and might relate to their overgrowth 
[38]. 
  
Consequently, we report that people with Sotos syndrome present an accelerated epigenetic 
age, which makes their epigenome look, on average, more than 7 years older than expected. 
These changes seem to be the consequence of a higher ticking rate of the epigenetic clock (or 
at least part of its machinery), with epigenetic age acceleration increasing during lifespan: the 
youngest Sotos patient (1.6 years) has an EAAwith CCC = 5.43 years and the oldest (41 years) has 
an EAAwith CCC = 24.53 years. Additionally, Rett syndrome, Kabuki syndrome and fragile X 
syndrome could also have their epigenetic ages affected, but more evidence is required to be 
certain about this conclusion.  
 
Physiological ageing and Sotos syndrome share methylation changes and the genomic 
context in which they occur 
 
Sotos syndrome is caused by loss-of-function heterozygous mutations in the NSD1 gene, a 
histone H3K36 methyltransferase [39, 40]. These mutations lead to a specific DNA 
methylation signature in Sotos patients, potentially due to the crosstalk between the histone 
and DNA methylation machinery [40]. In order to gain a more detailed picture of the reported 
epigenetic age acceleration, we decided to compare the genome-wide (or at least array-wide) 
changes observed in the methylome during ageing with those observed in Sotos syndrome. 
For this purpose, we identified differentially methylated positions (DMPs) for both conditions 
(see Methods). Ageing DMPs (aDMPs), were composed almost equally of CpG sites that gain 
methylation with age (i.e. become hypermethylated, 51.69%) and CpG sites that lose 
methylation with age (i.e. become hypomethylated, 48.31%, barplot in Fig. 3a), a picture that 
resembles previous studies [41]. On the contrary, DMPs in Sotos were dominated by CpGs 
that decrease their methylation level in individuals with the syndrome (i.e. hypomethylated, 
99.27%, barplot in Fig. 3a), consistent with previous reports [40].  
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Fig. 3. Comparison between the DNA methylation changes during physiological ageing and in Sotos. a. On 
the left: barplot showing the total number of differentially methylated positions (DMPs) found during 
physiological ageing and in Sotos syndrome. CpG sites that increase their methylation levels with age in 
our healthy population or those that are elevated in Sotos patients (when compared with a control) are 
displayed in red. Conversely, those CpG sites that decrease their methylation levels are displayed in blue. 
On the right: table that represents the intersection between the ageing (aDMPs) and the Sotos DMPs. The 
subset resulting from the intersection between the hypomethylated DMPs in ageing and Sotos is called the 
‘Hypo-Hypo DMPs’ subset (N=1728). b. Enrichment for the categorical (epi)genomic features considered 
when comparing the different genome-wide subsets of differentially methylated positions (DMPs) in 
ageing and Sotos against a control (see Methods). The y-axis represents the odds ratio (OR), the error bars 
show the 95% confidence interval for the OR estimate and the colour of the points codes for -log10(p-value) 
obtained after testing for enrichment using Fisher’s exact test. An OR > 1 shows that the given feature is 
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enriched in the subset of DMPs considered, whilst an OR < 1 shows that it is found less than expected. In 
grey: features that did not reach significance using a significance level of a = 0.01 after Bonferroni 
correction. c. Boxplots showing the distributions of the ‘normalised RNA expression’ (NRE) when comparing 
the different genome-wide subsets of differentially methylated positions (DMPs) in ageing and Sotos 
against a control (see Methods). NRE represents normalised mean transcript abundance in a window of ± 
200 bp from the CpG site coordinate (DMP) being considered (see Methods). The p-values (two-sided 
Wilcoxon’s test, before multiple testing correction) are shown above the boxplots. The number of DMPs 
belonging to each subset (in green) and the median value of the feature score (in dark red) are shown 
below the boxplots. d. Same as c., but showing the ‘normalised fold change’ (NFC) for the H3K36me3 
histone modification (representing normalised mean ChIP-seq fold change for H3K36me3 in a window of 
± 200 bp from the DMP being considered, see Methods). 
 
 
Then, we compared the intersections between the hypermethylated and hypomethylated 
DMPs in ageing and Sotos. Most of the DMPs were specific for ageing or Sotos (i.e. they did 
not overlap), but a subset of them were shared (table in Fig. 3a). Interestingly, there were 
1728 DMPs that became hypomethylated both during ageing and in Sotos (‘Hypo-Hypo 
DMPs’). This subset of DMPs is of special interest because it could be used to understand in 
more depth some of the mechanisms that drive hypomethylation during physiological ageing. 
Thus, we tested whether the different subsets of DMPs are found in specific genomic contexts 
(Additional file 1: Figures S3A,B). DMPs that are hypomethylated during ageing and in Sotos 
were both enriched (odds ratio >1) in enhancer categories (such as ‘active enhancer 1’ or 
‘weak enhancer 1’, see the chromatin state model used, from the K562 cell line, in Methods) 
and depleted (odds ratio <1) for active transcription categories (such as ‘active TSS’ or ‘strong 
transcription’), which was also observed in the ‘Hypo-Hypo DMPs’ subset (Fig. 3b). 
Interestingly, age-related hypomethylation in enhancers seems to be a characteristic of both 
humans [42, 43] and mice [24]. Furthermore, both de novo DNA methyltransferases (DNMT3A 
and DNMT3B) have been shown to bind in an H3K36me3-dependent manner to active 
enhancers [44], consistent with our results. 
 
