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Abstract  

The role of infectious disease in regulating host populations is increasingly recognized, 

but how environmental conditions affect pathogen communities and infection levels remains 

poorly understood. Over three years, we compared foliar disease burden, fungal pathogen 

community composition, and foliar chemistry in the perennial bunchgrass Stipa pulchra 

occurring in adjacent serpentine and nonserpentine grassland habitats with distinct soil types and 

plant communities. We found that serpentine and nonserpentine S. pulchra experienced 

consistent, low disease pressure associated with distinct fungal pathogen communities with high 

interannual species turnover. Additionally, plant chemistry differed with habitat type. The results 

indicate that this species experiences minimal foliar disease associated with diverse fungal 

communities that are structured across landscapes by spatially and temporally variable 

conditions. Distinct fungal communities associated with different growing conditions may shield 

S. pulchra from large disease outbreaks, contributing to the low disease burden observed on this 

and other Mediterranean grassland species. 

Key words: California grasslands, leaf spot pathogen, plant fungal pathogens, serpentine soil, 

Stipa pulchra 
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Introduction 

How environmental heterogeneity affects species interactions, and ultimately population 

growth rates and structures, remains a fundamental ecological question. Infectious disease, which 

arises from interactions between hosts, parasites, and the environment, is particularly likely to 

vary across populations in differing environments. Biotic factors, such as the phylogenetic 

structure of the host community, and abiotic factors, such as elevation, have been associated with 

the presence of specific diseases and the severity of their impacts on their hosts (Abbate and 

Antonovics 2014; Parker et al. 2015). Additionally, mounting evidence suggests that specific 

characteristics of pathogen community structures mediate the outcomes of host – pathogen 

interactions. The identities and abundances of the pathogen species present can shape infection 

dynamics both through pathogen – pathogen interactions, which can range from facilitative to 

antagonistic depending on the community context, and because pathogen species vary in their 

transmissibility, virulence, and sensitivity to different environmental conditions (Agrios, 2005; 

Seabloom et al. 2015; Borer et al. 2016; Dallas et al. 2019).   

Separate observations of abiotic and biotic impacts on infection outcomes combine to 

highlight the importance of understanding interactions between environmental variation, 

pathogen community composition, and pathogen pressure on host populations. For plant hosts, 

identifying the conditions that place populations at high risk for severe disease outbreaks and 

applying preventative measures may prevent local species extinctions and improve crop yields. 

While studies have frequently explored the interactions of single host – pathogen pairs under 

differing abiotic conditions (e.g., Abbate and Antonovics 2014), both the effect of varying 

pathogen community composition on disease burden and the relationships between habitat 

characteristics and pathogen community structures remain largely unexplored in natural systems 
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(but see Rottstock et al. 2014 and Spear 2017).  

Fungal pathogens are particularly important to study in this context because they cause 

the majority of known plant diseases, have an increasing rate of emergence, and pose a 

substantial threat to plant health and population persistence in natural and agricultural settings 

(Agrios 2005; Fisher et al. 2012). Dramatic diebacks of North American chestnut trees and oaks 

caused by fungal pathogens (Anagnostakis 1987; Rizzo and Garbelotto 2003) and economically 

devastating crop losses caused by fungal rusts shared among wild and domesticated plants 

(Loehrer and Schaffrath 2011; Nazareno et al. 2018) demonstrate this threat. These examples 

indicate that understanding the communities of fungal pathogens that infect wild plants is 

important for developing effective protection strategies for both natural biodiversity and human 

food supplies. However, we lack basic information about the identities, diversity, and effects of 

the fungal pathogens that infect most plant species (Burdon and Laine 2019). Therefore, there is 

a pressing need for systematic surveys of these pathogen communities and their variation across 

natural habitats.  

Evidence that abiotic and biotic factors drive both natural fungal endophyte community 

assembly in healthy leaves and fungal foliar disease dynamics in agricultural systems suggests 

that different habitats are likely to affect fungal foliar pathogen community composition and 

disease burden (Agrios 2005, Arnold 2007, Burdon and Laine 2019). For example, the repeated 

finding that foliar endophyte community structures change with temperature, humidity, and 

rainfall (Cordier et al. 2012, Zimmerman and Vitousek 2012, Bálint et al., 2015, Millberg et al. 

2015, Giauque and Hawkes 2016, Barge et al., 2019) suggests that climate is likely to also shape 

fungal pathogen communities. Evidence from the plant pathology literature supports this 

expectation: for foliar fungal pathogens of wheat, barley, and lettuce, among others, infection 
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dynamics are closely linked to temperature and moisture availability (Shaw 1986, Moss and 

Trevathan 1987, Eversmyer et al. 1988, Huber and Gillespie 1992, Magarey et al. 2005, Bernard 

et al. 2013, Clarkson et al. 2014, Velásquez et al. 2018). Timing and amount of precipitation can 

alter infection dynamics by washing away fungal spores and/or transmitting spores to new hosts 

(Madden 1997). 

 Additionally, local habitat characteristics, such as soil and plant physical and chemical 

properties, plant community composition, and plant genetics, can determine the availability and 

quality of susceptible and competent hosts for different fungal pathogen species (Snoeijers et al. 

2000, Mitchell et al. 2002, Solomon et al. 2003, Bolton et al. 2008, Rottstock et al. 2014, 

Velásquez et al. 2018). Differences in soil nutrient content, plant nutrient content, and plant 

genetic backgrounds can influence the identities and abundances of fungal endophytes that 

inhabit the leaves of individual host species (Eschen et al. 2010, Busby et al. 2014). However, 

the short one- to two-year lengths of most observation periods hamper a more general 

understanding of the factors that shape foliar endophyte communities by generating snapshots of 

fungal community composition absent the context needed to determine whether observed 

patterns are broadly representative (but see Giauque and Hawkes 2016). Extensive work in 

agricultural systems wherein nitrogen fertilization and plant genetic diversity are both associated 

with disease prevalence and severity support the likely relevance of local habitat factors to fungal 

pathogens (Zhu et al. 2000, Solomon et al. 2003, Verosoglou et al. 2013).  

 Here, we examine the effects of habitat type on the burden and species composition of 

natural fungal plant pathogens infecting a single host species over a span of three years. 

Specifically, we take advantage of the natural occurrence of the California native perennial 

bunchgrass Stipa pulchra in two unique, adjacent grassland types to understand the extent to 
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which habitat type and time influence the landscape of disease that a single plant species 

encounters, including foliar fungal pathogen community composition and disease severity. Stark 

differences in soil properties and plant community structures between serpentine and 

nonserpentine greenstone (hereafter, nonserpentine) grassland habitats result in a suite of 

environmental differences that may influence fungal pathogen infection, reproduction, and 

persistence (Harrison and Viers 2007; Burdon and Laine 2019). Additionally, high interannual 

variation in climate conditions and plant community composition in California grasslands may 

lead to temporal variation in infection dynamics through impacts on fungal growth and survival 

(Hobbs and Mooney 1991, Fernandez-Going et al. 2012).  

