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Abstract8

Cell shapes and connectivities evolve over time as colony shapes change or embryos develop.9

Shapes of intercellular interfaces are closely coupled with the forces resulting from actomyosin10

interactions, membrane tension, or cell-cell adhesion. While it is possible to computationally in-11

fer cell-cell forces from a mechanical model of collective cell behavior, doing so for temporally12

evolving forces in a manner that is robust to digitization difficulties is challenging. Here, we in-13

troduce a method for Dynamic Local Intercellular Tension Estimation (DLITE) that infers such14

temporal force evolutions with less sensitivity to digitization ambiguities or errors. This method15

builds upon prior work on single time points (CellFIT). We validate our method using synthetic16

geometries. DLITE’s inferred cell colony tension evolutions correlate better with ground truth17

for these synthetic geometries than tension values inferred from methods that consider each time18

point in isolation. We introduce cell connectivity errors, angle estimate errors, connection mislo-19

calization, and connection topological changes to synthetic data and show that DLITE has reduced20

sensitivity to these conditions. Finally, we apply DLITE to time series of human induced pluripo-21

tent stem (hIPS) cell colonies with endogenously expressed GFP-tagged ZO-1. We find major22

topological changes in cell connectivity, e.g. mitosis, can result in an increase in tension. This23

supports a correlation between the dynamics of cell-cell forces and colony rearrangement.24
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Significance statement

Cell-cell tensions play an important role in the dynamics of tissue morphogenesis. Mathematical

modeling tools have helped understand the role of cell-substrate and cell-cell adhesion in tissue or-

ganization. In particular, recent modeling studies have shown that an inferential approach without

a constitutive equation can estimate distribution of tensions in a single image of a cell monolayer

(CellFIT). Here, we include the dynamics of monolayer morphogenesis in the estimation of cell-cell

tensions. Such a formulation, termed DLITE, performs better across time in both synthetic geometries

and time series of hIPS cell colonies with endogenously expressed GFP-tagged-ZO-1. We also show

that DLITE is robust to digitization ambiguities during segmentation. Such a method can shed some

light on physical mechanisms that drive morphogenesis.
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Introduction28

Cell shape, forces, and function are closely related [1, 2, 3, 4]. Cell shape affects the organization29

and transmission of cytoskeletal forces and the structures that create them [5, 6, 7]. Cell membrane30

tension partially governs processes from intracellular endocytic bud morphology during trafficking31

[8] to tissue level remodeling events such as wound healing [9], development [10], expansion [11],32

migration [12, 13] and cancer invasion [14]. Mechanical rearrangement occurs as cells transmit these33

forces across the membrane [15] and cell-cell adhesion complexes such as adherens and tight junctions34

[16, 17]. These apical cortical complexes [18] depend on the activity of the actomyosin cytoskeleton35

[19, 20]. The mechanotransduction of intercellular forces can alter and regulate biochemical signalling36

pathways [21, 22] with force and deformation at a particular time point partially regulating future force37

and deformation.38

Force-mediated collective behaviours are crucial for the dynamics of tissue reshaping. This is39

commonly evidenced by apoptosis in cell cultures or by the intercalation and extrusion of cells during40

development [23, 24]. We can examine the role of tension in tissue remodeling using direct force mea-41

surement techniques such as atomic force microscopy (AFM) or micro-pipette aspiration [25, 26, 27].42

These direct measurement techniques offer precise force characterization in cells and tissues but per-43

turb the actomyosin network [28, 29]. As a result, these methods can alter the force responses of the44

system at subsequent time points. Alternative optical measurement techniques that use Förster Res-45

onance Energy Transfer (FRET) tension probes or traction force microscopy (TFM) can assay force46

[30, 31, 32] without the mechanical disruption associated with direct measurements [33]. These op-47

tical approaches can be applied across extended periods but, like the prior physical techniques, they48

can be difficult to implement in a high-throughput context. Each of these measurement techniques has49

its distinct set of advantages, depending on the biological problems being studied. Complementary50

to these approaches, force inference from the geometry of the cell boundary can allow for the esti-51

mation of normalized tensions solely from images of labeled confluent cells without further condition52

requirements.53

Intercellular forces can be inferred at cell-cell interfaces using a mechanical model predicated on54

the assumption that forces are balanced where multiple cell-cell interfaces meet [34, 35, 36]. These55

mechanical models cover a range of complexities, assumptions, and use cases [37]. Here we deal56

with the subset devoted to the representation of tensions in a two-dimensional plane of curved edges57
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digitized from the apical interfaces of a confluent cell colony (Fig. 1A,B). We build upon prior rep-58

resentations of this system, notably that used in the Cellular Force Inference Toolkit (CellFIT) [34],59

and develop an alternate problem formulation that treats tension estimation as a temporally evolv-60

ing problem, borrowing information from prior time points to increase model prediction stability and61

boost resistance to ambiguities or errors that arise during the digitization process (Fig. 1C). This pro-62

vides a non-disruptive means to infer intercellular forces in time-lapse imaging of cell colonies. We63

term this technique Dynamic Local Intercellular Tension Estimation, or DLITE. Here, we validate64

DLITE against a range of synthetic data, for which known tension ground truths are available, and65

use it to predict tensions in time series of human induced pluripotent stem (hIPS) cell lines with the66

endogenously GFP-labeled tight junction protein ZO-1.67

Methods68

Assumptions69

We employed a curvilinear description of a tissue by defining a colony as a directed planar graph70

comprising cells (c), edges (e) and nodes (n) (Fig. 1B, for more details see SOM and [38, 34]). Forces71

exerted by the actomyosin cortex result in tangential stresses in the form of tension (t) along an edge.72