When looking at the levels of total RNA expression (depleted for rRNA) in blood, we confirmed 
a significant reduction in the RNA levels around these hypomethylated DMPs when compared 
with the controls sets (Fig. 3c, see Methods for more details on how the control sets were 
defined). Interestingly, hypomethylated DMPs in both ageing and Sotos were depleted from 
gene bodies (Fig. 3b) and were located in areas with lower levels of H3K36me3 when 
compared with the control sets (Fig. 3d, Additional file 1: Figure S3B). Moreover, 
hypomethylated aDMPs and hypomethylated Sotos DMPs where both generally enriched or 
depleted for the same histone marks in blood (Additional file 1: Figure S3B), which adds 
weight to the hypothesis that they share the same genomic context and could become 
hypomethylated through similar molecular mechanisms. 
 
Intriguingly, we also identified a subset of DMPs (2550) that were hypermethylated during 
ageing and hypomethylated in Sotos (Fig. 3a). These ‘Hyper-Hypo DMPs’ seem to be enriched 
for categories such as ‘bivalent promoter’ and ‘repressed polycomb’ (Additional file 1: Figure 
S3A), which are normally associated with developmental genes [45, 46]. These categories are 
also a defining characteristic of the hypermethylated aDMPs, highlighting that even though 
the direction of the DNA methylation changes is different in some ageing and Sotos DMPs, 
the genomic context in which they happen is shared. 
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Finally, we looked at the DNA methylation patterns in the 353 epigenetic clock CpG sites for 
the Sotos samples. For each clock CpG site, we modelled the changes of DNA methylation 
during the lifespan in the healthy control individuals and then calculated the deviations from 
these patterns for the Sotos samples (Additional file 1: Figure S3C, see Methods). As expected, 
the landscape of clock CpG sites is dominated by hypomethylation in the Sotos samples, 
although only a small fraction of the clock CpG sites seems to be significantly affected 
(Additional file 1: Figure S3D). Overall, we confirmed the trends reported for the genome-
wide analysis (Additional file 1: Figures S3E-G). However, given the much smaller number of 
CpG sites to consider in this analysis, very few comparisons reached significance.  
 
We have demonstrated that the ageing process and Sotos syndrome share a subset of 
hypomethylated CpG sites that is characterised by an enrichment in enhancer features and a 
depletion of active transcription activity. This highlights the usefulness of developmental 
disorders as a model to study the mechanisms that may drive the changes in the methylome 
with age, since they permit stratification of the ageing DMPs into different functional 
categories that are associated with alterations in the function of specific genes and hence 
specific molecular components of the epigenetic ageing clock. 
 
Sotos syndrome is associated with a decrease of methylation Shannon entropy in the 
epigenetic clock CpG sites 
 
Shannon entropy can be used in the context of DNA methylation analysis to estimate the 
information content stored in a given set of CpG sites. Shannon entropy is minimised when 
the methylation levels of all the CpG sites are either 0% or 100% and maximised when all of 
them are 50% (see Methods). Previous reports have shown that the Shannon entropy 
associated with the methylome increases with age, which implies that the epigenome loses 
information content [9, 12, 42]. We confirmed this genome-wide effect (i.e. considering all 
the CpG sites that passed our pre-processing pipeline) in our healthy samples, where we 
observed a positive Spearman correlation coefficient between chronological age and 
genome-wide Shannon entropy of 0.3984 (p-value = 3.21 × 10-44). This result was robust when 
removing outlier batches (Additional file 1: Figure S4C). Next, we tested whether Sotos 
patients present genome-wide Shannon entropy acceleration i.e. deviations from the 
expected genome-wide Shannon entropy for their age (see Methods). Despite detailed 
analysis, we did not find evidence that this was the case when looking genome-wide (p-value 
= 0.71, Fig. 4a, b, Additional file 1: Figure S4A).  
 
