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Abstract: 12 

    Background:  13 

Investigating phenotypic heterogeneity can help to better understand and manage microbial 14 

communities. However, characterizing phenotypic heterogeneity remains a challenge, as there 15 

is no standardized analysis framework. Several optical tools are available, such as flow 16 

cytometry and Raman spectroscopy, which describe properties of the individual cell.  17 

    Results:  18 

In this work, we compare Raman spectroscopy and flow cytometry to study phenotypic 19 

heterogeneity in bacterial populations. The growth stages of three replicate E. coli populations 20 

were characterized using both technologies. . Our findings show that flow cytometry detects 21 

and quantifies shifts in phenotypic heterogeneity at the population level due to its high-22 

throughput nature. Raman spectroscopy, on the other hand, offers a much higher resolution 23 

at the single-cell level (i.e. more biochemical information is recorded). Therefore, it is capable 24 

of identifying distinct phenotypic populations in an automated way when coupled with analyses 25 

tailored towards single-cell data. In addition, it provides information about biomolecules that 26 

are present, which can be linked to cell functionality.  27 

    Conclusions:  28 

We propose a workflow to distinguish between bacterial phenotypic populations using Raman 29 

spectroscopy and validated this approach with an external dataset. We recommend to apply 30 

flow cytometry to quantify phenotypic heterogeneity at the population level, and Raman 31 

spectroscopy to perform a more in-depth analysis of heterogeneity at the single-cell level. 32 
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Background 36 

Single-cell phenotypic differences arise even in genetically identical cultures (Govers et al. 37 

2017). A definition of a phenotypic population is an observed cellular state within a given 38 

genetic and environmental background. It arises due to epigenetic variations, stochastic gene 39 

expression, cellular age or oscillations such as the cell cycle. This is one of the strategies that 40 

bacteria use to adapt to a changing environment, as well as to divide the labour within the 41 

community (Avery 2006; Ackermann 2015).  42 

Phenotypic heterogeneity in laboratory cultures is well-documented. For example, it has been 43 

studied in bacterial subpopulations that could tolerate antibiotics (known as ‘persisters’) (Dhar 44 

and McKinney 2007), in the production of cytotoxin K in Bacillus cereus (Ceuppens, Boon, and 45 

Uyttendaele 2013) or in the differential expression of flagellin in Salmonella typhimurium 46 

(Stewart et al. 2011). The challenge remains to find tools to measure and quantify this 47 

heterogeneity (i.e. phenotypic populations), in order to be able to link heterogeneity with 48 

bacterial functionality. This would allow to manage - and potentially steer – microbial 49 

communities in order to optimize bioprocesses. 50 

Several tools are available for single-cell phenotyping (Davis and Isberg 2016). Imaging 51 

techniques are popular, but they require tagged bacterial cells or a probe to visualize the 52 

bacteria or the molecule of interest (Taniguchi et al. 2010; Anetzberger, Schell, and Jung 53 

2012), making them less suitable to study environmental communities. There are other 54 

techniques that do not require a probe, such as intrinsic fluorescence (Georgakoudi et al. 2007) 55 

or the detection of autofluorescent NAD(P)H (Bhattacharjee et al. 2017). However, the amount 56 

of information that can be gathered is limited compared to other techniques, such as 57 

transcriptomics, flow cytometry or spectroscopy techniques. Single-cell transcriptomics are 58 

also an option for bacterial phenotyping, but a few hundred cells are needed and only about 59 

15 - 25% of the expressed mRNAs can be detected (Tang, Lao, and Surani 2011). This 60 
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analysis requires for bacteria to be lysed, and it was found in E. coli that a single cells' protein 61 

and mRNA copy numbers are uncorrelated for any given gene (Taniguchi et al. 2010).  62 

A more high-throughput option for single-cell analysis is flow cytometry, which can measure  63 

thousands of bacterial cells per second. Individual cells pass through a laser, after which 64 

detectors collect information on the scattered laser light (forward scatter, FSC, and side scatter, 65 

SSC) and on fluorescent emissions of specific probes (Davey and Kell, 1996). To detect 66 

bacteria, general nucleic acid stains (such as SYBR Green I or DAPI) can be used (Koch et al. 67 

2018). This technique allows to quantify cells, and also to identify different phenotypes in 68 

bacterial populations. For example, this technique allowed Sanchez-Romero and Casadesus 69 

(2014) to find a differential expression of a GFP-tagged gene related to antibiotic resistance in 70 

a Salmonella enterica population, and Cronin and Wilkinson (2008) to detect a heterogeneous 71 

response of Bacillus cereus endospores to different heat treatments. Furthermore, the 72 

information derived from the FCM measurements can be transformed into a fingerprint, and 73 

used to calculate inter- and intra-species variations in bacterial populations (De Roy et al. 2012; 74 

Props et al. 2016; Koch et al. 2014). Flow cytometry can also be used for bioprocess 75 

monitoring, as it allows to quantify the number of cells present in a reactor, their viability and 76 

activity, as well as their membrane potential over time (Díaz et al. 2010). When this technique 77 

is coupled to cell sorting (also known as FACS, or FCM Activated Cell Sorting), a follow-up 78 

analysis on the subpopulations can be made. For example, by doing a proteomic analysis to 79 

link these phenotypes to a certain functionality (Jahn et al., 2013), to further culture the cells, 80 

or by doing single-cell microscopy analysis (Nebe-von-Caron et al., 2000). 81 

Raman spectroscopy is another single-cell technology that has been proposed to study 82 

phenotypic heterogeneity. It does not require labelling and is non-destructive. The laser excites 83 

individual cells, which leads to inelastic scattering, which in turn is collected in the form of 84 

Raman spectra. It is less throughput compared to flow cytometry: even when enhancing the 85 

signal with metals (known as Surfaced-Enhanced Raman Spectroscopy or SERS), each cell 86 

takes 1-3 seconds to measure (Liu et al. 2016). The resulting spectrum contains biochemical 87 
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information of the molecules that are present in the cell – e.g. lipids, carbohydrates, nucleic 88 

acids and proteins- and can be used to classify bacteria according to phylogeny (Goodacre et 89 

al., 1998). This information can be quantitative if an internal standard for the molecule(s) of 90 

interest is made -for example, (Cowcher, Xu, and Goodacre 2013) quantified the dipicolinate 91 