We hypothesize that both disease burden and pathogen species composition differ on S. 

pulchra individuals across habitat types and years. In turn, we hypothesize that habitat type 

influences S. pulchra foliar tissue chemistry in ways that may affect plant – fungal pathogen 

interactions, with lower C and N content in serpentine plants growing in nutrient-poor soils. If 

so, these foliar chemistry differences may translate into differences in fungal community 

composition and either (a) higher disease burden in serpentine plants relative to nonserpentine 

plants, facilitated by negative impacts of limited plant resource availability on plant health (as in 

Springer et al., 2006), or (b) lower disease burden in serpentine plants due to lower plant nutrient 

content limiting resources available for fungal growth. By contributing novel information about 

previously uncharacterized plant fungal pathogen communities in California grasslands, the 

results of this study will provide new insight into the diversity and natural history of the fungi 

that infect the leaves of wild grasses in temperate climates. Further, the results of this study will 

aid in assessing disease risk for plant populations in natural and agricultural contexts by 

providing information about the spatial and temporal scales over which environmental 
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heterogeneity can affect the species composition and severity of foliar pathogen infection.  

Materials and Methods 

Study system 

All surveys and sample collection took place at Jasper Ridge Biological Preserve (JRBP), 

a 485-hectare site in San Mateo County, CA managed by Stanford University (37.4° N, 122.2° 

W). JRBP has a Mediterranean climate with cool winters (mean 9.2°C), warm summers (mean 

20.1°C), and annually variable precipitation that predominantly occurs in the winter and spring 

(averaging 622.5 mm per year) (Ackerly et al. 2002). The growing season occurs during the 

rainy season and plants senesce in early summer. This study was conducted during the growing 

seasons from mid-April to mid-May in 2015, 2016, and 2017. There was highly variable annual 

precipitation across the three years (491 mm, 604 mm, and 985 mm in 2015, 2016, and 2017, 

respectively; Weather Underground).  

S. pulchra occurs at substantial densities in both serpentine and nonserpentine grasslands 

at JRBP (McNaughton 1968). The serpentine plant communities at JRBP are more diverse than 

the nearby nonserpentine plant communities and include many native grasses and forbs, in 

contrast to the invasive-dominated nonserpentine grasslands (McNaughton 1968; Huenneke et 

al. 1990; Field et al. 1996). Plant species commonly found in serpentine grasslands at JRBP 

include native Stipa pulchra, Elymus glaucus, Elymus multisetus, Eschscholzia californica, and 

the invasive grass Bromus hordeaceus (McNaughton 1968; Hobbs and Mooney 1985). The 

nonnative annual species that dominate the nonserpentine grasslands but are absent from 

serpentine grasslands include Avena barbata, Avena fatua, Bromus diandrus, and Erodium 

botrys (McNaughton 1968; Hobbs and Mooney 1985; Field et al. 1996). The serpentine and 

nonserpentine grasslands at JRBP share a land use history of livestock grazing that ceased in 

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 7, 2020. ; https://doi.org/10.1101/545632doi: bioRxiv preprint 

https://doi.org/10.1101/545632
http://creativecommons.org/licenses/by-nd/4.0/


8 
 

1960, when conservation of these areas became a management priority (Bocek and Reese 1992).   

All survey sites were located along the ridgetop at JRBP, where serpentine and 

nonserpentine (greenstone) soils are present in discrete adjacent bands (Fig. 1a) (Oze et al. 

2004). Chemical analyses of the soils on this ridgetop show consistent, significant differences in 

serpentine and nonserpentine soil chemistry, with the serpentine soils enriched in heavy metals 

and trace elements (Fe, Cr, Ni, Mn, and Co), and impoverished in essential plant nutrients (Streit 

et al. 1993, Oze et al. 2004, 2008). The relative flatness of the ridgetop ensured that all survey 

sites were at roughly the same elevation and had similar slopes, aspects, and water availability 

(Oze et al. 2008).  

Quantification of disease  

To assess plant disease burden, we quantified the percentage of living leaf area exhibiting 

symptoms of fungal disease in serpentine and nonserpentine populations of S. pulchra. We 

selected three serpentine grassland sites and three nonserpentine grassland sites such that each 

serpentine site was paired with a nearby (~170m away) nonserpentine site (Fig. 1a). Individual 

sites within each habitat type were >300m apart and the maximum distance between any two 

sites was 1600m (Fig. 1a). Each year, we randomly placed four 5-meter transects at each 40m x 

40m site and assessed the infection status of the S. pulchra individual nearest each meter mark, 

resulting in five individual plants per transect surveyed each year (N = 60 plants per habitat type 

per year). The infection status of individual plants was not tracked across years, although some 

plants could have been sampled repeatedly by chance. Following the protocol for estimation of 

foliar infection severity on grasses described in Mitchell et al. 2002 and Spear and Mordecai 

2018, a single surveyor visually estimated the percentage of living foliar tissue damaged by 

pathogens for six arbitrarily-selected leaves per plant. We used printed field reference guides 
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showing known amounts of damage on leaves to standardize estimates. Damage was indicated 

by spots and lesions which ranged in color from dark brown to pale yellow (Fig. 1b). Senesced 

tissue and herbivore damage (commonly in the form of scrapes and holes in the leaf surface) was 

excluded from the analyzed leaf area. For damage estimates of 5% or greater, values were 

determined to the nearest 5%. Damage levels below 5% were assigned values of 1% or 0.1%. 

We used analysis of variance (ANOVA), with individual plants nested within sites and 

sites nested within habitat types, to test for separate effects of habitat type and year, as well as 

interactions between habitat type x year and habitat type x site, on log-transformed mean percent 

disease damage on serpentine and nonserpentine S. pulchra (N = 36 serpentine and 36 

nonserpentine transects). When ANOVA results were statistically significant, we used t-tests for 

every possible pairwise combination, with Bonferroni adjustments of p-values to account for 

multiple comparisons, to identify the interactions contributing to the significant result.  

Isolation and molecular identification of foliar fungal pathogens 

 To identify the fungal foliar pathogens infecting serpentine and nonserpentine S. pulchra 

over all years, we harvested one segment of symptomatic leaf tissue for culturing and 

identification of the putatively causal fungal pathogen(s) from each individual included in the 

three-year damage survey with symptoms of disease. This tissue segment came from the first 

surveyed leaf with disease symptoms on each plant. We excised, surface sterilized, and plated a 

4mm2 square of tissue from each sample at the leading edge of infection, to improve the chances 

of isolating the causal fungal pathogen, on malt extract agar with 2% chloramphenicol to prevent 

bacterial growth. While it is possible that the growing medium used may have led to selective 

isolation and sequencing of fungi other than those causing symptoms, our use of small segments 

of leaf tissue from the advancing margin of disease was intended to prevent this outcome under 
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the assumption that symptom-causing organisms should be dominant in visibly diseased tissue 

and particularly at its expanding margin. We observed the plates for growth for eight weeks and 

isolated morphologically distinct hyphae into axenic culture. Six segments of surface sterilized, 

asymptomatic tissue were plated as a control and showed no growth. We extracted and 

sequenced genomic DNA from the ITS region for each isolate. Fungal isolation and sequencing 

methods with ITS1F and ITS4 primers followed Spear and Mordecai 2018. 