When we considered only the 353 clock CpG sites for the entropy calculations, the picture 
was different. Shannon entropy for the 353 clock sites slightly decreased with age in the 
controls when we included all the batches, showing the opposite direction when compared 
with the genome-wide entropy (Spearman correlation coefficient = -0.1223, p-value = 3.8166 
× 10-5, Fig. 4c). However, when we removed the ‘Europe’ batch (which was an outlier even 
after pre-processing, Additional file 1: Figure S4D), this trend was reversed and we observed 
a weak increase of clock Shannon entropy with age (Spearman correlation coefficient = 
0.1048, p-value = 8.6245 × 10-5). This shows that Shannon entropy calculations are very 
sensitive to batch effects, especially when considering a small number of CpG sites, and the 
results must be interpreted carefully. 
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Interestingly, the mean Shannon entropy across all the control samples was higher in the 
epigenetic clock sites (mean = 0.4726, Fig. 4c) with respect to the genome-wide entropy 
(mean = 0.3913, Fig. 4a). Sotos syndrome patients displayed a lower clock Shannon entropy 
when compared with the control (p-value = 5.0449 × 10-12, Fig. 4d, Additional file 1: Figure 
S4B), which is probably driven by the hypomethylation of the clock CpG sites. Furthermore, 
this highlights that the Horvath clock sites could have slightly different characteristics in terms 
of the methylation entropy associated with them when compared with the genome as a 
whole, something that to our knowledge has not been reported before. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 4. Analysis of methylation Shannon entropy during physiological ageing and in Sotos syndrome. a. 
Scatterplot showing the relation between genome-wide Shannon entropy (i.e. calculated using the 
methylation levels of all the CpG sites in the array) and chronological age of the samples for Sotos (orange) 
and healthy controls (grey). Each sample is represented by one point. b. Boxplots showing the distributions 
of genome-wide Shannon entropy acceleration (i.e. deviations from the expected genome-wide Shannon 
entropy for their age) for the control and Sotos samples. The p-value displayed on top of the boxplots was 
derived from a two-sided Wilcoxon’s test. c. Same as a., but using the Shannon entropy calculated only for 
the 353 CpG sites in the Horvath epigenetic clock. d. Same as b., but using the Shannon entropy calculated 
only for the 353 CpG sites in the Horvath epigenetic clock. 
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DISCUSSION 
 
The epigenetic ageing clock has emerged as the most accurate biomarker of the ageing 
process and it seems to be a conserved property in mammalian genomes [5, 6]. However, we 
do not know yet whether the age-related DNA methylation changes measured are functional 
at all or whether they are related to some fundamental process of the biology of ageing. 
Developmental disorders in humans represent an interesting framework to look at the 
biological effects of mutations in genes that are fundamental for the integrity of the 
epigenetic landscape and other core processes, such as growth or neurodevelopment [29, 
30]. Therefore, using a reverse genetics approach, we aimed to identify genes that disrupt 
aspects of the behaviour of the epigenetic ageing clock in humans. 
 
Most of the studies have looked at the epigenetic ageing clock using Horvath’s model [8], 
which has a ready-to-use online calculator for epigenetic age [47]. This has clearly simplified 
the computational process and helped a lot of research groups to test the behaviour of the 
epigenetic clock in their system of interest. However, this has also led to the treatment of the 
epigenetic clock as a ‘black-box’, without critical assessment of the statistical methodology 
behind it. Therefore, we decided to benchmark the main steps involved when estimating 
epigenetic age acceleration (pre-processing of the raw data from methylation arrays and cell 
composition deconvolution algorithms), to quantify the effects of technical variation on the 
epigenetic clock predictions and to assess the impact of the control age distribution on the 
epigenetic age acceleration calculations. Previous attempts to account for technical variation 
have used the first 5 principal components (PCs) estimated directly from the DNA methylation 
data [23]. However, this approach potentially removes meaningful biological variation. For 
the first time, we have shown that it is possible to use the control probes from the 450K array 
to readily correct for batch effects in the context of the epigenetic clock, which reduces the 
error associated with the predictions and decreases the likelihood of reporting a false 
positive. Furthermore, we have confirmed the suspicion that Horvath’s model 
underestimates epigenetic age for older ages [34, 35] and assessed the impact of this bias in 
the screen for epigenetic age acceleration. 
  
The results from our screen strongly suggest that Sotos syndrome accelerates epigenetic 
ageing. Sotos syndrome is caused by loss-of-function mutations in the NSD1 gene [39, 40], 
which encodes a histone H3 lysine 36 (H3K36) methyltransferase. This leads to a phenotype 
which can include pre-natal and post-natal overgrowth, facial gestalt, advanced bone age, 
developmental delay, higher cancer predisposition and, in some cases, heart defects [38]. 
Remarkably, many of these characteristics could be interpreted as ageing-like, identifying 
Sotos syndrome as a potential human model of accelerated physiological ageing.    
 