(DPA) biomarker for Bacillus spores; or (Samek et al. 2016) quantified polyhydroxyalkanoates 92 

produced by Cupriavidus necator H16)-. Raman spectroscopy can also be linked to cell sorting 93 

-known as RACS or Raman Activated Cell sorting- to further study phenotypes (Zhang 2015a).  94 

Raman spectroscopy can be used for the monitoring of bioprocesses, as it can measure over 95 

time compounds present in the supernatant such as glucose, protein production or others (Lee 96 

et al. 2004), as well as some Raman reactive compounds present in the bacteria, such as 97 

chlorophylls, carotenoids and other pigments (Jehlička, Edwards, and Oren 2014). Although 98 

this technique is used for bacterial identification (Huang et al., 2010; Almarashi et al. 2012; 99 

Strola et al. 2014; Pahlow et al. 2015), the study of phenotypic heterogeneity by Raman 100 

spectroscopy bacterial fingerprint remains relatively little explored.  101 

Both flow cytometry and Raman spectroscopy give rise to data that need specific pre-102 

processing and analysis (O’Neill et al. 2013; Saeys, Gassen, and Lambrecht 2016; García-103 

Timermans et al. 2018; Ryabchykov, Guo, and Bocklitz 2018). While microbial flow cytometry 104 

is rather limited in its phenotypic resolution (i.e., only a few properties are measured per cell), 105 

Raman spectroscopy characterizes many more biochemical properties of bacterial cells. It 106 

therefore requires analysis of high-dimensional data, which can be challenging, but it allows to 107 

characterize phenotypic heterogeneity at a much higher resolution.  108 

In this work, we analysed bacterial cells from nine phenotypic populations –with a different 109 

growth stage and/or from a different replicate- using flow cytometry and Raman spectroscopy. 110 

We demonstrate how these populations can be automatically retrieved using data-specific 111 

algorithms. We also demonstrate how metabolic inference can be performed based on Raman 112 

spectroscopy in a data-driven way. Finally, the advantages and disadvantages of these tools 113 
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for microbial phenotyping are discussed. We will motivate that, in its current form, microbial 114 

flow cytometry can be used to quantify phenotypic heterogeneity and describe community-115 

level dynamics, while Raman spectroscopy can be applied to describe single-cell 116 

heterogeneity and possibly identify separated phenotypic populations. We include a 117 

recommendation for microbiologists on how to employ Raman spectroscopy and flow 118 

cytometry in future phenotyping studies.  119 

 120 
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 121 

 Results 122 

Throughout this paper, we define a 'phenotypic population’ as a group of bacteria grown under 123 

the same environmental conditions (i.e. cells from the same biological replicate at a certain 124 

growth stage). This population will share morphological and/or metabolic traits that can be 125 

detected by flow cytometry and Raman spectroscopy. Samples of E. coli DSM 2092 were 126 

measured in the lag, log and stationary phase. For every condition, triplicates of the cell culture 127 

were made. Thus, we expected to retrieve 9 phenotypic populations. As it will be argued in the 128 

discussion, this is not to say that there might not be other subpopulations in each of these 129 

‘phenotypic populations’.   130 

Flow cytometry 131 

Three biological replicates of Escherichia coli DSM 2092 were measured in the lag, log and 132 

stationary phase through flow cytometry (Fig. S1). Data was analysed at two levels: (a) the 133 

single-cell level (i.e., cells were analysed as individual instances) (b) the cell population level 134 

(i.e., cytometric fingerprints were constructed to describe population dynamics) (Fig. 1). t-135 

distributed stochastic neighbourhood embedding (t-SNE) and principal component analysis 136 

(PCA) were used to visualize the data at the single-cell level (Fig. 1a-d, Fig. S3). Principal 137 

coordinate analysis (PCoA) was applied to visualize the differences of the phenotypic 138 

populations based on Bray-Curtis dissimilarities (Fig. 1f). As a validation, t-SNE was performed 139 

on the population level as well (Fig. 1e) .  140 

 141 
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 142 

Fig. 1: E. coli measured with flow cytometry and analyzed at the single cell level (a-d) and population level (e and 143 
f). t-SNE was performed on the aggregation of all samples (d), and visualized separatedly for each growth phase, 144 
to allow for easier interpretation (a-c). Distributions on the side represent the t-SNE distributions separately 145 
visualised for each growth phase/replicate to allow for easier interpretation. (e-f) Visualization of cytometric 146 
fingerprints at the sample level, using t-SNE (e) or PCoA (f).  147 

No separated subpopulations could be distinghuished based on cytometric single-cell data 148 

(Fig. 1a-d). Yet, shifts in the distribution of cells were clear, both between different growth 149 

phases and replicates, as can be seen from the marginal distributions. Therefore, by creating 150 

cytometric fingerprints, which are vectorizations of the cell counts per bin, these differences 151 
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could be quantified and visualized at the community level (Fig. 1e-f). Differences between 152 

fingerprints were calculated using the Bray-Curtis dissimilarity. Average dissimilarities per 153 

growth phase and replicate were summarized in Table 1. The average Bray-Curtis dissimilarity 154 

between samples within the same growth phase is smaller compared to samples that 155 

originated from the same replicate (Table 1). The lag phase for replicate 1 was quite different 156 

from the other samples (Fig. 1f).  157 

Table 1: Average Bray-Curtis distance between the samples based on their growth phase or their replicate. A.U.= 158 

arbitrary units. 159 

 
Average distance between 
samples (A.U., n=3) 

Standard deviation (n=3) 