We estimated taxonomic placement of fungal isolates by grouping sequences into 

operational taxonomic units with 97% sequence similarity (OTUs), a proxy for species 

delineation based on the range of intraspecific ITS divergence (O’Brien et al. 2005), and then 

comparing assembled DNA sequences to the entries in the UNITE fungal database. To prepare 

sequences for taxonomic placement, we first trimmed forward and reverse Sanger sequencing 

reads to a maximum error rate of 5% and then automatically assembled bidirectional reads into 

consensus sequences with a minimum of 20% overlap and 85% sequence similarity in Geneious 

(Kearse et al. 2012), discarding consensus sequences less than 450 bp in length and/or less than 

60% in read quality. We grouped the remaining internal transcribed spacer (ITS) sequences into 

OTUs using USEARCH 10.0.240 (Edgar 2010) and estimated the taxonomic placement of each 

OTU in mothur v.1.40.5 (http://mothur.org/; Schloss 2009) using the naïve Bayes classification 

approach (classify.seqs with options: method = ‘wang’, cutoff = 0, iters = 200). We used a 

bootstrapping confidence score of at least 80% to assign a species name and at least 60% to 

assign taxonomy at higher ranks.  

Analyses of fungal community composition 

 To characterize foliar fungal community composition in serpentine and nonserpentine S. 

pulchra populations, we compared the diversity and assessed the similarity of communities of 
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fungi cultured from the diseased tissue of surveyed plants. Additionally, we compared the 

identified fungal taxa to previously reported plant - fungal genus associations compiled in the 

USDA-ARS plant - fungal database (Farr and Rossman 2020), the Genera of Phytopathogenic 

Fungi (GOPHY) database (Marin-Felix et al., 2017, 2019), and the publications indexed in Web 

of Science and Google Scholar. To describe fungal community diversity, we calculated observed 

taxa richness and Fisher’s alpha, a widely used measure of species richness that is robust to 

uneven sample sizes (Fisher et al. 1943; Magurran 2013); generated taxa accumulation curves to 

understand sampling efficacy (Oksanen et al. 2016); and counted the number of fungal isolates 

in each genus, family, order, and class from each grassland type. We compared fungal 

community composition across grassland types and across years visually, using non-metric 

multidimensional scaling (NMDS), and statistically, using permutational multivariate analyses of 

variance (PERMANOVA) with pairwise Adonis functions for non-normalized OTU read counts 

in the R package vegan (Anderson 2001; Arbizu 2016; Oksanen et al. 2016). To assess spatial 

turnover in fungal communities, we included a site distance factor in the statistical analyses, with 

comparisons between sites <600m apart categorized as “near” and comparisons between sites 

>600m apart categorized as “far” (Fig. 1a). The PERMANOVA tested for effects of habitat type, 

year, distance between sites, and all possible interactions between each of these three factors, on 

fungal community composition. We used the function ‘betadisper’ with the ‘anova’ method to 

assess the potential for group differences in dispersion to affect the PERMANOVA results. To 

account for low culturing success in some transects, we considered the combined isolates from 

two nearby transects at each site in each year (N = 18 serpentine and 18 nonserpentine 

communities, generated from 36 total transects per habitat type) to be distinct communities for 

NMDS visualization.  
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For ANOVA and PERMANOVA analyses we considered the combined isolates from 

each site in each year to be distinct communities (N = 9 serpentine and 9 nonerspentine 

communities). When PERMANOVA results were statistically significant, we used pairwise 

PERMANOVAs with Bonferroni adjustments to p-values to clarify which fungal communities 

were significantly different from one another (Arbizu 2016). Additionally, we used the function 

‘betadisper’ in vegan to assess the potential for differences in dispersion to affect the 

PERMANOVA results (Oksanen et al. 2016). For the NMDS and PERMANOVA analyses, we 

used the function vegdist with the abundance-based Chao method, accounting for unsampled 

species, to create a matrix of pairwise community dissimilarities (Chao et al. 2016; Oksanen et 

al. 2016). We also used the Morisita-Horn index, which is independent of sample size and 

diversity, to make pairwise comparisons of similarity within and between the serpentine and 

nonserpentine fungal communities from each year (N = 265 isolates, 200 bootstrap replicates), 

and within the entire fungal community between years (Wolda 1981; Jost et al. 2011). Finally, 

we used ANOVA to test for effects of habitat type, year, site distance, year x habitat type, and 

year x site distance interactions on fungal diversity (Fisher’s alpha) and richness at the site level.  

To perform these fungal community analyses, we used the packages BiodiversityR (Kindt 

and Coe 2005), bipartite (Dormann et al. 2008), fossil (Vavrek 2011), rich (Rossi 2011), SpadeR 

(Chao et al. 2016), and vegan (Oksanen et al. 2016) with custom commands (Gardener 2014) in 

R version 3.4.1. 

Chemical analyses of leaf tissue 

In 2016, we analyzed C and N content of the foliar tissue of the S. pulchra plants 

surveyed in serpentine and nonserpentine grasslands. Because both leaf age and infection status 

might influence leaf chemistry, we collected the youngest fully expanded and entirely 
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asymptomatic leaf of each individual surveyed in the field (N = 60 serpentine, 58 nonserpentine). 

We dried the samples at room temperature for three months, then at 60°C for 48 hours, ground 

them to a powder, and then dried them again at 60°C for 24 hours. We measured C and N 

content of these samples with a Carlo Erba NA-1500 elemental analyzer using atropine 

standards.  

To assess the potential for habitat type to mediate plant-pathogen interactions through its 

influence on plant tissue chemistry, we related habitat type to leaf tissue chemistry of in situ S. 

pulchra, and chemistry of these plants to disease burden and fungal species abundances. To 

relate leaf tissue chemistry to observed damage levels, we compared the mean percentage of C 

and N per dried weight of leaf tissue for surveyed serpentine and nonserpentine plants with 

Wilcoxon rank sum tests. We also compared mean C:N ratio, which is indicative of plant health 

(Ciompi et al. 1996; Brady et al. 2005). We used Pearson’s product-moment correlation to test 

for significant monotonic relationships between the log-transformed mean amount of diseased 

tissue observed on individual plants in the field and their foliar C and N content. Additionally, 

we used multivariate generalized linear models with resampling-based hypothesis testing to test 

for fungal community responses to tissue chemistry. For fungal species represented by five or 

more isolates in 2016, we tested for significant effects of foliar tissue C and N percentages, C:N 

ratio, and habitat type on fungal species observations. For these analyses, we used the functions 

‘manyglm’ and ‘anova’ (nBoot = 999), with p-values adjusted for multiple comparisons, in the R 

package mvabund (Wang et al. 2012).  

 All statistical analyses were done in R version 3.4.1. In addition to the R packages 

specified above, we used the packages cowplot (Wilke 2019), data.table (Dowle et al. 2019), 

RColorBrewer (Neuwirth 2014), reshape2 (Wickham 2007), tidyverse (Wickham 2017), and 
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xtable (Dahl et al. 2019) to manipulate, plot, and export data and results.  

Results 

Pathogen damage  

Pathogen damage was similarly ubiquitous yet low-burden in serpentine and 

nonserpentine grassland habitats. Every plant surveyed exhibited evidence of foliar fungus-

caused disease. The mean percentage of diseased leaf area observed across all years was 1.63 for 

serpentine and 1.66 for nonserpentine S. pulchra, respectively (Fig. 1c), and the mean proportion 

of surveyed leaves with pathogen damage was 0.83 for serpentine and 0.85 for nonserpentine 

plants. Year significantly affected log-transformed mean percent damage (ANOVA: df = 2, SS = 

9.41, F-value = 5.375, p-value = 7.04 x 10-3) (Table 1). There were significant differences in 

percent damage between was between 2015 and 2016 and between 2015 and 2017 (2015 mean 

percent damage = 1.05; 2016 = 1.96; 2017 = 1.94; t-values = -2.66, -3.70; Bonferonni-adjusted 

p-values = 2.5 x 10-3, 8.1 x 10-4).  