Cells resist deformation by means of a normal stress exerted as pressure (p) inside every cell. Along73

each edge, we assumed that the interfacial tensions are constant and that the intracellular pressures74

are uniform within a cell. At the length scale of the whole cell, we ignored membrane bending and75

assumed that edge tensions and cell pressures exclusively govern cell shape. We treated viscous forces76

as negligible and therefore assumed that the colony shape is quasi-static, i.e. at each time point the77

colony is in mechanical equilibrium.78

Governing equations and system specification79

A general force balance at every node in a colony can be written as80

nresidual =

∣∣∣∣∣
en∑
i=1

tivi

∣∣∣∣∣︸ ︷︷ ︸
(Tension balance per node)

, (1)

where n is a node, t, and v represent the tension/tangential stress and local tangent unit vector of an81
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edge connected to node n respectively, en is the number of edges connected to node n and nresidual is82

the magnitude of the resultant tension vector coming into a node (ideally 0). This notation is shown83

in Fig. 1B. This equation applies when employing a curvilinear description of tissue and applies to a84

node that is both connected to at least three edges and is in mechanical equilibrium [34]. The pressure85

difference between adjacent cells can be estimated using Laplace’s law as86

eresidual = pi − pj −
t

r︸ ︷︷ ︸
(Pressure balance per edge)

, (2)

where e is an edge, pi and pj are the pressure of adjacent cells i and j respectively and eresidual is87

the residual error from the pressure balance. Here, t and r represent the tension and radius of the88

interfacial edge e. The system of equations for tension and pressure are generally overdetermined;89

there is no unique solution to this system [34]. Therefore, we can only infer the relative distribution90

of tensions from the shape of the edges and not the absolute values.91

To compute the dynamics of cell-cell forces, we reformulated the tension balance (Eq. 1) as a local92

optimization problem defined as93

minimize
t

f(t) =
N∑
j=1

(
nj,residual +

nj,residual∑enj

i=1 | tivi |︸ ︷︷ ︸
Regularizer

)
,

(3)

where nj and enj represent the jth node and the number of edges connected to node nj , and N is the94

total number of nodes in the colony. Here, nj,residual is the tension residual at a given node (Eq. 1)95

and the regularizer is the magnitude of the tension residual divided by the sum of the magnitude of the96

tension vectors acting on that node. Since tension cannot be negative, we set a lower tension bound97

of zero. In Eq. 3, the regularized term ensures that the system of equations does not converge to the98

globally trivial solution (tension = 0 along all edges) [39]. Pressure in each cell was computed using99

minimize
p

g(p) =
E∑
j=1

e2j,residual, (4)

where E is the total number of edges in the colony and ej is the residual error from the pressure balance100

at the jth edge. Tension and pressure solutions were normalized to an average of 1 and 0 respectively,101

similar to prior work [34, 36, 35]. In contrast to previous methods, DLITE uses the values of tension102

at each edge and pressure in each cell from the previous time point as an initial guess for the current103
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timepoint. This mode of time-stepping in the optimization procedure enables us to use information104

from previous time points to predict the values of tension and pressure at the current time point and105

forms the basis of DLITE’s improved performance across time-series.106

Tracking nodes and edges107

An essential distinguishing characteristic of DLITE is the ability to provide an initial guess for each108

edge tension and each cell pressure, allowing us to incorporate a time history of cell-cell forces.109

However, this requires node, edge, and cell tracking over time. To implement tracking we first as-110

sign labels to nodes, edges, and cells at the initial time point. Then, nodes are tracked by assigning the111

same label to the closest node at the next time point. Edges are tracked by comparing edge angles con-112

nected to nodes with the same label and cells are tracked by matching cell centroid locations across113

time. Our model optimization pipeline was implemented using Scipy’s unconstrained optimization114

algorithm ‘Limited-memory Broyden–Fletcher–Goldfarb–Shanno (L-BFGS)’ [40]. The global opti-115

mization technique ‘Basinhopping’ was used to seek a global minimum solution at the first time point116

[41].117

Geometries for model validation118

Validation of DLITE requires the generation of dynamic 2D geometries with curvilinear edges whose119

cortical tensions are known. Many standard mathematical models describe the modification of cell-120

shape via applied forces that are either explicitly or implicitly specified. Such models include cellular121

Potts models [42, 43], Vertex models [44, 45] and cell-level finite element models [46, 47, 48]. Im-122

plicit models define an energy function relating the variation of tension and other properties in a 2D123

monolayer to cell shape. The gradient of this energy function leads to the movement of each vertex.124

Here, we employ an implicit model using the energy minimzation framework Surface Evolver [49],125

which is designed to model soap films. The energy function (W ) was defined as126

W =

E∑
j=1

tjLj︸ ︷︷ ︸
Tension energy

+

C∑
k=1

pkAk︸ ︷︷ ︸
Pressure energy

, (5)

where tj , Lj are the tension and length of the jth edge and pk, Ak are the pressure and area of the kth127

cell respectively. E and C are the total number of edges and cells in the colony (see SOM for details).128
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Here, the tension energy represents a net energy contribution due to adhesion forces that stabilize129

a cell-cell interface and actomyosin cortical tensions that shorten cell-cell contacts. Pressure was130

enforced as a Lagrange multiplier for an area constraint. Cell boundaries were free to move along the131

surface. Such a model outputs a minimum energy configuration through gradient descent, providing132

ground truth tensions to which we compare inference model outputs. While the model utilized here133

describes a monolayer as a 2D surface embedded in 3D space, it is possible to extend this work to 3D,134

covering the complex 3D structure present in many systems [36].135

Sources of error due to digitization136

Transforming single or multi-channel z-stacks of cell colonies into a connected network suitable for137