Lag phase 0.33 0.08 

Log phase 0.33 0.06 

Stationary phase 0.21 0.06 

Replicate 1 0.41 0.18 

Replicate 2 0.35 0.04 

Replicate 3 0.35 0.07 

 160 

Raman spectroscopy – clustering results 161 

The samples used for flow cytometric analysis were fixed and analysed using label-free Raman 162 

spectroscopy following the protocol from (García-Timermans et al. 2018). To identify 163 

phenotypic populations, two clustering methods were used. First, using an agglomerative 164 

hierarchical clustering approach and secondly, using the PhenoGraph algorithm - a tool 165 

developed for the analysis of high-dimensional cytometry data. To determine the hierarchical 166 

clustering, the spectral contrast angle between samples was calculated (a measure of the 167 

spectra similarity). Then, phenotypic populations can be delineated by setting a threshold upon 168 

inspection of the resulting dendrogram after hierarchical clustering (Fig. 2). On the other hand, 169 

PhenoGraph makes use of k-nearest-neighbours clustering, in order to determine groups of 170 

similar cells, and as such, phenotypic populations. In other words, k expresses the amount of 171 

local information that is included when cells are grouped according to similar spectra. k will 172 
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therefore, in a similar way as the threshold used in hierarchical clustering, impact the number 173 

of phenotypic populations that are defined (Fig. 3). 174 

 175 

Fig. 2: Hierarchical clustering of Raman spectra derived from the E. coli culture. Cells were measured in the log, 176 

lag and stationary phase using Raman spectroscopy. (a) Left axis, grey: Visualization of the number of clusters we 177 

can obtain by cutting the cluster at different heights (k). Right axis, black: ARI, which quantifies how many cells are 178 

identified as the expected phenotypic population when clusters are made at different levels. (b) Dendrogram 179 

representing the distance (calculated as the spectral contrast angle) amongst the Raman spectra. The black boxes 180 

dived the phenotypic populations when the dendrogram is cut at k=0.9. This is the maximum adjusted Rand index 181 

(ARI), as calculated in Fig. 2a. 182 

 183 

Fig. 3: PhenoGraph clustering of Raman spectra derived from the E. coli culture. a) Influence of hyperparameter k 184 

on the automated identification of phenotypic populations. Left axis, grey: Visualization of the number of clusters in 185 

function of k. Right axis, black: Adjusted Rand index (ARI), which quantifies how many cells are identified as the 186 

expected phenotypic population when clusters are made at different levels (k). b) t-SNE visualization, colored 187 
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according to PhenoGraph clustering with optimal ARI (k=22). c) t-SNE results colored according to growth phases 188 

and replicates.  189 

The adjusted Rand index (ARI) was used to quantify similarity between the clusters that were 190 

determined by hierarchical clustering and Phenograph and the known phenotypic populations 191 

(i.e. growth phase and replicate). An ARI of 1 indicates perfect grouping of the data. The 192 

PhenoGraph algorithm resulted in a higher ARI as opposed to hierarchical clustering based on 193 

the spectral contrast angle (Fig. 2a vs. Fig. 3a). Inspecting the PhenoGraph results, there is a 194 

stable region for k that retrieves clustering according to both growth phase and replicate (i.e., 195 

nine clusters were found for k = 20, …, 60). A value of k = 24 or 26 gave rise to an optimal 196 

clustering (Fig. 3a). Smaller k allowed to inspect phenotypic populations at smaller scales and 197 

investigate the heterogeneity accordingly. See for example the clustering results for k = 15, 198 

which resulted in eleven different groups of cells (Fig. S5). Additional clusters that emerged 199 

were the result of splitting two clusters into two smaller ones. Likewise, larger k will result in 200 

larger clusters. For example, for k = 100, data is grouped in five clusters (Fig. S5). Structure in 201 

the data is retained, as clusters are merged either according to growth phase (clusters 0, 2 202 

and 3) or replicate (cluster 1).  203 

Often a single-cell was classified as the expected replicate, but in another growth phase (Fig. 204 

3c). The samples in the lag phase seem to have a single-cell that is already in the log phase, 205 

and in the cultures in the log phase, we find a cell in the stationary phase (in replicate 3) and 206 

one cell in the lag and in the stationary phase (in replicates 1 and 2).  It is also worth noting 207 

that some cells from replicate three seem to be between the log and the stationary phase. 208 

Raman spectroscopy – tentative region assignment 209 

The Boruta algorithm, a variable selection algorithm based on Random Forests, was used to 210 

associate the most distinctive regions in the Raman spectrum with cluster assignments 211 

according to the hierarchical clustering and PhenoGraph algorithm. The cluster labels that 212 

resulted in an optimal ARI were used. Regions were linked with different molecules based on 213 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted May 24, 2019. ; https://doi.org/10.1101/545681doi: bioRxiv preprint 

https://doi.org/10.1101/545681


a recent summary from Wang et al., 2016. In this way, metabolic associations could be inferred 214 

that contained predictive power as a function of different phenotypic populations (Table 2). 215 

Table 2: Tentative assignment of Raman spectra using the Boruta algorithm based on phenotypic identification 216 

using hierarchical clustering and PhenoGraph. The 10 highest ranked areas are shown. When there is no known 217 

compound in the spectral region, either the closest compound or a blank is shown. A.U.=arbitrary units. 218 

 219 

Wavelength 
(cm -1) 

Features importance 

Tentative assignment 
PhenoGraph (k=22, 

9 clusters) (A.U.) 

hclust (h=1, 8 

clusters) (A.U.) 

1042 9.8 9.8 Carbohydrates, Proline (1043) 

971 9.5 9.7 ν(C-C) wagging (971) // Phosphate 

monoester groups of phosphorylated 

proteins and cellular nucleic acids (970) 

945 9 8.9 νs (CH3) of proteins (α-helix) (951) 

1057 8.9 8.8 Lipids (1057) // Carbohydrates (1030-

1130) 

1294 8.5 8.5 CH2 deformation (1295)  

1050 8.5 8.6 Nucleic acids, CO stretching; protein, C-N 

stretching, PHB (1054) // Carbohydrates 

(1030-1130) 

1053 8.4 8.4 Nucleic acid (1054) // Carbohydrates 

(1030-1130) 

1127 8.3 8.4 ν(C-N), protein (1127) // Carbohydrates 

(1030-1130) 

1046 8.1 8.2 ν3PO4 3− (symmetric stretching vibration 

of ν3PO43− of HA) (1044) 

641 8 7.9 C-C twisting of tyrosine (642) 