NSD1 catalyses the addition of either monomethyl (H3K36me) or dimethyl groups 
(H3K36me2) and indirectly regulates the levels of trimethylation (H3K36me3) by altering the 
availability of the monomethyl and dimethyl substrates for the trimethylation enzymes 
(SETD2 in humans, whose mutations cause a ‘Sotos-like’ overgrowth syndrome ) [48, 49]. 
H3K36 methylation has a complex role in the regulation of transcription [48] and has been 
shown to regulate nutrient stress response in yeast [50]. Moreover, experiments in model 
organisms (yeast and worm) have demonstrated that mutations in H3K36 methyltranferases 
decrease lifespan and, remarkably, mutations in H3K36 demethylases increase it [51–53]. 
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In humans, DNA methylation patterns are established and maintained by three conserved 
enzymes: the maintenance DNA methyltransferase DNMT1 and the de novo DNA 
methyltransferases DNMT3A and DNMT3B [54]. Both DNMT3A and DNMT3B contain PWWP 
domains that can read the H3K36me3 histone mark [55, 56]. Therefore, the H3K36 
methylation landscape can influence DNA methylation levels in specific genomic regions 
through the recruitment of the de novo DNA methyltransferases. Mutations in the PWWP 
domain of DNMT3A impair its binding to H3K36me2 and H3K36me3 and cause an 
undergrowth disorder in humans (microcephalic dwarfism) [57]. This redirects DNMT3A, 
which is normally targeted to H3K36me2 and H3K36me3 throughout the genome, to DNA 
methylation valleys (DMVs, aka DNA methylation canyons), which become hypermethylated 
[57]; a phenomenon that also seems to happen during physiological ageing in humans [42, 
58, 59] and mice [24]. DMVs are hypomethylated domains conserved across cell types and 
species, often associated with Polycomb-regulated developmental genes and marked by 
bivalent chromatin (with H3K27me3 and H3K4me3) [60–63]. Therefore, we suggest a model 
(Fig. 5) where the reduction in the levels of H3K36me2 and/or H3K36me3, caused by a 
proposed decrease in H3K36 methylation maintenance during ageing or NSD1 function in 
Sotos syndrome, could lead to hypomethylation in many genomic regions (because DNMT3A 
is recruited less efficiently) and hypermethylation in DMVs (because of the higher availability 
of DNMT3A). Indeed, we observe enrichment for categories such as ‘bivalent promoter’ or 
‘repressed polycomb’ in the hypermethylated DMPs in Sotos and ageing (Additional file 1: 
Figure S3A), which is also supported by higher levels of Polycomb Repressing Complex 2 
(PRC2, represented by EZH2) and H3K27me3, the mark deposited by PRC2 (Additional file 1: 
Figure S3B).This is also consistent with the results obtained for the epigenetic mitotic clock 
[37], where we observe a trend towards increased hypermethylation of Polycomb-bound 
regions in Sotos patients. 
 
A recent preprint has shown that loss-of-function mutations in DNMT3A, which cause Tatton-
Brown-Rahman overgrowth syndrome, also lead to a higher ticking rate of the epigenetic 
ageing clock [64]. They also report positive epigenetic age acceleration in Sotos syndrome and 
negative acceleration in Kabuki syndrome, consistent with our results. Furthermore, they 
observe a DNA methylation signature in the DNMT3A mutants characterised by widespread 
hypomethylation, with a modest enrichment of DMPs in regions upstream of the 
transcription start site, shores and enhancers [64], which we also detect in our ‘Hypo-Hypo 
DMPs’ (those that become hypomethylated both during physiological ageing and in Sotos). 
Therefore, the hypomethylation observed in our ‘Hypo-Hypo DMPs’ is consistent with a 
reduced methylation activity of DNMT3A, which in our system could be a consequence of the 
decreased recruitment of DNMT3A to genomic regions that have lost H3K36 methylation (Fig. 
5).  
 