tension inference requires: (i.) Image pre-processing to produce a binary or otherwise simplified rep-138

resentation, (ii.) Skeletonization, creating a network of 0-width lines connecting nodes at junction139

points and (iii.) Post-processing of the skeletonized representation. Inherent ambiguities in this pro-140

cess introduce several challenges to successful tension inference. Some of these challenges, such as141

incorrectly detecting an edge, occur in single frames (Fig. 1C, Time t-1) while others, such as edge142

tracking across biological network reorganization, are only present in time series data (Fig. 1C, Time143

t). These challenges tend to occur more frequently as digitization is increasingly automated, creating144

a trade-off between data reliability and throughput.145

Results146

DLITE is built to use the tension at a specific cell-cell junction at a given time point as an initial guess147

to calculate tensions at the next time point. This logical progression then allows us to infer forces over148

time and test the strength of the inference method by correlation to ground truth values for synthetic149

geometries. We demonstrate robustness and sensitivity of DLITE by validating it against ground-truth150

tensions for multiple synthetic geometries, multiple tension perturbations within a colony, connectiv-151

ity ambiguities at single or multiple time points, curve-fit errors, node location errors, and topological152

changes like the shrinkage of cell-cell contacts. At each point, we compare predictions to those pro-153

duced by the state of the art CellFIT technique. We then apply DLITE to movies of skeletonizations154

of endogeneously tagged tight junction ZO-1 (zonulae occludentes-1) in an hIPS cell line and demon-155

strate improved tension stability in the inference of cell-cell forces during colony dynamics.156
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Validation of DLITE as a dynamic tension-inference tool157

We validated DLITE in three steps. First, we compared edge tension and cell pressure solutions158

obtained using our implementation of the CellFIT algorithm and DLITE to ground truth values in159

synthetic geometries made available via the current version of CellFIT called ZAZU (Fig. S1). We160

re-implemented the CellFIT algorithm in Python because the source code of ZAZU is not publicly161

available. Both our re-implementation of CellFIT (Fig. S1B) and DLITE (Fig. S1C) perform identi-162

cally with respect to the ground truth for single frames (Fig. S1A), with an average error of ∼ 0.02163

(Fig. S1D).164

Second, to generate a time-series of synthetic geometries, we simulated colonies that deformed165

smoothly across time using Surface Evolver [49]. Initial geometries were created from random166

Voronoi tessellations followed by Lloyd relaxation [50]. In order to generate a time-series, we per-167

formed multiple Evolver simulations where the tension of a few randomly selected edges were either168

increased or decreased between time points (Fig. 2A). Average edge tension at each time point was169

normalized to 1. We then stripped all tension and pressure information from the resulting shapes and170

used these shapes as input to our method. Using DLITE and CellFIT separately, we inferred colony171

forces and compared the two approaches (Fig. 2B, D). Initially, both methods performed identically,172

but began to show divergence after 3 frames. Importantly, we observed that the values of tension pre-173

dicted using our method remain closer together over time and are better correlated (r = 0.94 (DLITE)174

vs r = 0.75 (CellFIT)) to the ground truth (Fig. 2 B, D). Further, we observed that the variation in ten-175

sion defined by the change in edge tension over time denoted as ∆tension, using DLITE also correlates176

better to the ground truth change in edge tension (Fig. 2C). The improved performance of DLITE at177

later time points (Fig. S2B) results from DLITE use of information from prior time points to improve178

tension predictions in the presence of large curve-fit residuals (Fig. S2A), thereby reducing sensitivity179

to curve-fitting errors. In the absence of an informed prior, i.e. when we use random initial guesses180

sampled from a random Gaussian distribution at every time point, we observed poor performance of181

DLITE, with correlations ranging from 0.75 to 0.89.182

Third, to ensure robustness of the performance of DLITE, we tested multiple tension perturbations183

via different combinations of increasing and decreasing edge tension in the same geometry (Fig. S4)184

and similar perturbations in other randomly generated geometries (Fig. S5). In all cases, we observed185

equivalent or better correlation of both the tension and change in edge tension with the ground truth186
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using DLITE as compared to CellFIT.187

DLITE is robust to digitization ambiguities188

The input to a force-inference model is a map of colony shape as a series of curved edges and the nodes189

where edges join (Fig. 1B). Segmentation transforms image data into information about the isolated190

geometric structures [51, 52]. Subsequently, skeletonization methods extract lines that characterize191

the topology and connectivity of the tension bearing network in the colony. Ambiguities or errors in192

this mapping present challenges to force inference techniques that rely on precise colony connectivity193

and edge tracing [34, 35, 36]. Some of these conditions are shown in Fig. 1C. New methods have194

improved the quality and repeatability of predicted network topology and connectivity; both deep195

learning models and traditional computer vision techniques have made significant advances in 2D/ 3D196

biological segmentations [53, 54, 55, 56]. Despite these advances, current skeletonization methods197

continue to require semi-manual post-processing because of the ambiguities present in the structures198

during imaging and errors resulting from the image capturing modalities. This semi-manual cleanup199

becomes increasingly impractical for larger colonies and time series. As a result, we require force-200

inference techniques robust to errors in mapping. As we demonstrate below, our inference method201

has increased robustness to multiple edge/node mapping errors. Therefore, our method decreases202

the number of manual corrections required, and increases the tractability for inferring forces. Here203

we evaluate the effects of edge/node mapping errors on force-inference in a single image and in a204

time-series.205

We first analyzed, at a single time point, the effect of a missing intersection between two edges, a206

commonly occurring connectivity error. As before, we generated a synthetic colony image to initialize207

the system with known edge tensions. Fig. 3A shows a random Voronoi tessellation generated using208