 220 

To understand how the molecules in Table 1 vary from one group to another, the distribution 221 

of intensities of these Raman regions was plotted for every growth phase (Fig. 4). A Wilcoxon 222 

rank sum test with a Benjamini–Hochberg correction was performed for the ten highest ranked 223 

variabels according to the Boruta algorithm (Fig. 4). 224 
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 225 

Fig. 4: Distribution of intensities of the most relevant regions associated with phenotypic populations according to 226 

the Boruta algorithm. Boxplots represent the growth phases (replicates were pooled together). Groups were made 227 

according to the growth phase: lag (green), logarithmic (blue) or stationary (red). For every spectral region, a 228 

Wilcoxon rank sum test was made, with a Benjamini-Hochberg correction (upon rejection of the null hypothesis). 229 

Groups with significantly different peaks are signalled with (*) (p<0.05) or (**) (p<0.01). 230 

To better understand what regions of the Raman spectra (and therefore, what biomolecules) 231 

were making these phenotypic populations different, we defined phenotypic populations at 232 

different levels (changing the k parameter in the PhenoGraph algorithm) and then used the 233 

Boruta algorithm to identify the most relevant regions. 234 

 When more phenotypic populations were distinguished (i.e. setting the value of k lower) more 235 

regions in the Raman spectrum were associated with differences in phenotypic populations. 236 

As shown in Figure 5, to find the phenotypic populations with different growth phases, 59% of 237 

the regions are included (green); to find the biological replicates, it is 67%; and to find both 238 

categories, 77%. Although this result was expected, a large number of Raman regions (48%) 239 

were relevant for all levels of classification. 240 
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 241 

 242 

 243 

 244 

 245 

 246 

 247 

Fig. 5: Spectral regions relevant for phenotypic classification at different levels, according to the Boruta algorithm. 248 

The top heatmap shows the results for the growth phase and replicates. At the bottom, the results for PhenoGraph 249 

with the clustering hyperparameter k as 80, 22 or 8 are shown. In green and blue, spectral regions confirmed by 250 

the Boruta algorithm as relevant, in grey the rejected. The average of all spectra is also plotted; the grey areas in 251 

the average spectrum correspond to the standard deviation. 252 

Validation of single-cell analysis of Raman spectra 253 

To validate our workflow to analyse microbial single-cell Raman data, the dataset from Teng 254 

et al., 2016 was used. In this work, E. coli was exposed to different chemicals (ethanol, 255 

antibiotics, n-butanol or heavy metals) and the spectra of the bacteria were measured at 256 

several time points after the treatment (5, 10, 20, 30 and 60 min, 3h and 5h). Three replicates 257 

of the cell culture were made for each treatment. Here we show the results for cells treated 258 

with ethanol (Fig. 6), representative for what is observed in the other groups (Fig. S6). t-SNE 259 

was able to visualize groups of bacteria that received different treatments at different points in 260 

time. Furthermore, two subpopulations are seen in every group. They correspond to the 261 

replicates, where two replicate samples are separated, and the third replicate is either assigned 262 

to one of the two or divided amongst the two subpopulations. The optimal ARI is lower than 263 

the one reported for our own work, but still considerably higher than zero. This means that 264 
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although the clusters assigned according to PhenoGraph have a better match with the 265 

treatments induced in our own dataset compared to this one, the clustering is still meaningful.  266 

 267 

Fig. 6: External dataset clustered using t-SNE. E.coli treated with ethanol and measured at time points 5, 10, 20, 268 

30 and 60 min, 3h and 5h. (a) Influence of hyperparameter k on the automated identification of clusters. Left axis, 269 

grey: Visualization of the number of clusters in function of k. Right axis, black: Adjusted Rand index (ARI), which 270 

quantifies how many cells are identified as the expected phenotype when clusters are made at different levels (k). 271 

(b) Using the maximum ARI, samples were automatically clustered using PhenoGraph. (c) t-SNE was performed 272 

on the data set and samples were labelled according to their treatment. The shapes represent the sample replicate.  273 

  274 

 275 
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Discussion 276 

Flow cytometry quantifies population shifts  277 

When using single-cell data from flow cytometry, the different phenotypic populations 278 

overlapped and did not form separate clusters, as shown by both the t-distributed stochastic 279 

neighbourhood embedding (t-SNE) and the principal component analysis (PCA) (Fig. 1a, SI 280 

Fig. 2). However, in the t-SNE plot, a consistent shift in the cells distribution could be observed 281 

in response to the different growth phases (Fig. 1a-d). In other words, gradual shifts in the 282 

structure of the phenotypic population, i.e. the phenotypic heterogeneity, could still be 283 

detected, although individual cells could not be separated according to growth phase or 284 

replicate. As flow cytometry is capable of rapidly measuring a large amount of cells, the 285 

differences in phenotypic heterogeneity at the population level could be described by 286 

constructing cytometric fingerprints (Koch et al. 2014; Props et al. 2016). The Bray-Curtis 287 

dissimilarity was used to quantify these differences at a sample level. The average Bray-Curtis 288 

dissimilarity showed that the effect of the replicates exceeded the effect of the growth phase 289 

(except for the lag phase). This implies that the differences of E. coli cells in different growth 290 

stages are comparable or smaller to those the differences amongst replicates. The results from 291 

(Teng et al. 2016) analysed in Figure 6 leads us to hypothesize that when the community is 292 

steered with a stressor, the effect in the fingerprint is bigger, making the replicate effect smaller.  293 

Flow cytometry is a high-throughput technique, able to rapidly measure hundreds to thousands 294 

of individual cells. By applying fingerprinting approaches to cytometry data, differences 295 

between microbial populations at the population level can be assessed and quantified. In this 296 

work, gradual shifts could be detected in the flow cytometric data at the level of individual cells, 297 

while at the sample-level (i.e. the population distribution level), differences between 298 

communities could be quantified (e.g., using the Bray-Curtis dissimilarity) and separated 299 

accordingly. In other words, while current resolution at the single-cell level appears to be limited 300 

for microbial flow cytometry, due to its high-throughput nature, its power lies in the possibility 301 

to characterize and phenotypic heterogeneity at the population level and quantify shifts in 302 
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phenotypic heterogeneity. In this work, gradual shifts could be detected in the flow cytometric 303 

data at the level of individual cells, while at the sample-level (i.e. the population distribution 304 

level), differences between communities could be quantified (e.g., using the Bray-Curtis 305 

dissimilarity) and separated accordingly.  306 

It is worth noting that in this work the effect of using additional or more specific labels for 307 

cytometric analysis has not been explored, which might improve the resolution. It is possible 308 

to add stains to target specific substrates (see the review of Léonard et al. (2016) on the use 309 

of individual and double stains, and an example of a three-color analysis by (Barbesti et al. 310 