Fungal pathogen community 

 We isolated 267 unique fungal isolates from 258 plated symptomatic tissue pieces with 

fungal growth (144 nonserpentine and 114 serpentine tissue pieces from 36 nonserpentine and 34 

serpentine transects, out of 360 total tissue pieces). Of the 267 unique fungal isolates, we 

successfully sequenced 256 isolates. The sequenced isolates clustered into 30 operational 

taxonomic units (OTUs) based on 97% sequence similarity, representing 23 genera, 15 families, 

8 orders, and 5 fungal classes, primarily the Dothideomycetes. We were unable to identify 18 

OTUs to the fungal species level, and four of these to the genus level, due to a lack of close 

sequence matches in the UNITE database and/or a lack of taxonomic information for close 
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sequence matches (Table 2). The most common OTU was represented by 48 isolates and the 

least common OTUs were represented by one isolate each. OTUs are hereafter referred to as 

“species” (O’Brien et al. 2005).   

All genera identified include fungal species previously isolated from plant hosts, and the 

majority of these genera include known plant pathogens (Table 2). The taxonomic results 

indicate that many of the species represent close relatives of major agricultural plant pathogens 

including Alternaria, Cladosporium, Drechslera, Phaeosphaeria, Pyrenophora, Stemphylium, 

Ramularia, and Wojnowiciella spp. (Table 2) (Kirk et al. 2008; Stukenbrock and McDonald 

2008; Havis et al. 2015; Marin-Felix et al. 2017, 2019; Farr and Rossman 2020). Inoculation 

experiments described in Spear and Mordecai 2018 previously confirmed the pathogenicity of 

Parastagonospora and Pyrenophera species on S. pulchra leaves. Six genera, Heyderia, 

Hyphodiscus, Nemania, Phaeophlebiopsis, Plectania, and Wojnowiciella, are here reported for 

the first time from hosts in the Poaceae; six genera, Heyderia, Hyphodiscus, Keissleriella, 

Phaeophlebiopsis, Plectania, and Podospora are reported for the first time in association with 

plant disease symptoms; and two additional genera, Chalastospora and Nemania, are reported 

for the first time in association with foliar disease symptoms (Table 2) (United States 

Department of Agriculture 1960; Goetz and Dugan 2006; Marin-Felix et al. 2017, 2019; Golzar 

et al. 2019; Adikaram and Yakandawala 2020; Farr and Rossman 2020).   

Fungal community diversity was similar between serpentine and nonserpentine habitats 

and between years (Table 2). Although fungal richness was higher at every taxonomic level in 

the serpentine relative to the nonserpentine, these differences were not statistically significant 

(Tables 2, S1-S5). Twenty-four fungal species were isolated from serpentine S. pulchra (Fisher’s 

alpha = 9.324, 95% CI = 4.664, 13.983) and 22 from nonserpentine (Fisher’s alpha = 7.261, 95% 
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CI = 3.597, 10.925); 16 of these species (53%) were shared (Fig. 2; Tables 1, 2). Habitat type, 

year, and year x habitat type were not significantly related to fungal richness or Fisher’s alpha at 

the site level (ANOVA: Tables S6, S7). Novel genera were isolated for both community types in 

every year of surveying, with only seven of 30 (23%) observed species and six of 23 genera 

(26%) isolated in all three years (Table S5). Species accumulation curves did not approach 

horizontal asymptotes for either habitat type, suggesting that neither fungal community was fully 

described (Fig. S1).  

 Both fungal communities were dominated by a few abundant species (isolated >10 

times), but the most abundant species differed between nonserpentine and serpentine habitats: 

these were Alternaria cf. infectoria and Ramularia cf. proteae, respectively (Table 2; Fig. S2). 

The nonserpentine community included five abundant species, representing 62% of the isolates, 

while the serpentine community included two abundant species, representing 51% of serpentine 

isolates (Table 2; Fig S2). The serpentine community had a higher proportion of rare species (<3 

isolates) than the nonserpentine community, 63% versus 36%, respectively. One Drechslera 

species was abundant in the nonserpentine community and rare in the serpentine (Table 2; Fig. 

S2).   

 Habitat type and year significantly affected fungal community composition, based on 

two-way PERMANOVA analysis of site-level fungal communities and NMDS visualization of 

community similarity (habitat type: F-value = 5.112, R2 = 0.163, p = 0.003; year: F-value = 

5.655, R2 = 0.360, p = 0.001; Fig. 3; Table 4). Fungal communities had homogeneous 

dispersions across habitat types (average distance to median: serpentine = 0.53, nonserpentine = 

0.56; ANOVA F-value = 1.10, p-value = 0.3) and years (average distance to median: 2015 = 

0.38, 2016 = 0.34, 2017 = 0.27; ANOVA F-value = 0.93, p-value = 0.42), indicating that 
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significant PERMANOVA results were due to true differences in centroid positions. Serpentine 

fungal communities were generally more similar to one another than they were to nonserpentine 

fungal communities, and vice versa (Fig. 3; Tables 2, 3). Community composition differed 

significantly between 2015 and 2017, and 2016 and 2017, but not between 2015 and 2016 (Table 

S8). Differences in fungal community composition between years did not correspond to 

differences in disease severity between years (Figure 1c, Table S8).  

 Interpretation of the statistical significance of differences in Morisita-Horn community 

overlap that fall between zero (no overlap) and one (complete overlap) is a longstanding 

challenge in community ecology (Horn 1966, Rodrigues and Vieira 2010). Qualitatively, 

estimates of the Morisita-Horn similarity index for communities within habitat types suggest that 

the amount of interannual species turnover is more consistent within serpentine than 

nonserpentine communities (Fig. 3, Tables 2, 3). While serpentine community overlap between 

years ranged from 0.707 to 0.786, nonserpentine community overlap ranged between 0.295 and 

0.882 (Table 3). Within-year variation in species turnover between habitat types was 

comparatively moderate, with Morisita-Horn overlap ranging from 0.535 to 0.725 (Table 3).  

Leaf tissue chemistry and plant – pathogen interactions 

As expected from differences in soil type between habitats, leaf chemistry in plants 

occurring on serpentine versus nonserpentine soils differed in mean C and N content. Serpentine 

plants had significantly lower mean C and N content than nonserpentine plants (Fig. 4; Table 

S9). C:N ratio was similar for plants in both habitat types. Log-transformed mean percent 

symptomatic tissue was not significantly associated with percent C, percent N, or C:N ratio in 

asymptomatic foliar tissue for serpentine or nonserpentine plants, based on Pearson’s product-

moment correlation tests (Fig. 4). For the fungal community consisting of the seven species 
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isolated five or more times in 2016 (N = 74 isolates), all of which occurred at least once in each 

habitat type, species composition differed between habitats, but was not associated with foliar 

percent C, percent N, or C:N ratio (Table S10).  

Discussion 

Here we show that a diverse suite of foliar fungi is associated with ubiquitous, low-

burden damage on host individuals across growing seasons and habitat types. Habitat type 

appeared to shape fungal community composition in this system, but not foliar disease burden. In 

contrast, sampling year affected both fungal community composition and disease burden. 