Surface Evolver where 50 edges (out of 330 total) have larger values of tension than others. The ground209

truth tensions were the inputs given to Surface Evolver (Fig. 3A). A single edge was deliberately traced210

incorrectly to introduce a connectivity error (Fig. 3A, inset). This error resulted in the loss of a triple211

junction and loss of cellular integrity. Since the node of interest is now connected to two edges instead212

of three, we can no longer conduct a tension balance at that location. Such an ill-posed problem213

results in a singular tension matrix Gγ (Eq. 6), implying that CellFIT is unable to infer a correct214

tension distribution (Fig. 3A&B). However, the use of a regularizer in DLITE (Eq. 3) reduces the215
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effect of local tension errors on the global data set. As a result, we find that at a given time point,216

DLITE is able to provide a good estimate of the tension of the neighboring edges, even in the presence217

of connectivity errors (Fig. 3C, see also Figs. S6, S7).218

A commonly occurring digitization challenge results from poor estimation of edge curvature due219

to incorrect values of between-edge angles at a particular node. Errors in curve-fitting can lead to poor220

tension residuals (Eq. 1) or large condition numbers of tension matrices (Eq. 6), which is defined as221

the ratio of the largest to smallest singular values in the SVD (Singular Value Decomposition) of the222

given tension matrix. Subsequently, this leads to poor inference of tension (Fig. 2). This is especially223

problematic when cell-cell junctions are distinctly non-circular, as they commonly are. To simulate224

this, we generated a time-series of synthetic geometries using Surface Evolver such that later time225

points are distinctly non-circular (Fig. S3A). The large curve-fit residuals at later time points (Fig.226

S3B) lead to ill-conditioned tension matrices and errors in tension inference (Fig. S3C). However,227

DLITE uses tension information from prior time points to retain the distribution of tensions and is not228

poorly scaled by these curve-fit errors (Fig. S3C).229

Another major digitization challenge for force-inference models is the accurate determination of230

node locations. Localization errors in node coordinates also have the downstream impact of changing231

connected edge curvatures (Fig. 5B). We simulated this type of error by adding levels of Gaussian232

noise to nodes in a synthetic colony (Fig. 5A, red nodes). Noise levels 1 (Fig. 5C, F), 2 (Fig. 5D, G)233

and 3 (Fig. 5E, H) refer to the Gaussian noise terms with a mean of 0 and standard deviations of 0.1,234

0.5, and 1 respectively. Red node coordinates are (480.95, 525.7), (487.76, 536.94), (498.63, 522.1),235

(524.25, 503.43), (535.62, 515.97), arranged from left to right. In all cases, we observed equivalent236

(Noise level 1) or improved performance (Noise levels 2, 3) when using DLITE compared to CellFIT.237

Thus, DLITE offers improved quality of tension inference in the presence of ambiguities in node238

location.239

Finally, we considered a class of mapping challenges that are unique to time-series data – identifi-240

cation of edges from one frame to the next. Misidentification of edges frequently occurs when an edge241

is lost for a single frame, severing the edge’s connection to its prior label. Fig. 3D shows a time-series242

with a missing edge (edge label 33) and two missing cells at time point 8. The missing edge leads243

to the loss of a triple junction, and consequently a singular tension matrix (Fig. 3E, CellFIT). For244

tracking purposes, missing an edge also means that the edge that was being tracked up to that point245

no longer exists, and therefore a new edge label is assigned. Since edges with new labels do not have246
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an initial tension guess from an identical label at prior time points, these edges are given an initial247

guess for the value of tension equal to the average initial guess of all edges connected to that edge.248

By using such a scheme, DLITE can predict tension and ∆tension (change in edge tension of an edge249

label between adjacent time points) that correlates well with the ground truth (Fig. 3E, F). Thus, in250

both images and movies of colonies, we find that use of information from the neighbouring region251

allows DLITE to handle digitization ambiguities and errors better and robustly predict the distribution252

of cell-cell forces.253

DLITE is robust to topological changes254

Network topology or the structure of edges and vertices often display changes in time-series data. In255

Fig. 3D, for example, there are two topological changes at time points 6 and 8 (edge labels 8 and 25256

respectively) that result in differences between CellFIT and DLITE (Fig. 3E, F), with DLITE showing257

better correlation to the ground truth. Handling of a time-ordered network requires the tracking of258

nodes, edges, and cells over time. This can be done in 2 ways – if, for example, a single edge ceases259

to exist at a certain time point, we can choose to either keep that edge label and assume that it has260

temporarily left the field of view or assign new edge labels ensuring that the lost edge label ceases261

to exist [57]. Here, we choose the second option in order to condition the network based only on the262

immediately prior time point. Thus, an edge label that could not be tracked after a time point no longer263

exists and is assigned a new label. These rules were applied to nodes and cells as well.264

If the observed topologies of a cellular network are constantly changing, how then does it affect265

inferred cell-cell forces? To study the effect of topological changes, we take advantage of the fact266

that decreasing the tension of two edges in a triple junction results in a decrease of the length of the267

third connected edge in Surface Evolver. Fig. 4A shows an example time series where edge label 15268

disappears at time point 18. This single topological change leads to an ill-conditioned tension matrix269

(Eq. 6, Fig. 4B, C). However, DLITE retains the correct distribution of tensions at time point 18 (see270

also Fig. 3E, edge label 25 at time point 8 and Fig. S8A) using the initial guess from prior time points.271

While this specific network structure led to an ill-conditioned tension matrix after a single edge loss,272

this is not always the case. If the tension matrix is well-conditioned after the topological change (Fig.273