Interestingly, H3K36me3 is required for the selective binding of the de novo DNA 
methyltransferase DNMT3B to the bodies of highly transcribed genes [56]. Furthermore, 
DNMT3B loss reduces gene-body methylation, which leads to intragenic spurious 
transcription (aka cryptic transcription) [65]. An increase in this so-called cryptic transcription 
seems to be a conserved feature of the ageing process [52]. Therefore, the changes observed 
in the ‘Hypo-Hypo DMPs’ could theoretically be a consequence of the loss of H3K36me3 and 
the concomitant inability of DNMT3B to be recruited to gene bodies. However, the ‘Hypo-
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Hypo DMPs’ were depleted for H3K36me3, active transcription and gene bodies when 
compared with the rest of the probes in the array (Fig. 3b-d), prompting us to suggest that 
the DNA methylation changes observed are likely mediated by DNMT3A instead (Fig. 5). 
Nevertheless, it is worth mentioning that the different biological replicates for the blood 
H3K36me3 ChIP-seq datasets were quite heterogeneous and that the absolute difference in 
the case of the hypomethylated Sotos DMPs, although significant due to the big sample sizes, 
is quite small. Thus, we cannot exclude the existence of this mechanism during human ageing 
and an exhaustive study on the prevalence of cryptic transcription in humans and its relation 
to the ageing methylome should be carried out. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 5. Proposed model that highlights the role of H3K36 methylation maintenance on epigenetic ageing. 
The H3K36me2/3 mark allows recruiting de novo DNA methyltransferases DNMT3A (in green) and DNMT3B 
(not shown) through their PWWP domain (in blue) to different genomic regions (such as gene bodies or 
pericentric heterochromatin) [56, 94, 95], which leads to the methylation of the cytosines in the DNA of 
these regions (5-mC, black lollipops). On the contrary, DNA methylation valleys (DMVs) are conserved 
genomic regions that are normally found hypomethylated and associated with Polycomb-regulated 
developmental genes [60–63]. During ageing, the H3K36 methylation machinery could become less 
efficient at maintaining the H3K36me2/3 landscape. This would lead to a relocation of de novo DNA 
methyltransferases from their original genomic reservoirs (which would become hypomethylated) to other 
non-specific regions such as DMVs (which would become hypermethylated and potentially lose their 
normal boundaries), with functional consequences for the tissues. This is also partially observed in patients 
with Sotos syndrome, where mutations in NSD1 potentially affect H3K36me2/3 patterns and accelerate 
the epigenetic ageing clock as measured with the Horvath model [8]. Given that DNMT3B is enriched in the 
gene bodies of highly transcribed genes [56] and that we found these regions depleted in our differential 
methylation analysis, we hypothesise that the hypermethylation of DMVs could be mainly driven by 
DNMT3A instead. However, it is important to mention that our analysis does not discard a role of DNMT3B 
during epigenetic ageing. 
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Because of the way that the Horvath epigenetic clock was trained [8], it is likely that its 
constituent 353 CpG sites are a low-dimensional representation of the different genome-wide 
processes that are eroding the epigenome with age. Our analysis has shown that these 353 
CpG sites are characterised by a higher Shannon entropy when compared with the rest of the 
genome, which is dramatically decreased in the case of Sotos patients. This could be related 
to the fact that the clock CpGs are enriched in regions of bivalent chromatin (marked by 
H3K27me3 and H3K4me3), conferring a more dynamic or plastic regulatory state with levels 
of DNA methylation deviated from the collapsed states of 0 or 1. Interestingly, EZH2 (part of 
polycomb repressing complex 2, responsible for H3K27 methylation) is an interacting partner 
of DNMT3A and NSD1, with mutations in NSD1 affecting the genome-wide levels of 
H3K27me3 [66]. Furthermore, Kabuki syndrome was weakly identified in our screen as having 
an epigenome younger than expected, which could be related to the fact that they show post-
natal dwarfism [67, 68]. Kabuki syndrome is caused by loss-of-function mutations in KMT2D 
[67, 68], a major mammalian H3K4 mono-methyltransferase [69]. Additionally, H3K27me3 
and H3K4me3 levels can affect lifespan in model organisms [3]. It will be interesting to test 
whether bivalent chromatin is a general feature of multi-tissue epigenetic ageing clocks.  
 
Thus, DNMT3A, NSD1 and the machinery in control of bivalent chromatin (such as EZH2 and 
KMT2D) contribute to an emerging picture on how the mammalian epigenome is regulated 
during ageing, which could open new avenues for anti-ageing drug development.  Mutations 
in these proteins lead to different developmental disorders with impaired growth defects 
[29], with DNMT3A, NSD1 and potentially KMT2D also affecting epigenetic ageing. 
Interestingly, EZH2 mutations (which cause Weaver syndrome, Table 1) do not seem to affect 
the epigenetic clock in our screen. However, this syndrome has the smallest number of 
samples (7) and this could limit the power to detect any changes.  
 
Our screen has also revealed that Rett syndrome and fragile X syndrome (FXS) could 
potentially have an accelerated epigenetic age. It is worth noting that FXS is caused by an 
expansion of the CGG trinucleotide repeat located in the 5’ UTR of the FMR1 gene [70]. 
Interestingly, Huntington’s disease, caused by a trinucleotide repeat expansion of CAG, has 
also been shown to accelerate epigenetic ageing of human brain [23], pointing towards 
trinucleotide repeat instability as an interesting molecular mechanism to look at from an 
ageing perspective. It is important to notice that the conclusions for Rett syndrome, FXS and 
Kabuki syndrome were very dependent on the age range used in the healthy control 
(Additional file 1: Figure S2A) and these results must therefore be treated with caution. 
 
Our study has several limitations that we tried to address in the best possible way. First of all, 
given that DNA methylation data for patients with developmental disorders is relatively rare, 
some of the sample sizes were quite small. It is thus possible that some of the other 
developmental disorders assessed are epigenetically accelerated but we lack the power to 
detect this. Furthermore, people with the disorders tend to get sampled when they are young 
i.e. before reproductive age. Horvath’s clock adjusts for the different rates of change in the 
DNA methylation levels of the clock CpGs before and after reproductive age (20 years in 
humans) [8], but this could still have an effect on the predictions, especially if the control is 
not properly age-matched. Our solution was to discard those developmental disorders with 
less than 5 samples and we required them to have at least 2 samples with an age ³ 20 years, 
which reduced the list of final disorders included to the ones listed in Table 1.  
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Future studies should increase the sample size and follow the patients during their entire 
lifespan in order to confirm our findings. Furthermore, it would be interesting to identify 
mutations that affect, besides the mean, the variance of epigenetic age acceleration, since 
changes in methylation variability at single CpG sites with age have been associated with 
fundamental ageing mechanisms [42]. Finally, testing the influence of H3K36 methylation on 
the epigenetic clock and lifespan in mice will provide deeper mechanistic insights. 
 