However, this interannual variation in disease burden was not mediated by differences in 

pathogen community composition (Figs. 1c, 3; Table S8). While C and N content measured in 

young, healthy leaves differed between habitat types, variation in leaf chemistry did not explain 

variation in infection severity or in fungal community composition (Fig. 4; Tables S9-10). The 

results provide some of the first evidence that local growing conditions structure the pathogen 

communities infecting a single host species even over relatively small areas of a few hundred 

meters, where hosts and pathogens experience similar climate conditions (Figs. 1a, 3; Table 3). 

Overall, the findings imply that environmental heterogeneity within landscapes may both 

generate barriers to fungal disease spread in wild plant populations and bolster fungal diversity.  

Foliar disease burden 

Mean levels of foliar infection were low even at their peak of 1.9% symptomatic leaf area 

in 2017 (Fig. 1c; Table 1). This level of damage is similar to that observed on other grass species 

in nonserpentine grasslands at JRBP (Spear and Mordecai 2018), and on taxonomically diverse 

tropical forest plants in Mexico and Hawaii (García-Guzmán and Dirzo 2001, Funk and Throop 

2010). Recent work in the JRBP grassland system shows that symptoms in the amounts observed 
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inflict only minimal plant fitness costs, suggesting that S. pulchra is able to effectively resist or 

suppress damage by foliar pathogens in both serpentine and nonserpentine grasslands (Spear and 

Mordecai 2018; Uricchio et al. 2019). These expectations align with assessments in wheat – 

fungal pathogen systems that indicate yield reductions of < 1% for each percent of symptomatic 

leaf area (Milus 1993, Khan et al. 1997). The finding that between-habitat differences in foliar C 

and N content do not correspond to differences in infection severity aligns with the finding that 

infection severity did not differ between habitats (Figs. 1, 4). Additionally, similar C:N ratios 

suggesting that serpentine and nonserpentine plants are equally healthy correspond to the 

consistently low damage observed across habitats (Fig. 4; Table S9). However, the observational 

study design and use of young, healthy leaves for the tissue chemistry measurements limit 

interpretation of the observed relationships between leaf chemistry and disease severity. Because 

both tissue age and fungal infections can affect plant chemistry (Paul 1989; Donaldson et al. 

2006), the leaf chemistry measurements may not accurately represent the chemical environment 

encountered by the pathogens that caused the observed damage.  

Fungal community composition 

Our results suggest that habitat filtering, rather than dispersal limitation, plays a key role 

in fungal community assembly. The sampled nonserpentine and serpentine plants are in close 

proximity, yet habitat type—not distance between sites—predicted fungal community 

composition (Fig. 3; Tables 4, S10) (Martiny et al. 2006). Fungal community composition, and 

its relative stability over time, varied between habitats (Figs. 1c, 2, 3, S2; Tables 1-4). The results 

imply that abiotic and biotic differences in local environmental conditions can lead to differences 

in plant-fungal interactions in distinct habitat types. We hypothesize that influential habitat 

characteristics in this system include differences in pathogen sharing among the predominantly 
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native hosts in serpentine grasslands versus the predominantly nonnative hosts in nonserpentine 

grasslands, in plant phenotypes, and/or in plant genotypes.  

Plant hosts may differ in competence for different fungal species, and fungal species may 

in turn vary in transmissibility to S. pulchra. These two factors, and their interaction, likely 

contribute to differences in pathogen community composition on S. pulchra between serpentine 

and nonserpentine habitats. Serpentine grassland plant communities are generally more 

taxonomically diverse and stable across years than nonserpentine grasslands (Fernandez-Going 

et al. 2012). Qualitatively, our results suggest that fungal communities follow the same pattern of 

higher diversity and lower species turnover between years in serpentine areas, indicating 

potential links between plant and pathogen community structures (Fig. S2; Tables 1, 3, S1-S5). 

Research on five common invasive and native grasses (including S. pulchra) at JRBP shows that 

multi-host foliar fungal pathogens dominate this system, and that S. pulchra shares different 

pathogens with different co-occurring plant species, supporting this hypothesis (Spear and 

Mordecai 2018).  

Differing nonserpentine and serpentine S. pulchra phenotypes might also influence 

fungal community assembly through a variety of mechanisms, including impacts of plant 

chemistry on plant immune pathways and/or fungal pathogen virulence, growth, and 

reproduction. Although differences in plant C and N content did not affect the distributions of 

commonly isolated fungal species found in both habitat types (Tables 2, S10), the limitations of 

the foliar chemistry measurements described above apply equally here. Importantly, the impacts 

of leaf C and N content on the distributions of rare species, many of which appear to be habitat 

specialists, remain unassessed (Tables 2, S10). Evidence that serpentine soil chemistry impacts 

on plant Ca content affect the frequency and severity of Hesperolinon spp. infection by the 
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fungal rust pathogen Melampsora lini indicates the possible importance of habitat influence on 

elements other than C and N in S. pulchra tissues (Springer et al. 2006; Springer 2009). Potted S. 

pulchra plants grown from seed and serpentine soils collected in these sites had significantly 

lower Ca and P content and higher Ni and Mg content than similar plants grown in greenhouse 

soils, potentially suggesting additional phenotypic differences between serpentine and 

nonserpentine plants that may affect fungal community composition (Farner et al., unpublished 

data). 

 Overall, further investigation is needed to test the hypothesis that habitat-associated plant 

phenotypic differences shape S. pulchra foliar fungal communities. Future studies should include 

analyses of more fungal species, more elements, and more plant traits, including leaf 

physiological characteristics that might respond to elevated water stress in serpentine habitats. 

Based on the genetic foundations of the complex set of physical, chemical, and genetic defenses 

that define plant immune profiles, investigation into the extent of genetic divergence between 

serpentine and nonserpentine S. pulchra could also clarify the mechanisms that structure its 

fungal communities (Dodds and Rathjen 2010; Łaźniewska et al. 2012). While there are no 

physical barriers to prevent gene flow between individuals in different habitat types, the 

occurrence of phylogenetically and chemically distinct serpentine and nonserpentine populations 

of the native forb Lasthenia californica occurring in the same grasslands at JRBP suggests the 

potential for similar structure in the focal S. pulchra population (Desrochers and Bohm 1993; 

Chan et al. 2002; Rajakaruna et al. 2003). 

In addition to turnover between habitat types, interannual fungal species turnover 

contributed substantially to fungal diversity in this system, with only seven of 30 total species 

isolated in all three years (Fig. 3; Tables 1, S5). Interannual variation in these communities may 
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be driven by a variety of mechanisms, including high yearly variation in precipitation (2015 

rainfall = 491 mm; 2016 = 604 mm, 2017 = 985 mm) (Weather Underground), plant population 

sizes, occurrences of different plant genotypes, and plant community composition (Hobbs and 

Mooney 1991). Although few studies track interannual variation in fungal communities on 

plants, the year-to-year dissimilarity of those hosted by S. pulchra is similar to that observed 

across a diverse taxonomic range of plants including ferns, legumes, and shrubs (Del Olmo-Ruiz 

and Arnold 2014; Cotton et al. 2015; Zhang et al. 2016). In this context, our results are 

consistent with a growing body of evidence for the general importance of storage effects—in 

which temporally variable conditions act as ecological niches that facilitate species diversity—in 

plant-associated fungal communities (Warner and Chesson 1985). This finding highlights the 

necessity of long-term data collection to accurately characterize plant-fungal interaction 

networks.  