3E, edge label 8 at time point 6 and Fig. S8B), then CellFIT retains a good solution quality. However,274

∆tension is less smooth, and both the tension and ∆tension still correlate better to the ground truth275
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while using DLITE (Fig. 3E,F and Fig. S8B). Thus, force inference in dynamic network topologies276

benefits from incorporating a temporal history of cell-cell forces.277

Application to ZO-1 tight junctions278

Finally, we applied DLITE to experimental images of colonies of hIPS cells. ZO-1 in hIPS cells was279

tagged at its endogenous locus with mEGFP and visualized using a spinning confocal disk microscope280

(see SOM for more details). We chose this system because tight junctions (or zonulae occludentes)281

are known to form a selective barrier, regulating paracellular diffusion through the spaces between282

cells. Injury of tight junctions can impair barrier function, leading to complications in lungs [58, 59],283

kidneys [60], eyes [61] or the small intestine [62]. The actin cytoskeleton plays an important role in284

the regulation of this barrier function [63], and is connected to the rest of the tight junction complex285

through ZO-1 proteins [64, 65]. Recent studies suggest that actin polymerization and transient Rho286

activation (‘Rho flares’) act to quickly restore barrier function upon localized ZO-1 loss at cell-cell287

contacts [66]. Mechanical cues from the polymerization and branching of the actin network can lead288

to reshaping of tight junctions, resulting in varying barrier phenotypes.289

Using a skeletonization of segmented GFP images, we predicted the evolution of intercellular290

forces in three different ZO-1 time series using both DLITE and CellFIT (Fig. 6A, B and C). Since no291

ground truth is available in this case, we determined the quality of predicted tensions using condition292

numbers (κ) of the tension matrix (Eq. 6) and tension residuals. We note that the relative distribution of293

tensions range from 0 to 3, such that the average tension is normalized to 1. The time interval between294

adjacent time points was 3 minutes. The example frames shown in Fig. 6A, B, C are organized as raw295

GFP (upper), CellFIT predicted tensions (middle) and DLITE predicted tensions (lower). In every296

frame, we observed at least one kind of digitization error, leading to poor tension matrix condition297

numbers or tension residuals. Single frame errors such as curvature errors (Fig. 6A - Time 0, κ = 69298

and Fig. 6B - Time 0, κ = 23 ), connectivity errors (Fig. 6A - Time 10, κ = 136 and Fig. 6C - Time 6,299

κ = 1018), node location errors (Fig. 6B - Time 5, κ = 1016 and Fig. 6C - Time 0, κ = 1016) and time-300

series specific errors such as new edges (Fig. 6A - Time 5, κ = 32.5), missing edges (Fig. 6C - Time301

3, κ = 31) and topological changes (Fig. 6B - Time 25, κ = 46) result in loss of tension stability and302

errors (Fig. 6A, CellFIT). Despite these digitization errors, DLITE shows increased tension stability303

(Fig. 6A, DLITE), demonstrating its utility. Heatmaps of dynamic edge tension and change in edge304
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tension (∆tension) for the time-series in Fig. 6 are also shown in Fig. S9. The improved performance305

of DLITE is predicated on reduced tension residuals at every time point (Fig. S10). Importantly, the306

reduction in tension residuals is accompanied by a reduced dynamic change in edge tension (∆tension,307

Fig. S9), indicating a smoothness across time.308

Interestingly, we observed an increase in tension adjacent to a dividing cell immediately after a309

mitotic event (Fig. 7A, red box) in a time-series of ZO-1 GFP with a single mitotic event at time310

point 14. This increase in tension post-mitosis was observed using both methods (Fig. 7C, edge labels311

3, 10 and 11), but only after the removal of digitization errors during a semi-manual skeletonization312

process. This step was important to ensure non-poorly scaled CellFIT solutions, such as the ones at313

time points 2 and 13. As before, both the tension residuals (Fig. 7B) and the dynamic change in314

tension (∆tension, Fig. 7D, E) were reduced when using DLITE. The reduction in ∆tension was315

determined to be sensitive to the time interval. The standard deviation of ∆tension across time was316

significantly reduced at a time lag of 1 frame (3 minutes), but showed no difference between methods317

for a time lag of 5 frames (15 minutes).318

Discussion319

In this study, we have presented a new method, DLITE, which is based on a local optimization of320

tension residuals to compute dynamic cell-cell forces. We validated the predictive power of DLITE321

using synthetic geometries generated by Surface Evolver [49] and showed that DLITE performs better322

than the prior state-of-the-art method CellFIT [34] when applied to time-series data. Importantly, this323

method incorporates a framework to track nodes, edges, and cells across time.324

We demonstrated that DLITE is robust to digitization challenges common in time series data such325

as poor estimates of edge angle, errors in node location, connectivity errors and topological changes326

that occur as cells move and encounter different neighbors. Finally, we applied DLITE to estimate327

edge tensions in multiple time-series of ZO-1 tight junctions and showed improved stability in tension328

predictions and an increase in tension post mitosis. We indicated that DLITE displays a reduced329

∆tension compared to CellFIT, indicating greater temporal smoothness. We observed this reduction330

in three other scenes of the ZO-1 tight junction.331

The need for dynamic force-inference tools to understand cell shape and colony rearrangement is332

driven by their applicability to morphogenic processes from wound healing to germ-band extension to333
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colony reorganization [1, 2, 3, 4]. These processes rely on transient mechanical forces that are ideally334

detected by the extended non-perturbing observations for which DLITE is designed. Computing the335

dynamics of cell-cell forces via this computational framework complements experimental advances336

and enable data-driven estimation of intercellular forces, particularly as biological data sets grow in337

size.338

While useful, DLITE makes assumptions about the system that create limitations. Specifically,339