 
CONCLUSIONS 
 
The epigenetic ageing clock has created a new methodological paradigm to study the ageing 
process in humans. However, the molecular mechanisms that control its ticking rate are still 
mysterious. In this study, by looking at patients with developmental disorders, we have 
demonstrated that Sotos syndrome accelerates epigenetic ageing and uncovered a potential 
role of the H3K36 methylation machinery as a key component of the epigenetic maintenance 
system in humans. We hope that this research will shed some light on the different processes 
that erode the human epigenetic landscape during ageing and provide a new hypothesis 
about the mechanisms behind the epigenetic ageing clock. 
 
 
METHODS 
 
Sample collection and annotation 
 
We collected DNA methylation data generated with the Illumina Infinium 
HumanMethylation450 BeadChip (450K array) from human blood. In the case of the 
developmental disorder samples, we combined public data with data generated in-house for 
other clinical studies (Table 1, Additional file 2) [30]. We took all the data for developmental 
disorders that we could find in order to perform unbiased screening. The healthy samples 
used to build the control were mainly obtained from public sources (Additional file 3). Basic 
metadata (including the chronological age) was also stored. All the mutations in the 
developmental disorder samples were manually curated using Variant Effect Predictor [71] in 
the GRCh37 (hg19) human genome assembly. Those samples with a variant of unknown 
significance that had the characteristic DNA methylation signature of the disease were also 
included (they are labelled as ‘YES_predicted’ in Additional file 2). In the case of fragile X 
syndrome (FXS), only male samples with full mutation (>200 repeats) [70] were included in 
the final screen. As a consequence, only samples with a clear molecular and clinical diagnosis 
were kept for the final screen. 
 
Pre-processing, QC and filtering the data for the epigenetic clock calculations 
 
Raw DNA methylation array data (IDAT files) were processed using the minfi R package [72]. 
Raw data were background-corrected using noob [73] before calculating the beta-values. In 
the case of the beta-values which are input to Horvath’s model, we observed that background 
correction did not have a major impact in the final predictions of epigenetic age acceleration 
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in the control as long as we corrected for batch effects (Fig. 1c, Additional file 1: Figure S5A). 
We decided to keep the noob background correction step for consistency with the rest of the 
pipelines. Epigenetic age (DNAmAge) was calculated using the code from Horvath, which 
includes an internal normalisation step against a blood gold-standard [8]. The scripts are 
available in our GitHub repository [74] for the use of the community. 
 
Quality control (QC) was performed in all samples. Following guidelines from the minfi 
package [72], only those samples that satisfied the following criteria were kept for the 
analysis: the sex predicted from the DNA methylation data was the same as the reported sex 
in the metadata, they passed BMIQ normalisation and  !"#$%&(()*+ ,)	/	!"#$%&(()*+ 0)

1
≥ 10.5, 

where M is the methylated intensity and U the unmethylated intensity for the array probes.  
 
Correcting for batch effects 
 
In order to correct for batch effects that could confound the conclusions from our analysis, 
we decided to make use of the control probes available in the 450K array. These probes 
capture only technical variance in negative controls and different steps of the array protocol, 
such as bisulfite conversion, staining or hybridisation [32, 75]. We performed PCA (with 
centering but not scaling using the prcomp function in R) on the raw intensities of the control 
probes (847 probes × 2 channels = 1694 intensity values) for all our controls (N=2218) and 
cases (N=666) that passed QC (Fig. 1a). Including the technical PCs as covariates in the models 
to calculate epigenetic age acceleration (EAA) improved the error from the predictions in the 
controls (Fig. 1c, Additional file 1: Figure S5A). The optimal number of PCs was found by 
making use of the findElbow function from [76]. 
 
Correcting for cell composition 
 
The proportions of different blood cell types change with age and this can affect the 
methylation profiles of the samples. Therefore, when calculating epigenetic age acceleration, 
it is important to compare models with and without cell type proportions included as 
covariates [36]. Cell type proportions can be estimated from DNA methylation data using 
different deconvolution algorithms [77]. In the context of the epigenetic clock, most of the 
studies have used the Houseman method [78]. We have benchmarked different reference-
based deconvolution strategies (combining different pre-processing steps, references and 
deconvolution algorithms) against a gold-standard dataset (GSE77797) [79]. Our results 
suggest that using the IDOL strategy [79] to build the blood reference (from the Reinius et al. 
dataset, GSE35069) [80], together with the Houseman algorithm [78] and some pre-
processing steps (noob background correction, probe filtering, BMIQ normalisation), leads to 
the best cell type proportions estimates i.e. those that minimise the deviations between our 
estimates and the real cell type composition of the samples in the gold-standard dataset 
(Additional file 1: Figure S5B, Additional file 4). We used the epidish function from the EpiDISH 
R package [81] for these purposes.  
 