The variation in fungal community composition we observed on a single host species 

with habitat type and over time suggests possible mechanisms preventing severe outbreaks of 

foliar disease in California grasslands, where uniformly low disease burden was observed in this, 

and other, studies (e.g., Spear and Mordecai 2018). Transitions between distinct soil types over 

distances within the range of fungal spore dispersal may prevent the spread of pathogens that are 

sensitive to leaf tissue chemistry or have limited host ranges. Interannually variable conditions 

favoring successful infection by different fungal species each growing season suggest temporal 

barriers to pathogens evolving high virulence on both nonserpentine and serpentine plants (Table 

S5). Clarifying the specific mechanisms that drive differences in serpentine and nonserpentine 

fungal communities will require inoculation experiments to test how plant susceptibility to 

infection by different fungal species changes with plant tissue chemistry and plant genetics. 
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Characterization of comprehensive plant-pathogen interaction networks including all plant 

species co-occurring with S. pulchra in serpentine and nonserpentine grasslands will improve our 

understanding of the role of the surrounding plant community in structuring fungal pathogen 

communities.  

Fungal diversity  

Our work underscores the sparsity of current scientific understanding of plant – fungal 

interactions in natural systems. The novel plant host and plant disease associations reported here 

for nine fungal genera highlight the wealth of plant – fungal interactions that remain to be 

described (Table 2). Because this study is observational, the pathogenicity on S. pulchra of many 

of the fungal species isolated—even those from genera including well-known plant pathogens—

remains unknown. It is possible that some of the isolated fungal taxa are not primary pathogens 

on this species, but endophytes that opportunistically act as secondary pathogens. Inoculation 

experiments and high-throughput sequencing studies to characterize and compare entire fungal 

communities inhabiting symptomatic and healthy S. pulchra leaf tissue will shed light on the 

ecology of the isolated taxa and on the potential for interactions between co-occurring fungal 

species to impact plant health.  

These open questions notwithstanding, S. pulchra appears to host an unusually species-

rich community of culturable fungi within its diseased foliar tissue when compared to other plant 

species’ interactions with both pathogenic and non-pathogenic fungi. Where we isolated 30 

fungal species, past studies that described fungal pathogen diversity for more than 100 different 

plant hosts consistently found fewer than 20 fungal pathogens per species, and almost all hosts 

had fewer than ten pathogens (Mitchell and Power 2003; Hantsch et al. 2013; Rottstock et al. 

2014). The level of fungal diversity we documented is also high compared to that of culturable 
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fungal endophyte communities associated with asymptomatic plant tissues: of 35 plant species 

analyzed by Arnold and colleagues, only five were found to host 30 or more endopyhtes (Arnold 

and Lutzoni 2007; Del Olmo-Ruiz and Arnold 2014). Notably, studies that utilize high-

throughput sequencing techniques to observe both culturable and unculturable endophytic fungi 

frequently report hundreds of fungal OTUs colonizing single host species (e.g., Jumpponen and 

Jones 2009,  Zimmerman and Vitousek 2012). However, such results are difficult to compare to 

our own given the mismatch in the detection capabilities of the methods used. Nonetheless, the 

exceptional diversity of the culturable foliar fungi that inhabit S. pulchra is further indicated by 

species accumulation curves that suggest many more species in this community remain to be 

discovered (Fig. S1), by the lack of close sequence matches in genetic databases for some of the 

species isolated (Table 2), and by the isolation of multiple genera previously unassociated with 

plant hosts in the Poaceae (Table 2). These findings suggest that the characteristics that make the 

California Floristic Province a biodiversity hotspot may extend to the fungal diversity associated 

with this flora (Myers et al. 2000).  

Conclusions 

Fungi associated with foliar disease in the native bunchgrass S. pulchra are relatively 

benign, likely cause minimal fitness impacts (Spear and Mordecai 2018), and contribute 

substantially to the overall biodiversity of California grasslands. Variation between habitats 

appears to play an important role in supporting the fungal diversity observed here, and may also 

reduce disease risk for S. pulchra. The high taxonomic diversity and rarity of serpentine fungi 

demonstrates that this community is potentially at risk of species loss via host-parasite 

coextinction as nonnative annual grasses continue to expand their ranges at the cost of native 

plants, and human activities including development and increased C and N deposition contribute 
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to the loss of serpentine grasslands that already make up <2% of California’s surface area 

(Huenneke et al. 1990; Vallano et al. 2012). This work demonstrates that, in addition to >200 

endemic plant species, California’s serpentine grasslands support unique communities of leaf-

infecting fungi, providing additional motivation for active conservation of native grassland 

communities based on the far-reaching loss of biodiversity across trophic levels associated with 

their disappearance (Sprent 1992; Dunn et al. 2009).   
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Figure legends 

Figure 1. Pathogen damage on Stipa pulchra was consistently low across three years and 

both grassland types. (A) Locations of surveyed nonserpentine sites (blue) and serpentine sites 

(green) along the ridgetop at JRBP. (B) Example of fungal-caused pathogen foliar damage on S. 

pulchra. (C) Mean percentage (bars) and two standard errors (error bars) of diseased leaf area for 

surveyed serpentine and nonserpentine S. pulchra, by year. Damage was similar in both habitat 

types, but differed interannually. The asterisk indicates significantly lower damage in 2015 than 

in subsequent years of the survey. 

Figure 2. Pathogens isolated from Stipa pulchra growing in nonserpentine and serpentine 

grasslands. Bipartite network showing species interactions between S. pulchra plants (left) 

growing in serpentine grasslands (green) and nonserpentine grasslands (blue) and fungal species 

cultured from symptomatic leaf tissue (white bars on the right). The length of each white bar 

indicates the number of isolates in the operational species unit (based on 97% sequence 

similarity). The thickness of lines connecting left and right bars represents the number of times a 

particular fungal species was isolated from S. pulchra in a particular grassland type. The 

nonserpentine fungi came from 15 genera, 8 families, 4 orders, and 3 classes; the serpentine 

fungi came from 20 genera, 14 families, 7 orders, and 5 classes (Tables 1, S1-S5). 

Figure 3. Distinct fungal communities were isolated from Stipa pulchra growing in nearby 

serpentine and nonserpentine sites across years. Non-metric multidimensional scaling 

visualization of serpentine and nonserpentine fungal community similarity. Each point 

corresponds to the combined fungal community of two transects at the same site in the same 

year. Serpentine communities are shown in green and nonserpentine communities are shown in 

blue. Circles, triangles, and squares represent fungal communities sampled in 2015, 2016, and 
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2017, respectively. Ellipses enclose 95% confidence intervals for ordination of serpentine and 

nonserpentine communities. Community similarity decreases with the distance between points. 

PERMANOVA analysis showed a significant effect of soil type on fungal community 

composition (F = 3.623, R2 = 0.0618, p = 0.001).  

Figure 4. Stipa pulchra foliar C and N content differs between habitat types, but does not 

predict mean pathogen damage. (A) Foliar percent C, (B) percent N, and (C) C:N ratio versus 

mean percentage of diseased leaf area for serpentine and nonserpentine S. pulchra plants. 