2000)), but the number of markers describing microbial cells using flow cytometry will never 311 

be of the same order as that of Raman spectroscopy. In eukaryotic flow cytometry, where the 312 

tagging of specific antibodies is much more feasible, 19-parameter flow cytometry is routinely 313 

used (17 fluorescence and two scatters) (Perfetto, Chattopadhyay, and Roederer 2004) and 314 

30-parameter flow cytometry has just recently been published (Mair and Prlic 2018). However, 315 

the dimensionality of cytometry data in these settings is still much lower than the number of 316 

variables derived from Raman spectroscopy. Even in the best-case scenario, the 317 

dimensionality of flow cytometry data cannot get close to the number of parameters that 318 

Raman spectroscopy exhibits. On the other hand, depending on the research question, a high-319 

dimensional tool might not be needed. For example, biomolecules that are associated with a 320 

phenotypic population might be known, and there could be a dye available to highlight these 321 

molecules. In this case, flow cytometry could be more relevant for phenotyping than Raman 322 

spectroscopy, provided the proper parameters are chosen to differentiate among treatments. 323 

In this work, we compared phenotypic populations that are not differentiated by (a) specific, 324 

known molecule(s) but used a general marker to characterize the DNA content. This explains 325 

why flow cytometry did not have enough resolution to differentiate the phenotypic populations.  326 

Raman spectroscopy detects phenotypic populations at the single-cell level 327 

Raman spectroscopy is lower throughput for single-cell analysis when compared to flow 328 

cytometry, but it is able to retrieve much more information per cell. Its resolution is enough to 329 
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conduct research at the single-cell level. The study of bacterial phenotypes using Raman 330 

spectroscopy has been done by other groups: to identify different growth stages in L.casei 331 

(Ren et al., 2017), stress-induced phenotypic populations (Teng et al. 2016), bacterial 332 

phenotypes with different antibiotic responses  (REFAtha 2014) or with different antibiotic 333 

susceptibility (Novelli-Rousseau et al. 2018). It has also been used to discriminate between 334 

different Acinetobacter (Maquelin et al. 2006) or different E. coli strains (Jarvis and Goodacre 335 

2004) amongst other examples. However, in these studies the expected phenotypes where 336 

known in advance. How to define what a phenotype is in a less-known system or a natural 337 

environment? In this work, we propose and validate the use of PhenoGraph –a tool derived 338 

from t-SNE and developed for the analysis of flow cytometry data- to do an automated 339 

identification of bacterial phenotypes. 340 

The PhenoGraph algorithm was originally developed for mass cytometry data (Levine et al. 341 

2015), a variation of flow cytometry which makes use of heavy metal ion tags instead of 342 

fluorochromes, resulting in more observed variables but at a lower acquistion speed (Spitzer 343 

and Nolan 2016). PhenoGraph was demonstrated to be highly effective for clustering purposes 344 

of single-cell Raman data, and returned a higher clustering performance compared to a more 345 

traditional hierarchical clustering approach. However, hierarchical clustering allows to inspect 346 

which cells are most similar to each other, a characteristic which is lost when using 347 

PhenoGraph. Therefore we want to reiterate that, as proposed by (Andrews and Hemberg 348 

2018) for the analysis of single-cell RNA sequencing data, "[l]ikewise, no computational 349 

methods for dimensionality reduction, feature selection and unsupervised clustering will be 350 

optimal in all situations”. The algorithm of choice depends on the needs of the user. If a 351 

researcher wants to visualize subpopulations, we recommend the use of t-SNE. If identification 352 

of phenotypic populations is needed in an automated way, PhenoGraph is more appropriate. 353 

To assess which individual cells are phenotypically closest, hierarchical clustering can be 354 

used. Further investigation of the analysis of Raman data is needed, but investigating 355 
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additional algorithms specifically developed for high-dimensional single-cell data might further 356 

support the impact of the use of Raman spectroscopy.  357 

To improve the analysis speed of Raman spectroscopy, metallic substrates can enhance the 358 

signal (SERS), but also microfluidic chips (McIlvenna et al. 2016) or optical tweezers can be 359 

used (Xie, Chen, and Li 2005). An advantage of Raman spectroscopy is that it can be applied 360 

without the use of labels. This allows to analyse the biochemistry of samples even without 361 

knowing their nature. Raman spectroscopy also presents disadvantages. For instance, the 362 

Raman signals of certain compounds can be quite weak, making them difficult to detect or 363 

undetectable. The Raman signal of certain compounds can be composed of several peaks, or 364 

be unknown. Also, the background of samples can interfere with the Raman signal of bacteria. 365 

The equipment can be quite costly, depending on the type of Raman spectroscope.  366 

Raman spectroscopy offers more parameters per cell compared to flow cytometry (hundreds 367 

versus typically three or four for microbial experiments). Thus, individual bacteria are described 368 

in a much larger multivariate space and can therefore be clustered into separate phenotypic 369 

populations. This explains why bacterial subpopulations can be visualized at the single-cell 370 

level using t-SNE (Fig. 3).The t-SNE results were confirmed with a PCA (Fig. S3).  371 

The main downside of the use of label-free Raman spectroscopy is that the time of 372 

measurement is long: in this experiment, for single-cell label-free measurements, we used an 373 

acquisition time of 40 seconds per cell. Even when the acquisition time is lower –for instance, 374 

(Liu et al. 2016) reported a 1-3 seconds acquisition time to detect antibiotic susceptibility using 375 

surface-enhanced Raman spectroscopic biomarkers- the speed of Raman spectroscopy 376 

cannot match the high-throughput nature of flow cytometry for single-cell analysis.  377 