DLITE assumes 1) edges are circular arcs, 2) that tension is correlated from timepoint-to-timepoint,340

and 3) that sufficient computational resources are available. 1) The tensions calculated using DLITE341

depend on fitting circular arcs to every edge. This approximation breaks down if the edge is not under342

sufficient tension or the cytoskeleton is strongly perturbing it inhomogeneously across the interface.343

Under these conditions the inferred tensions will not approach the ground truth. 2) Using local opti-344

mization seeded with tensions from the prior time point assumes that the tensions are correlated across345

these time points. This is evidently true as the inter-frame interval approaches zero and evidently false346

as the same interval approaches infinity. DLITE’s informed prior decreases in usefulness as we in-347

crease this interval or the timescale of our system’s force variance decreases. 3) Finally, as the amount348

of biological data increases, implementation of DLITe must be optimized for computation speed in349

large colonies.350

DLITE offers comparable tension inference to existing methods when applied to single time351

points, increased performance when applied across time points, increased stability in the face of seg-352

mentation challenges, and increased stability when applied to limited experimental data sets. Future353

use of DLITE will look at dynamic changes in cell-cell forces in larger data sets of ZO-1 tight junc-354

tions, allowing the visualization of cell-cell forces during large scale colony reorganization.355
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Figure 1: 3D cell view of tight junction location, how this is represented in the model, and the chal-

lenges in doing so. (A) 3D view of tight junctions in human induced pluripotent stem (hIPS) cells

from the Allen Cell Explorer (Green - Tight junctions, Purple - Membrane, Blue - Nucleus). We infer

cell-shape and edge shape from tight junctions as they localize to the tension bearing apical surface

of epithelial-like tissues. (B) Schematic of cell-interface representation used in DLITE and CellFIT

force-inference techniques [34]. A colony is represented as a set of nodes (n), edges (e) and cells (c).

Edges are directional. Tension balance occurs at each node (red arrows at n5 and n6). Pressure differ-

ence (∆pd,b) across a junction is estimated using Laplace’s law (red arrows at e5,6). (C) Ambiguities in

image segmentation introduce challenges to successful tension inference. Time t - 1 shows single time

point challenges like spurious edge/node detection, irregular edge curvature, node location errors and

incomplete segmentation. Time t shows time lapse challenges like biological network reorganization

and topological changes.
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Figure 2: Comparison of DLITE and

CellFIT force-inference techniques for

digitized time series. Synthetic colonies

were generated from random Voronoi

tessellations and morphed to minimum

energy configurations (Eq. 5) using Sur-

face Evolver [49]. A random set of

edges within the colony were perturbed

by decreasing or increasing their ten-

sions, resulting in a new colony struc-

ture; repeating this process produced a

time-series of colony rearrangement. (A)

Time-series of a synthetic colony show-

ing the decrease in tension of 70 edges

in the middle of the colony and the in-

crease in tension of 40 edges along the

boundary. (B) Heatmap of dynamic edge

tensions for ground truth, CellFIT, and

DLITE. (C) Heatmap of dynamic change

(derivative of tension) in edge tensions

for ground truth, CellFIT, and DLITE.

(D) A comparison of inferred vs ground

truth tensions for CellFIT (r = 0.75) and

DLITE (r = 0.94). Here, r is the Pear-

son’s correlation coefficient.
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Figure 3: Reduced sensitivity to connectivity errors in DLITE. (A) Ground truth tensions for a syn-

thetic geometry containing 330 edges generated used Surface Evolver with a single edge connectivity

error (circled in red). (B) Edge tensions computed using CellFIT for the geometry in (A). (C) Edge

tensions computed using DLITE for the geometry in (A). (D) Time-series of a synthetic geometry

containing 37 edges generated using Surface Evolver with a single edge connectivity error at time 8

(circled in red). This edge is found again in time step 10 (representing a transient encoding error) but

treated as a new edge. (E) Heatmap of dynamic edge tensions for ground truth, CellFIT (r = 0.14) and

DLITE (r = 0.87) for the time-series in (D). (F) Heatmap of dynamic change (derivative of tension) in

edge tensions for ground truth, CellFIT, and DLITE for the time-series in (D).
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Figure 4: Reduced sensitivity to topological changes in DLITE. (A) Time-series of a synthetic ge-

ometry containing 24 edges generated using Surface Evolver where edge label 17 disappears at time

17 (circled in red). (B) Heatmap of dynamic edge tensions for ground truth, CellFIT (r = 0.75), and

DLITE (r = 0.98). DLITE shows reduced disruption to tension prediction on topological change and

more closely matches the ground truth tension. (C) Heatmap of dynamic change (derivative of tension)

in edge tensions for ground truth, CellFIT and DLITE.
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Figure 5: Reduced sensitivity to node location errors in DLITE. Noise levels 1, 2 and 3 correspond

to random Gaussian noise added to red node locations, all with a mean 0 and standard deviation 0.1,

0.5 and 1 respectively. (A) Time-series of synthetic colony generated using Surface Evolver. The

five nodes subject to perturbation with noise are shown in red. (B) Change in shape of a single triple

junction around the red node in the presence of noise. (C, D, E) Heatmap of dynamic edge tensions

for ground truth, CellFIT and DLITE at Noise levels 1, 2 and 3 respectively. (F, G, H) Heatmap of

dynamic change (derivative of tension) in edge tensions for ground truth, CellFIT and DLITE at Noise

levels 1, 2 and 3 respectively.
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Figure 6: DLITE shows increased

tension stability during tension in-

ference in mutliple time-series of

ZO-1 labeled hIPS cells. Example

frames from three time series are

shown in A, B and C and arranged

as ZO-1 GFP (upper) and colony

edge tensions predicted by CellFIT

(middle) and DLITE (lower). Here

we use κ to denote the condition

number of the tension matrix Gγ

(Eq. 6). (A) DLITE shows in-

creased stability to curvature errors

(Time 0, κ = 69), new edges (Time

5, κ = 32.5), connectivity errors

(Time 10, κ = 136). (B) DLITE

shows increased stability to curva-

ture errors (Time 0, κ = 23), node
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Figure 7: Dynamic cell-cell forces from a time-series of ZO-1 tight junction locations in hIPS cells.