Wilcoxon rank-sum tests indicated significantly higher foliar percent C and foliar percent N in 

nonserpentine compared to serpentine plants. Pearson’s correlation tests showed no relationships 

between foliar tissue chemistry and the amount of symptomatic leaf tissue observed on 

individual plants.   
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Supporting Information 

Fig. S1 Species accumulation curves for serpentine (green) and nonserpentine (blue) fungal 

communities isolated from Stipa pulchra leaves, for all samples over all years. 

Fig. S2 Fungal species abundance by rank for serpentine (green) and nonserpentine (blue) fungal 

communities on Stipa pulchra leaves. 

Table S1 Genus counts for serpentine and nonserpentine fungal communities isolated from Stipa 

pulchra leaves.  

Table S2 Family counts for nonserpentine and serpentine fungal communities isolated from 

Stipa pulchra leaves.  

Table S3 Order counts for nonserpentine and serpentine fungal communities isolated from Stipa 

pulchra leaves.  

Table S4 Class counts for nonserpentine and serpentine fungal communities isolated from Stipa 

pulchra leaves.  

Table S5 Presence and absence of genera in nonserpentine and serpentine fungal communities 

isolated from Stipa pulchra leaves, by year. 

Table S6 ANOVA table for effects of habitat type, year, and habitat type x year interactions on 

site-level fungal community diversity in terms of Fisher’s alpha.  

Table S7 ANOVA table for effects of habitat type, year, and habitat type x year interactions on 

site fungal species richness.  

Table S8 Pairwise PERMANOVA table for effects of year on fungal community composition. 

Table S9 Results of chemical analysis of serpentine and nonserpentine Stipa pulchra foliar 

tissue. 

Table S10 Analysis of deviance table for multivariate test of fungal community responses to 
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foliar C and N content. 
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Tables 

Table 1. Pathogen damage on Stipa pulchra varied significantly by year, but not by habitat 

type. ANOVA results for log-transformed transect-level measurements of percentage of 

symptomatic living tissue on serpentine and nonserpentine S. pulchra (N = 3 sites per habitat 

type per year, with 12 transects per site per year, for a total of 36 serpentine and 36 

nonserpentine transects over all three years). The first column lists the factor(s) tested; the 

second column degrees of freedom (df); the third column the sum of squares (SS); the fourth 

column the mean squared error (MSE); the fifth column the F-value; and the 6th column the p-

value. P-values < 0.05 are marked with an asterisk. 

Variables df SS MSE F value p-value 

habitat type 1 5.8 5.81 2.63 0.105* 

year 2 31.4 15.68 7.10 9.53 x 10-4* 

habitat type x 

site 4 20.2 5.05 2.29 0.0598* 

habitat type x 

year 2 9.9 4.96 2.25 0.107* 
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Table 2. Fungal species isolated from symptomatic Stipa pulchra leaves were unevenly 

distributed across habitat types. Each row represents one of the species isolated. The columns 

indicate the isolation frequency for each species in each soil type. Asterisks indicate fungal 

species in genera not previously reported from plant hosts in the Poaceae; daggers indicate 

species not previously reported in association with any plant disease symptoms; double daggers 

indicate species in genera not previously reported in association with foliar disease symptoms.  

 
Species Nonserpentine Serpentine  
Alternaria cf. infectoria 26 21  
Keissleriella sp. † 19 8  
Drechslera cf. fugax 17 1  
Stemphylium sp. 15 8  
Ramularia cf. proteae 11 37  
Drechslera sp.  9 1  
Neoascochyta sp. 7 3  
Cladosporium sp. 6 3  
Alternaria cf. eureka 5 2  
Parastagonospora cf. avenae 5 0  
Pyrenophera cf. chaeotmioides 5 2  
Pyrenophera cf. lolii 4 3  
Phaeosphaerieaceae sp. 2 3 5  
Pleosporaceae sp. 3 2  
Drechslera cf. nobleae 1 5  
Epicoccum sp. 1 0  
Heyderia sp. *†  1 1  
Parastagonospora cf. cumpignensis 1 0  
Parastagonospora sp. 1 0  
Phaeosphaeria sp. 1 2  
Podospora sp.† 1 0  
Phaeosphaerieaceae sp. 1 1 0  
Chalastospora cf. gossypii ‡ 0 1  
Hyphodiscus cf. brevicollaris *† 0 1  
Nemania cf. serpens *‡ 0 1  
Phaeophlebiopsis sp. *† 0 1  
Plectania sp. *† 0 2  
Pseudoseptoria sp. 0 1  
Helotiales sp. 0 1  
Wojnowiciella sp.* 0 1  
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Table 3. Fungal communities were distinct on Stipa pulchra plants growing in serpentine 

versus nonserpentine grasslands, across all years. Fungal community similarity by habitat 

type and year. The leftmost column lists the fungal communities considered, with the number of 

species in each community in parentheses. The second column lists Fisher’s alpha for each 

community. The third column shows the number of shared species and, in parentheses, the 

percentage of total observed species that were shared for each pair of communities. The 

rightmost column lists the estimated Morisita-Horn community overlap value, based on absolute 

species abundances, for each pair of communities. The Morisita-Horn index ranges from 0 to 1, 

with 1 indicating complete overlap. 

 Fungal community pair Fisher's alpha 
Shared 
species 

Morisita-Horn 
Similarity Index 

All years serpentine (24) 9.324 16  0.675 
All years nonserpentine (22)  7.261  (53.0%)  
2015 serpentine (11) 7.955 5  0.535 
2015 nonserpentine (12) 5.205  (27.8%)   
2016 serpentine (16) 7.897 11   0.766 
2016 nonserpentine (13) 5.861  (61.1%)   
2017 serpentine (12) 6.784 8  0.725 
2017 nonserpentine (12) 5.136  (50.0%)   
2015 serpentine (11) 7.955 7  0.707 
2016 serpentine (16)  7.897  (35.0%)   
2015 serpentine (11) 7.955 5 0.721 
2017 serpentine (12)  6.784  (27.8%)   
2016 serpentine (16) 7.897 7 0.786 
2017 serpentine (12)  6.784  (33.3%)  
2015 nonserpentine (12) 5.205 6 0.668 
2016 nonserpentine (13)  5.861  (31.5%)   
2015 nonserpentine (12) 5.205 5 0.295 
2017 nonserpentine (12)  5.136  (26.3%)   
2016 nonserpentine (13) 5.861 7 0.882 
2017 nonserpentine (12)  5.136  (38.9%)   
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Table 4. PERMANOVA results show significant effects of both habitat type and year on 

fungal foliar community composition (N = 18 serpentine and 18 nonserpentine sites). From 

left to right, columns list factors tested, degrees of freedom (df), sum of squares (SS), mean 

squared error (MSE), F-value, and p-value. Statistically significant p-values (p < 0.05) are 

marked with an asterisk. The distance factor compares communities at near (<600m) vs. far 

(>600m) distances from one another. 

  df SS MSE F-Value p-value 

habitat type 1 0.5700 0.56997 5.1119 0.003* 

year 2 1.2611 0.63055 5.6552 0.001* 

distance 1 0.0767 0.07667 0.5850 0.675   

habitat type x year 2 0.3339 0.16697 1.4975 0.224 

habitat type x 

distance 1 0.0515 0.05147 0.3927 0.815 

distance x year 2 0.1697 0.08485 0.6473 0.734 
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Figures

 

Figure 1. 
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Figure 2. 
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Figure 3. 
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Supporting Information 
 

 
Figure S1. Species accumulation curves for serpentine (green) and nonserpentine (blue) 

fungal communities isolated from Stipa pulchra leaves over three years of surveys. The 

cumulative number of unique fungal OTUs (based on 97% sequence similarity; y-axis) is plotted 

against the number of S. pulchra leaf tissue pieces sampled (x-axis). 
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Figure S2. Fungal species abundance by rank for serpentine (green) and nonserpentine 

(blue) fungal communities on Stipa pulchra leaves. Each point represents the number of times 

a single species was isolated from S. pulchra leaves in each habitat type. 
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Table S1. Genus counts for serpentine and nonserpentine fungal communities isolated from 

Stipa pulchra leaves. Numbers in each column represent the number of times a genus was 

isolated from S. pulchra leaves in each habitat type. 