Raman spectroscopy allows to detect differences in biomolecules from one 378 

sample to another 379 

Raman spectroscopy allows to detect biomolecules present in different phenotypic 380 

populations. Therefore, after automated identification of phenotypic populations, one can use 381 
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the phenotypic groups to perform a variable selection strategy to select important regions in a 382 

data-driven way. We illustrated this approach using the Boruta algorithm, which was recently 383 

evaluated as one of the state-of-the-art variable selection methods using Random Forests for 384 

omics datasets (Degenhardt, Seifert, and Szymczak 2017). We found that a majority of 385 

selected spectral regions were the same according to treatment and automated phenotypic 386 

population identification using PhenoGraph (Fig. 3). This information can be used to infer how 387 

phenotypic populations are different at the level of their metabolism. To do so, we have based 388 

ourselves on a recent literature survey summarizing associations between Raman regions and 389 

certain biological compounds (Wang et al. 2016). The ten most important regions in function 390 

of phenotypic identification are listed in Table 2, along with the distribution of their intensities 391 

(Fig. 4). These regions correspond to carbohydrates and nucleic acids, as well as some 392 

unknown regions. An increase in the carbohydrate band (peaks 1042, 1046, 1050, 1057 cm-393 

1) was observed for the stationary phase. The band at 1053 cm-1 could also be a nucleic acid 394 

peak, expected at 1054 cm-1. Nevertheless, these assignments for the Raman bands are 395 

tentative and based solely on a literature research, and thus proper validation of these results 396 

would have to be made in future experiments. 397 

How to define a phenotypic population? 398 

In this work, we have steered microbial communities towards a certain growth stage, expecting 399 

that they would express a certain phenotype that could be retrieved using flow cytometry and 400 

Raman spectroscopy. However, in each one of these isogenic populations there might be 401 

subpopulations, as can be seen in Figure 2b. We acknowledge the difficulty in defining what a 402 

phenotypic population is, and setting a threshold to determine when one phenotypic population 403 

ends and another begins.  404 

A similar problem exists in the area of bacterial taxonomy, where the similarity of 16S 405 

sequences is compared. In this case, an arbitrary threshold is set (e.g., 95% similarity at the 406 

genus level, 98.56% at the species level) (Stackebrandt and Goebel 1994; Kim et al. 2014). 407 

As explained by Beye et al. (2018), this cut-off was meant to standardize the use of 16S rRNA 408 
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gene amplicon sequencing, but it had to evolve; i.e., the first threshold for the species level 409 

has changed from 97%, to 98.7%, to the current 98.65%. Even now, it is argued that these 410 

thresholds are not applicable to multiple genera (Mysara et al. 2017). In the case of phenotypic 411 

populations, we propose a definition based on their similarity (after setting a similarity 412 

threshold) and their ecology (their relationship with one another and with their environment). 413 

Quantifying their similarity can be done in a data-driven way, by means of for example 414 

clustering, at the resolution that is required for the specific research. This operational definition 415 

allows to define phenotypic populations depending on the research question, as long as 416 

researchers motivate and validate their choice. However, using this operational definition 417 

means that results cannot be compared across experiments or labs. This is why we highlight 418 

the need to find a more standard way to define 'basic phenotypic units', that would allow to 419 

measure phenotypic traits and determine if bacteria belong to the same phenotypic population.  420 

We propose to use algorithms -such as hierarchical clustering, t-SNE or PhenoGraph, applied 421 

throughout this paper- to define, visualize and characterize phenotypic populations. t-SNE is a 422 

well-known technique to visualize high-dimensional single-cell data, being commonly applied 423 

to visualize for example cytometry and single-cell RNA sequencing data (Amir et al. 2013; 424 

Andrews and Hemberg 2018). Our results confirm that it can be used as an 'off-the-shelf' 425 

visualization method to detect phenotypic populations in Raman data when applied to 426 

microorganisms. 427 

Bacteria were grown in 9 different conditions (three replicate cultures of three growth stage 428 

conditions) to steer the same E. coli population to a different morphological and/or metabolic 429 

state –to steer them into 9 phenotypic populations. While hierarchichal clustering was able to 430 

find eight of these phenotypic populations, PhenoGraph was able to retrieve all nine of them, 431 

resulting in a higher ARI as well.  432 

t-SNE and PhenoGraph were also applied to an external dataset from Teng et al., 2016, 433 

consisting of E. coli that had been treated with different agents, and measured at several time 434 
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points. We showed that PhenoGraph was capable of differentiating the time points per 435 

treatment. Interestingly, two subpopulations were identified per treatment, although samples 436 

were measured in triplicate. These corresponded to two replicates, where the third was either 437 

assigned to one subpopulation or divided between both (Fig. 6, Fig. S6). Our group has 438 

previously shown how small technical variations can create subpopulations that have no 439 

biological meaning (García-Timermans et al. 2018), which might explain these findings.  440 

Each algorithm has its own advantages and disadvantages. t-SNE is a highly effective 441 

technique to visualize high-dimensional single-cell data, which we confirmed for the Raman 442 

analysis of microorganisms. However, automated clustering of the data is not possible using 443 

t-SNE without additional algorithms, such as PhenoGraph.  444 

Conclusions 445 

The results of this research suggest that: 446 

- Flow cytometry is a more high-throughput technology than label-free Raman 447 

spectroscopy, but Raman describes bacterial cells in many more variables, without the 448 

need for staining. 449 

- Flow cytometry can be applied to quantify differences in phenotypic heterogeneity at 450 

the population level, whereas Raman spectroscopy has sufficient resolving power to 451 

identify separated phenotypic populations at the single-cell level. 452 

- Raman spectroscopy provides the possibility to infer which metabolic properties define 453 

different phenotypic populations, and potentially exploit this information for bioprocess 454 

monitoring.  455 

- We propose a workflow to automatically identify bacterial phenotypes, based on 456 

Raman spectral data. We also recommend t-SNE to visualize Raman data.  457 
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- From a broader perspective, one can motivate that phenotypic populations depend on 458 

a similarity threshold, which can be set in clustering algorithms, and on their ecological 459 

niche. We therefore suggest that researchers try to include validation controls in their 460 

experimental setup, in order to motivate the threshold of choice in the algorithm. 461 