DLITE shows reduced fluctuation in tension change, showing more temporally correlated tension

predictions. (A) Time-series of ZO-1 GFP images (upper) and dynamics of colony edge tension

predicted by DLITE (lower). The following time points are shown: 0, 5, 10, 15, 20 and 25. Time

15 shows an increase in tension along a ridge in the middle of the colony following a mitotic event

and the forming of a new edge (circled in red). The time interval between adjacent time points was

3 minutes. (B) Tension residuals at every time point showing an estimate of central tendency and

corresponding confidence interval. (C) Heatmap of dynamic edge tensions predicted by CellFIT and

DLITE. (D) Heatmap of dynamic change (derivative of tension) in edge tensions predicted by CellFIT

and DLITE. (E) Distribution of ∆tension (derivative of tension) at every time point for CellFIT and

DLITE.
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Supplementary Online Material368

Data structures369

We implemented our code using the standard scientific Python stack. An object/class groups similar370

constructs together. Here, we defined 4 main objects - nodes, edges, cells and colonies. Nodes are371

objects with a unique location (x, y) and node label. Edges are objects that are connected to two372

unique nodes with a defined edge curvature, direction and edge label. Cells are objects with a unique373

cell label that contain a particular list of nodes and edges, where a combination of the contained edges374

forms a cycle. Colonies are objects comprising a list of cells and stray edges (edges that are not part375

of any cell). Each class has several other defined properties that were useful for time-series tracking376

and cell-cell force inference.377

Curve-fitting378

We fit a circular arc to a given list of (x, y) edge co-ordinates using a least squares fitting routine from379

the Python module Scipy [40].380

Cell finding algorithm381

Given a list of nodes and edges, we loop through every edge to find the two (or fewer) cells of which382

each edge might be a part. We start from an initial edge and find the closest edge that forms the383

smallest (or largest) angle with the current edge. We repeated this process by setting the new edge as384

current edge, until the second node of the current edge is identical to the first node of the initial edge385

, thus indicating a complete cycle. We validated this algorithm in planar graphs generated using the386

NetworkX module [67]. In pseudocode, this can be formulated as shown in Algorithm 1.387

Surface Evolver simulations388

Synthetic geometries were generated using the Surface Evolver [49], which provides a precise way389

to make model geometries using soap film physics. An initial surface was first defined in a datafile390

comprising a list of vertices, edges, facets and bodies, along with any volume or area constraints.391
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Algorithm 1 Cell finding algorithm
1: procedure

2: for edge in edges do

3: Conn edges← Network connectivity of edge

4: next edge← max, min angle of Conn edges

5: if cellfound then return False

6: while cell not found do

7: Current edge← Next edge

8: Conn edges← Network connectivity of Current edge

9: next edge← max, min angle of Conn edges

10: if cellfound then return Cell

Since we defined a 2D string model with a space dimension of 2, we enforced area constraints on392

the facets instead of volume constraints on the bodies. To generate the datafile, we made random393

Voronoi tessellations. This was followed by Lloyd relaxation to make a more uniform tessellation.394

Edges were then assigned random tensions. All cells were assigned the same fixed area in a single395

simulation (typically 5000). Evolver then uses gradient descent to morph the surface to a minimum396

energy (W ) configuration. This energy (W ) was defined as Eq. 5 with the pressure energy enforced397

as an area constraint. Multiple mesh refinement steps (adjustments of every vertex in the system)398

were used to ensure a minimum of 10 mesh points along every edge (for better curve-fitting). The399

evolved geometries were screened for edges that form cell-cell interfaces (as opposed to edges along400

the boundary that do not form an interface). These edges, along with their corresponding nodes and401

cells, were stored using our data structures.402

In order to generate a time-series, we took a given geometry and perturbed the tension of random403

edges. Surface Evolver was used to solve for the minima. This was the next frame t + 1. We re-404

peated this tension perturbation procedure uniformly, such that the geometry was smoothly changing405

its curvature along every edge in correlation with a changing tension (Eq. 5). By stitching together406

multiple Evolver geometries that progressively showed increasing or decreasing curvature/tension of407

certain edges, we were able to generate movies of colony rearrangement that was smooth across time,408

for whom the ground truth tensions were the input to Surface Evolver.409
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CellFIT solution410

CellFIT [34] evaluates the tension balance as a matrix system defined as411

Gγγ = 0, (6)

where γ is a list of surface tension magnitudes and Gγ is a matrix of edge tension coefficients (sin’s412

and cos’s). Since the system of equations is over-determined, this is formulated as a constrained least413

squares (Karush Kuhn Tucker or KKT) matrix, which can be written as414

GTγGγ CT1

C1 0



γ1
...

γN

λ1

 =


0
...