Calculating the epigenetic age acceleration (EAA) and performing the main screen 
 
Only those developmental disorders for which we had at least 5 samples, with 2 of them with 
an age ³ 20 years, were included in the main screen (N=367). Healthy samples that matched 
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the age range of those disorders (0-55 years, N=1128) were used to train the following linear 
models (the control models): 
 

(I) Without cell composition correction (CCC):  
 
DNAmAge~Age+Sex+PC1+PC2+… +PCN 
 

(II) With cell composition correction (CCC):  
 
DNAmAge ~Age+Sex+Gran+CD4T+CD8T+B+Mono+NK+PC1+PC2+…+PCN 

 
where DNAmAge is the epigenetic age calculated using Horvath’s model [8], Age is the 
chronological age, PCN is the Nth technical PC obtained from the control probes (N=17 was 
the optimal, Fig. 1c) and Gran, CD4T, CD8T, B, Mono and NK are the different proportions of 
blood cell types as estimated with our deconvolution strategy. The linear models were fitted 
in R with the lm function, which uses least-squares.  
 
The residuals from a control model represent the epigenetic age acceleration (EAA) for the 
different healthy samples, which should be centred around zero after batch effect correction 
(Additional file 1: Figure S1E, Fig. 1d). Then, the median absolute error (MAE) can be 
calculated as (Fig. 1c, Additional file 1: Figure S5A): 
 

(III) 𝑀𝐴𝐸 = 𝑚𝑒𝑑𝑖𝑎𝑛(𝑎𝑏𝑠(𝐸𝐴𝐴𝑖))	 
 
where EAAi is the epigenetic age acceleration for a healthy sample from the control.  
 
Once the control models are established, we can calculate the EAA for the different samples 
with a developmental disorder (cases) by taking the difference between the epigenetic age 
(DNAmAge) for the case sample and the predicted value from the corresponding control 
model (with or without cell composition correction). Finally, the distributions of the EAA for 
the different developmental disorders were compared against the EAA distribution for the 
healthy controls using a two-sided Wilcoxon’s test. P-values were adjusted for multiple 
testing using Bonferroni correction and a significance level of a = 0.01 was applied. 
 
Calculating pcgtAge and Shannon entropy   
 
Raw DNA methylation data (IDAT files) was background-corrected using noob [73]. Next, we 
filtered out probes associated with SNPs, cross-reactive probes [82] and probes from the sex 
chromosomes, before performing BMIQ intra-array normalisation to correct for the bias in 
probe design [83]. Then, we calculated pcgtAge as the average of the beta-values for the 
probes that constitute the epigenetic mitotic clock [37]. It is worth noting that only 378 out 
of the 385 probes were left after our filtering criteria. 
 
Shannon entropy was calculated as previously described [9]: 
 

(IV) 𝐸𝑛𝑡𝑟𝑜𝑝𝑦 = 	 H
I∗()*+(

K
+)
∙ ∑ [𝛽$ ∙ log1(𝛽$) + (1 − 𝛽$) ∙ log1(1 − 𝛽$)]I

$VH  
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where bi represents the methylation beta-value for the ith probe (CpG site) in the array, N = 
428266 for the genome-wide entropy and N = 353 for Horvath clock sites entropy.  
 
In order to calculate the pcgtAge and Shannon entropy acceleration, we followed a similar 
strategy to the one reported for EAA with CCC, fitting the following linear models: 
 

(V) pcgtAge~Age +Sex+Gran+CD4T+CD8T+B+Mono+NK+PC1+ …+PC17 
(VI) Entropy~Age+Sex+Gran+CD4T+CD8T+B+Mono+NK+PC1+ …+PC17 

 
It is worth mentioning that we observed a remarkable effect of the batch on the Shannon 
entropy calculations, which generated high entropy variability for a given age (Additional file 
1: Figure S4C,D). Thus, accounting for technical variation becomes crucial when assessing this 
type of data, even after background correction, probe filtering and BMIQ normalisation.  
 
Identifying differentially methylated positions (DMPs) 
 
DMPs were identified using a modified version of the dmpFinder function in the minfi R 
package [72], where we accounted for other covariates. The ageing DMPs (aDMPs) were 
calculated using the control samples that were included in the screen (age range 0-55 years, 
N=1128) and the following linear model (p-values and regression coefficients were extracted 
for the Age covariate): 
 

(VII) bi ~Age+Sex+Gran+CD4T+CD8T+B+Mono+NK+PC1+ …+PC17 
 
where bi represents the methylation beta-value for the ith probe (CpG site) in the array. 
 
The Sotos DMPs were calculated by comparing the Sotos samples (N=20) against the control 
samples (N=51) from the same dataset (GSE74432) [40] using the following linear model (p-
values and regression coefficients were extracted for the Disease_status covariate):  
 

(VIII) bi ~Disease_status+Age+Sex+Gran+CD4T+CD8T+B+Mono+NK+PC1+ …+PC17 
 
We selected as our final DMPs those CpG probes that survived our analysis after Bonferroni 
multiple testing correction with a significance level of a = 0.01. 
 