 462 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted May 24, 2019. ; https://doi.org/10.1101/545681doi: bioRxiv preprint 

https://doi.org/10.1101/545681


Materials & Methods 463 

Cell culture 464 

To determine the growth stages of the cell culture (lag, log and stationary phase), Escherichia 465 

coli DSM 2092 was grown in nutrient broth (NB, Oxoid, United Kingdom) at 28°C, 120 rpm 466 

shaking in three replicates. Cultures had an initial concentration of 106 cells/ml, measured with 467 

a BD Accuri C6 flow cytometer (BD Biosciences), following the protocol from Van Nevel 2013. 468 

The samples were incubated in the dark for 30 h at 28°C, during which optical density (OD, λ 469 

= 620 nm) measurements were automatically collected each hour using a microtiter plate 470 

reader (Tecan Infinite M200 Pro; Tecan UK, Reading, United Kingdom). The growth phases 471 

were assigned after fitting the results with the function SummarizeGrowth() from the 472 

‘Growthcurver v0.30’ R package (Sprouffske and Wagner 2016). Cells were harvested 1h, 473 

7h30 and 24h after inoculation, corresponding accordingly to the lag, log and stationary phases 474 

of E.coli (see Fig. S1). Nutrient broth was included as a negative control. 475 

Sample preparation 476 

Samples were measured immediately in the flow cytometer after sampling. For Raman 477 

spectroscopy, samples were harvested and fixed in formaldehyde 4% (Sigma-Aldrich) 478 

dissolved in PBS (protocol from Bio-Techno Ltd., Belgium) following the protocol from (García-479 

Timermans et al. 2018). First, 1mL of the cell suspension was centrifuged for 5 min at room 480 

temperature and 1,957 x g. For the samples in the lag phase, up to 10 mL were suspended 481 

until a pellet could be seen. The supernatant was discarded and cells were suspended in 482 

filtered and cold PBS (4°C). The samples were again centrifuged at 1,957 x g for 5 min at room 483 

temperature. The supernatant was discarded and the pellet was re-suspended in filtered 484 

formaldehyde 4%. The cells were allowed to fix for 1h at room temperature (21°C). Then, the 485 

samples were centrifuged at 1,957 x g for 5 min at room temperature and washed twice with 486 

cold PBS (4°C). Cells were stored at 4°C and analysed in the Raman spectroscope within the 487 

week. 488 
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Flow cytometry 489 

Fresh samples taken at the lag, log and stationary phase were diluted in filtered PBS and 490 

stained with SYBR Green I 1% (Thermo Fisher) during 13 min at 37°C. They were measured 491 

with the flow cytometer BD Accuri C6 (BD Biosciences). This resulted in a multivariate 492 

description of each cell by four fluorescence detectors (FL1: 533/30 nm, FL2: 585/40 nm, FL3: 493 

> 670 nm long pass, FL4: 675/25 nm), of which the FL1 detector was targeted by SYBR Green 494 

I, and two scatter detectors (forward scatter, FSC and side scatter, SSC). The channels FSC-495 

H, SSC-H, FL1-H and FL3-H were used for data analysis.  496 

Single-cell analysis 497 

t-distributed stochastic neighborhood embedding (t-SNE) 498 

t-SNE is a dimensionality reduction technique developed for the visualization of high-499 

dimensional data (Van Der Maaten and Hinton 2008). The TSNE() function from the scikit-500 

learn machine learning library was used (Pedregosa et al. 2011, v0.19.1). Principal component 501 

analysis was set as initialization method. TSNE was run with default settings unless reported 502 

otherwise. Data were first transformed by the function f(x) = asinh(x), and next normalized so 503 

that each channel has a mean of zero and standard deviation of one. 504 

Principal component analysis (PCA) 505 

 Flow cytometric single-cell data were analysed with the PCA() function from the scikit-learn 506 

machine learning library after normalization. Data were first transformed by the function f(x) = 507 

asinh(x), and next normalized so that each channel has a mean of zero and standard deviation 508 

of one. 509 

Community analysis 510 

The PhenoFlow R package (Props et al., 2016) was used for the analysis. Four channels (FL1-511 

H, FL3-H, FSC-H and SSC-H) were selected to derive a phenotypic fingerprint for each 512 

sample. Bacteria were gated to differentiate from background noise as shown in Fig. S2. As 513 

quality control, the stability of the FL1 signal over time was checked. A 128 x 128 binning grid 514 
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was constructed for each pairwise combination of these channels (resulting in 6 in total). Next, 515 

a bin a kernel density estimation was performed to determine the density per bin (with a 516 

Gaussian kernel density bandwidth of 0.01). Then, all bins are concatenated to a one-517 

dimensional vector, representing the cytometric fingerprint. Data were normalizedtransformed 518 

usingby the function f(x) = asinh(x) transformation. At least 10.000 cells were measured per 519 

sample. 520 

 521 

Principal component analysis (PCA) and principal component analysis (PCoA) 522 

The pulled information for every group was analysed with the function fviz_pca_ind() from the 523 

R package ‘factoextra’ (Kassambara and Mundt 2017). 524 

Principal coordinate analysis (PCoA, also known as multidimensional scaling) was calculated 525 

based on the Bray-Curtis dissimilarities between all fingerprints. The function beta_div_fcm() 526 

from the R package ‘PhenoFlow’ was used (Props et al. 2016). 527 

Raman spectroscopy 528 

Fixed samples were centrifuged at 1,957 x g for 5 min at room temperature and re-suspended 529 

in cold Milli-Q water (Merck-Millipore) (4°C). Then, a 5µL drop was allowed to dry until 530 

evaporation on a CaF2 slide (grade 13 mm diameter by 0.5 mm polished disc, Crystran Ltd).  531 

As control for the instrument performance, a silica gel was measured with a grating of 600 –532 

mm/g, with a 1 second time exposure and 10 accumulations. Laser power was also monitored 533 

to detect possible variations. Bacteria were measured with a grating of 300 –mm/g, with a 40 534 

second exposure time and 1 accumulation. More information on the Raman spectroscope and 535 

data collection is included in the Raman aid (see Table 3). The metadata were collected 536 

following the guidelines from (García-Timermans et al. 2018) and can be found in the 537 