0

N

 , (7)

where C1 = [1, . . ., 1], λ1 is a Lagrange multiplier, and N is the number of edge tensions. This415

normalizes the average edge tension to 1. Similarly, the pressure balance is evaluated as a matrix416

system417

Gpp = q, (8)

where p is a matrix of cell pressures and q is a matrix of edge tensions divided by edge curvatures418

(t/r), as per Laplace’s law. This is also formulated as a constrained least squares matrix as419

GTpGp CT2

C2 0



p1
...

pM

λ2

 =


q1
...

qM

0

 , (9)

where C2 = [1, . . ., 1], λ2 is a Lagrange multiplier and M is the number of cell pressures. This420

normalizes the average edge pressure to 0.421

Force-inference algorithm422

In pseudocode, the force-inference algorithm can be formulated as shown in Algorithm 2.423
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Algorithm 2 Dynamic cell-cell force inference algorithm
1: procedure

2: for frame in movie do

3: edges, nodes← trace of image

4: cells← edges, nodes

5: colony ← cells

6: if labels is empty then return new labels← nodes, edges, cells

7: else tracked labels← nodes, edges, cells

8: if Make objective then

9: Add tension residuals or pressure residuals to objective function,

10: Update initial guess through labels,

11: for node in nodes do

12: if conn edges < 3 then return False

13: else goto Make Objective

14: if first image then return Basinhopping solution

15: else L-BFGSB optimization solution

16: for edge in edges do

17: if conn cells < 2 then return False

18: else goto Make objective

19: if first image then return Basinhopping solution

20: else L-BFGSB optimization solution
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Cell plating for imaging424

Human induced pluripotent stem cells (hiPSCs) were plated on glass-bottom multiwell plates (1.5H425

glass; Cellvis) coated with phenol red–free GFR Matrigel (Corning) diluted 1:30 in phenol red–free426

DMEM/F12 (Life Technologies). Cells were seeded at a density of 2.5 × 103 in 96-well plates and427

(12.5–18) imaged 3–4 days later. A detailed protocol can be found at the Allen Cell Explorer (Allen428

Institute for Cell Science, 2017).429

Live-cell imaging430

Cells were imaged on a Zeiss spinning-disk microscope with a Zeiss 100×/1.25 W C-Apochromat431

Korr UV Vis IR objective, a CSU-X1 Yokogawa spinning-disk head, and Hamamatsu Orca Flash 4.0432

camera. Microscopes were outfitted with a humidified environmental chamber to maintain cells at433

37◦C with 5 % CO2 during imaging. Time-lapse movies were acquired every 3 minutes for 1.5 hours.434
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Figure S1: Validation of rewritten CellFIT code. (A) Ground truth geometry used in [34]. (B) Tensions

and pressures predicted using CellFIT. (C) Tensions and pressures predicted using DLITE. (D) Tension

vs Edge label for CellFIT and DLITE. (E) Error between DLITE tension and CellFIT tension.
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Fig. 2. (A) Heatmap of curve fit residuals. (B) Heatmap of dynamic ground truth tension errors using

CellFIT and DLITE.
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Figure S4: Four example time-series (A-D) of colony rearrangement simulated using four different

combinations of decreasing the tension of a few edges and increasing tension of all other edges in the

same colony geometry as that in Fig. 2. Average edge tension is normalized to 1 at every time point.

Shown - 3 example time points (Time 0, 4 and 8) and heatmaps of dynamic edge tensions for ground

truth, CellFIT and DLITE. (A) DLITE - r = 0.97, CellFIT - r = 0.96, (B) DLITE - r = 0.93, CellFIT -

r = 0.54, (C) DLITE - r = 0.96, CellFIT - r = 0.86, (D) DLITE - r = 0.94, CellFIT - r = 0.93
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Figure S5: Four example time-series (A-D) of colony rearrangement simulated by decreasing the

tension of a few edges and increasing tension of all other edges in four randomly generated colony

geometries of different sizes. Average edge tension is normalized to 1 at every time point. Shown -

3 example time points (Time 0, 4 and 8 or Time 0,8 and 16) and heatmaps of dynamic edge tensions

for ground truth, CellFIT and DLITE. (A) DLITE - r = 0.94, CellFIT - r = 0.76, (B) DLITE - r = 0.92,

CellFIT - r = 0.6, (C) DLITE - r = 0.95, CellFIT - r = 0.9, (D) DLITE - r = 0.96, CellFIT - r = 0.84.
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Figure S6: Two example time-series (A, B) of colony rearrangements with single connectivity errors

at a node. Average edge tension is normalized to 1 at every time point. Shown - 3 example time points

(Time 0, 8 and 16) and heatmaps of dynamic edge tensions for ground truth, CellFIT and DLITE. (A)

DLITE - r = 0.88, CellFIT - r = 0.22, (B) DLITE - r = 0.83, CellFIT - r = 0.25.
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Figure S7: Synthetic colony time-series with a single connectivity error at time point 1. (A) Time-

series of colony edge tensions predicted using CellFIT. (B) Histogram of curve fit residuals at all time

points. (C) Heatmap of dynamic edge tensions for ground truth, CellFIT and DLITE. (D) Heatmap of

∆tension (derivative of tension) for ground truth, CellFIT and DLITE.
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Figure S8: Two example time-series (A, B) of colony rearrangements with single topological changes

(shrinkage of cell-cell junctions) at a node. Average edge tension is normalized to 1 at every time

point. Shown - 3 example time points (Time 0, 8 and 16) and heatmaps of dynamic edge tensions for

ground truth, CellFIT and DLITE. (A) DLITE - r = 0.97, CellFIT - r = 0.91, (B) DLITE - r = 0.975,

CellFIT - r = 0.974.
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Figure S9: Heatmaps of dy-

namic edge tension (A, C, E)

and dynamic change (deriva-

tive of tension) in edge tension

(B, D, F) for the ZO-1 time-

series shown in Fig. 6A, 6B

and 6C respectively.
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