(Epi)genomic annotation of the CpG sites 
 
Different (epi)genomic features were extracted for the CpG sites of interest. All the data were 
mapped to the hg19 assembly of the human genome.  
 
The continuous features were calculated by extracting the mean value in a window of ± 200 
bp from the CpG site coordinate using the pyBigWig package [84]. We chose this window 
value based on the methylation correlation observed between neighbouring CpG sites in 
previous studies [85]. The continuous features included (Additional file 5): 
 

- ChIP-seq data from ENCODE (histone modifications from peripheral blood 
mononuclear cells or PBMC; EZH2, as a marker of Polycomb Repressing Complex 
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2 binding, from B cells; RNF2, as a marker of Polycomb Repressing Complex 1 
binding, from the K562 cell line). We obtained Z-scores (using the scale function in 
R) for the values of ‘fold change over control’ as calculated in ENCODE [86]. When 
needed, biological replicates of the same feature were aggregated by taking the 
mean of the Z-scores in order to obtain the ‘normalised fold change’ (NFC). 
 

- ChIP-seq data for LaminB1 (GSM1289416, quantified as ‘normalised read counts’ 
or NRC) and Repli-seq data for replication timing (GSM923447, quantified as 
‘wavelet-transformed signals’ or WTS). We used the same data from the IMR90 
cell line as in [87]. 

 
- Total RNA-seq data (rRNA depleted, from PBMC) from ENCODE. We calculated Z-

scores after aggregating the ‘signal of unique reads’ (sur) for both strands (+ and -
) in the following manner: 

 
(IX) 𝑅𝑁𝐴$ = 	 log1(1 + 𝑠𝑢𝑟$/ + 𝑠𝑢𝑟$Z) 

 
where 𝑅𝑁𝐴$ represents the RNA signal (that then needs to be scaled to obtain 
the ‘normalised RNA expression’ or NRE) for the ith CpG site.  

 
The categorical features were obtained by looking at the overlap (using the pybedtools 
package) [88] of the CpG sites with the following: 
 

- Gene bodies, from protein-coding genes as defined in the basic gene annotation 
of GENCODE release 29 [89]. 
 

- CpG islands (CGIs) were obtained from the UCSC Genome Browser [90]. Shores 
were defined as regions 0 to 2 kb away from CGIs in both directions and shelves 
as regions 2 to 4 kb away from CGIs in both directions as previously described [85, 
91].  

 
- Chromatin states were obtained from the K562 cell line in the Roadmap 

Epigenomics Project (based on imputed data, 25 states, 12 marks) [92]. A 
visualisation for the association between chromatin marks and chromatin states 
can be found in [93]. When needed for visualisation purposes, the 25 states were 
manually collapsed to a lower number of them. 

 
We compared the different genomic features for each one of our subsets of CpG sites 
(hypomethylated aDMPs, hypomethylated Sotos DMPs, …) against a control set. This control 
set was composed of all the probes from the background set from which we removed the 
subset that we were testing. In the case of the comparisons against the 353 Horvath clock 
CpG sites, a background set of the 21368 (21K) CpG probes used to train the original Horvath 
model [8] was used. In the case of the genome-wide comparisons for ageing and Sotos 
syndrome, a background set containing all 428266 probes that passed our pre-processing 
pipeline (450K) was used.  
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The distributions of the scores from the continuous features were compared using a two-
sided Wilcoxon’s test. In the case of the categorical features, we tested for enrichment using 
Fisher’s exact test. 
 
Differences in the clock CpGs beta-values for Sotos syndrome 
 
To compare the beta-values of the Horvath clock CpG sites between our healthy samples and 
Sotos samples we fitted the following linear models in the healthy samples (control CpG 
models, Additional file 1: Figure S3C): 
 

(X) bi~Age+Age2+Sex+Gran+CD4T+CD8T+B+Mono+NK+PC1+… +PC17 
 
where bi represents the methylation beta-values for the ith probe (CpG site) in the 353 CpG 
clock sites. The Age2 term allows accounting for non-linear relationships between 
chronological age and the beta-values. 
 
Finally, we calculated the difference between the beta-values in Sotos samples and the 
predictions from the control CpG models and displayed these differences in an annotated 
heatmap (Additional file 1: Figure S3D).  
 
Code availability 
 
All the code used to perform the analyses here presented can be found in our GitHub 
repository [74]. 
 
 
LIST OF ABBREVIATIONS 
 
aDMPs: differentially methylated positions during ageing 
ASD: autism spectrum disorder 
ATR-X: alpha thalassemia/mental retardation X-linked syndrome 
CCC: cell composition correction 
DMPs: differentially methylated positions 
EAA: epigenetic age acceleration 
FXS: fragile X syndrome 
IEAA: intrinsic epigenetic age acceleration 
iPSCs: induced pluripotent stem cells 
MAE: median absolute error 
PBMC: peripheral blood mononuclear cells 
PCA: principal component analysis 
PCs: principal components 
rRNA: ribosomal RNA 
UTR: untranslated region 
450K array: Illumina Infinium HumanMethylation450 BeadChip 
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