Supplementary Information. 538 
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Raman spectra pre-processing 539 

The Raman spectra were analysed in the 600-1800 cm-1 region, and baseline correction using 540 

the SNIP algorithm (ten iterations) and normalization were performed. The area under the 541 

curve (AUC) normalization was calculated with the MALDIquant package (v1.16.2) (Gibb and 542 

Strimmer 2012).  543 

Single-cell analysis 544 

t-distributed stochastic neighborhood embedding (t-SNE) 545 

 Raman single-cell data was analyze dusing t-SNE. The TSNE() function from the scikit-learn 546 

machine learning library was used. Principal component analysis was set as initialization 547 

method. TSNE was run with default settings unless reported otherwise.  Each region in the 548 

spectra was normalized to have zero mean and standard deviation of one.    549 

Principal component analysis (PCA) 550 

Single-cell Raman spectra were analysed with the function fviz_pca_ind() from the R package 551 

‘factoextra’ (Kassambara and Mundt 2017) or with the PCA() function from the scikit-learn 552 

machine learning library after normalization of the spectra, so that each region has a mean of 553 

zero and standard deviation of one. 554 

Hierarchical clustering 555 

To measure how dissimilar the samples were, we calculated the spectral contrast angle (Wan, 556 

Vidavsky, and Gross 2002) between individual cells based on Raman spectra. Then, clusters 557 

were determined in an agglomerative way, through Ward's method (ward.D2) from the 558 

fastcluster R package (Müllner 2018). Hierarchical clustering was implemented using the 559 

hclust() function from the stats package (R Core Team 2018). 560 

PhenoGraph 561 

PhenoGraph is a clustering algorithm specifically designed for the analysis of high-dimensional 562 

flow- or mass-cytometry data (Levine et al. 2015). It employs a two-step approach, in which for 563 

every cell its k-nearest cells of similar phenotypic populations are grouped together. This 564 
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means that, if N denotes the number of cells, N neighbourhoods are created. Next, a weighted 565 

graph is created on these sets of cells. The weight between nodes scales with the number of 566 

neighbours that are shared. The Louvain community detection method is implemented to 567 

cluster the graph by maximizing the modularity of different groupings of the nodes (Blondel et 568 

al. 2008). The PhenoGraph algorithm was run with default settings, in which k was evaluated 569 

for different values between five and 100 (github.com/jacoblevine/PhenoGraph). PhenoGraph 570 

was run after normalization of the spectra, to have zero mean and standard deviation of one. 571 

Adjusted Rand Index 572 

Clustering results from both hierarchical clustering and PhenoGraph were quantified by the 573 

Adjusted Rand Index (ARI) (Hubert and Arabie 1985). The ARI was calculated with the 574 

adjusted_rand_score() function from the scikit-learn machine learning library (v0.19.1) 575 

(Pedregosa et al. 2011). The Rand index is defined as the number of pairs of instances that 576 

are in the same group or in different groups based on two partitions, which is divided by the 577 

total number of pairs of instances. This index is then corrected for the expected index, which 578 

is based on random clustering in which the elements per cluster are shuffled between clusters. 579 

A value of 1 resembles the perfect match between cluster assignments and ground truth labels, 580 

a value of 0 resembles random clustering and a negative value (up to -1) resembles arbitrarily 581 

worse clustering.  582 

Boruta variable selection 583 

The Boruta variable selection extends on traditional variable selection using Random Forest 584 

based variable importance measures. The method includes shadow variables, which are 585 

copies of original variables that have been permutated. By performing a Random Forest 586 

analysis multiple times, one can decide by means of multiple hypothesis testing which 587 

variables are relevant with a certain significance level compared to the most relevant shadow 588 

variable (Kursa and Rudnicki 2010). It has been recently proposed as one of the most accurate 589 

and stable variable selection methods based on Random Forest based (Degenhardt, Seifert, 590 
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and Szymczak 2017). The Boruta algorithm from the Boruta R package was run, using the 591 

default settings (v6.0.0) (Kursa and Rudnicki 2010). 592 

Statistical test on Boruta outcome 593 

The ten most relevant regions for classification according to the Boruta algorithm were 594 

selected. The intensity of these peaks amongst the growth phases were compared with the 595 

Wilcoxon rank sum test with a Benjamini-Hochberg correction (upon rejection of the null 596 

hypothesis). The functions pairwise.wilcox.test() and p.adjust() from the R package stats v3.5.1 597 

(R Core Team 2018)  were used. 598 

Data availability 599 

Data and code to reproduce analysis is available on the following repository: 600 

https://github.com/CMET-Ugent/FCMvsRaman. 601 

Data analysis was conducted using the program R (R Core Team 2018), RStudio (RStudio 602 

team and RStudio 2016) and Python.  603 

 604 

External dataset 605 

We included the dataset from (Teng et al. 2016) in order to validate the generalizability of the 606 

PhenoGraph and t-SNE algorithms for the analysis of label-free bacterial Raman data. As 607 

described in their article, they tested the stress response of E. coli to six chemical stressors at 608 

different time intervals with label-free Raman spectroscopy: ethanol, antibiotics ampicillin and 609 

kanamycin, n-butanol or heavy metals Cu2+ (CuSO4) and Cr6+ (K2CrO4). Teng et al. showed 610 

that each of these treatments resulted in a different phenotype. In other words, each treatment 611 

resulted in a unique Raman characterization of cells, which should group together upon 612 

analysis. These treatments were therefore used as label according to which PhenoGraph or t-613 

SNE should group the cells. Three biological replicates of the cell culture were made, and 20 614 

cells were tested per replicate. Bacteria were sampled at different stages of the cell growth. 615 

The Raman spectra of the stressed cells were collected after the treatment (5, 10, 20, 30 and 616 

60 min, 3h and 5h). 617 
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Data availability 618 

Our code and data to reproduce the analysis is available at https://github.com/CMET-619 

Ugent/FCMvsRaman.  620 
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