 

 Genus Nonserpentine Serpentine 
Alternaria 31 23 
Drechslera 27 7 
Keissleriella 19 8 
Stemphylium 15 8 
Ramularia 11 37 
Pyrenophera 9 5 
Neoascochyta 7 3 
Parastagonospora 7 0 
Cladosporium 6 3 
Phaeosphaerieaceae 4 5 
unknown Pleosporaceae 3 2 
Epicoccum 1 0 
Heyderia 1 1 
Phaeosphaeria 1 2 
Podospora 1 0 
Chalastospora 0 1 
Hyphodiscus 0 1 
Nemania 0 1 
Phaeophlebiopsis 0 1 
Plectania 0 2 
Pseudoseptoria 0 1 
unkown Helotiales 0 1 
Wojnowiciella 0 1 
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Table S2. Family counts for nonserpentine and serpentine fungal communities isolated from 

Stipa pulchra leaves. Numbers in each column represent the number of times a family was 

isolated from S. pulchra leaves in each habitat type. 

 

Family Nonserpentine Serpentine 
Pleosporaceae 85 45 
Lentitheciaceae 19 8 
Phaeosphaeriaceae 12 8 
Mycosphaerellaceae 11 37 
Didymellaceae 8 3 
Cladosporiaceae 6 3 
Helotiaceae 1 1 
Lasiosphaeriaceae 1 0 
Dothioraceae 0 1 
Hyaloscyphaceae 0 1 
Meruliaceae 0 1 
Pleosporales incertae 
sedis 0 1 
Sacrosomataceae 0 2 
unknown Helotiales 0 1 
Xylariaceae 0 1 
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Table S3. Order counts for nonserpentine and serpentine fungal communities isolated from Stipa 

pulchra leaves. Numbers in each column represent the number of times an order was isolated 

from S. pulchra leaves in each habitat type. 

 

Order Nonserpentine Serpentine 
Pleosporales 124 65 
Capnodiales 17 40 
Helotiales 1 3 
Sordariales 1 0 
Dothideales 0 1 
Pezizales 0 2 
Polyporales 0 1 
Xylariales 0 1 
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Table S4. Class counts for nonserpentine and serpentine fungal communities isolated from Stipa 

pulchra leaves. Numbers in each column represent the number of times a class was isolated from 

S. pulchra leaves in each habitat type. 

 

Class Nonserpentine Serpentine 
Dothideomycetes 141 106 
Leotiomycetes 1 3 
Sordariomycetes 1 1 
Agaricomycetes 0 1 
Pezizomycetes 0 2 
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Table S5. Presence (P, shaded) or absence (A, unshaded) of genera in nonserpentine and 

serpentine fungal communities isolated from Stipa pulchra leaves, by year. 

 

 
 
 

Genus 
Nonserpe
ntine 2015 

Nonserpentin
e 2016 

Nonserpentin
e 2017 

Serpentine 
2015 

Serpentine 
2016 

Serpentine 
2017 

Alternaria P P P P P P 

Chalastospora A A A P A A 

Cladosporium P A A P A P 

Drechslera P P P P P P 

Epicoccum A A P A A A 

Heyderia A A P A A P 

Hyphodiscus A A A A P A 

Keissleriella P P P P P P 

Nemania A A A A A P 

Neoascochyta A P P A P P 

Parastagonospora P A P A A A 

Phaeophlebiopsis A A A A P A 

Phaeosphaeria A P A P P A 

Plectania A P A A A P 

Podospora A P A A A A 

Pseudoseptoria A A A A P A 

Pyrenophera P P P P P P 

Ramularia P P A P P P 

Stemphylium A P P P A P 
unknown 
Phaeosphaerieaceae P P A A P A 
unknown 
Pleosporaceae A P P A P P 

unkown Helotiales A A A A P A 

Wojnowiciella A A A P A A 
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Table S6.  ANOVA table for effects of habitat type, year, and habitat type x year interactions on 

site-level fungal community diversity in terms of Fisher’s alpha. Columns, from left to right, list 

the variable tested, the degrees of freedom, the sum of squares, the mean squared error, the F 

value, and the p-value. 

 

  df SS MSE F value p-value 
Habitat type 1 0.10 0.10 0.010 0.92 

Year 2 3.63 1.82 0.18 0.84 
Habitat type x 

Year 2 17.35 8.68 0.86 0.45 
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Table S7. ANOVA table for effects of habitat type, year, and habitat type x year interactions on 

site fungal species richness. Columns, from left to right, list the variable tested, the degrees of 

freedom, the sum of squares, the mean squared error, the F value, and the p-value. 

 

  df SS MS F value p-value 
Habitat type 1 6.72 6.72 1.07 0.32 

Year 2 3.11 1.56 0.25 0.78 
Habitat type x 

year 2 8.44 4.22 0.67 0.53 
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Table S8. Pairwise PERMANOVA table for effects of year on fungal community composition. 

From left to right, columns list the pair of years being compared, the F-value, R2, and the 

Bonferroni-adjusted p-value. P-values < 0.05 are marked with an asterisk. 

Pair F-value R2 
Bonferroni 

p-value 
2015 vs 2016 2.616 0.207 0.114* 
2015 vs 2017 5.983 0.374 0.009* 
2016 vs 2017 4.397 0.304 0.018* 
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Table S9. Results of chemical analysis of serpentine and nonserpentine S. pulchra foliar tissue. 

The Serpentine and Nonserpentine columns report elemental content in percentage of leaf tissue 

by dried weight. The standard error of each mean is listed in parentheses. W, in the third column, 

is the Wilcoxon-rank sum test statistic comparing serpentine and nonserpentine mean values. 

Asterisks denote statistically significant p-values (p < 0.05). 

 

Element Serpentine Nonserpentine W p-value   
C 38.97 (3.44 x 10-1) 41.48 (2.35 x 10-1) 2713 1.65 x 10-7 * 
N 1.44 (4.96 x 10-2) 1.61 (3.84 x 10-2) 2346 1.10 x 10-3 * 
C:N 28.72 (8.74 x 10-1) 26.54 (6.18 x 10-1) 1398 6.62 x 10-2 
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Table S10. Analysis of deviance table for multivariate test of fungal community responses, 

based on fungal species presence/absence data, to foliar percent C, foliar percent N, foliar C:N 

ratio, and habitat type. Only fungal species represented by five or more isolates in 2016 were 

considered. 

 

 
df deviance p-value 

Habitat type 96 20.93 0.01* 

Foliar %C 95 7.98 0.35 

Foliar %N 94 9.02 0.33 

Foliar C:N 93 6.896 0.63 
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