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Abstract

Three-dimensional chromosome structure has a significant influence in many diverse genomic processes and
has recently been shown to relate to cellular di↵erentiation. Many methods for describing the chromosomal
architecture focus on specific substructures such as topologically-associating domains (TADs) or compartments,
but we are still missing a global view of all geometric features of chromosomes. Topological data analysis (TDA)
is a mathematically well-founded set of methods to derive robust information about the structure and topology
of data sets, making it well-suited to better understand the key features of chromosome structure. By applying
TDA to the study of chromosome structure through di↵erentiation across three cell lines, we provide insight into
principles of chromosome folding generally, and observe structural changes across lineages. We identify both global
and local di↵erences in chromosome topology through di↵erentiation, identifying trends consistent across human
cell lines.
Availability: Scripts to reproduce the results from this study can be found at https://github.com/Kingsford-
Group/hictda
Contact: carlk@cs.cmu.edu

1 Introduction

The three-dimensional shape of chromosomes has sig-
nificant influence in many critical cellular processes,
including gene expression and regulation (Cremer and
Cremer, 2001; Cavalli and Misteli, 2013; Le Dily et al.,
2014; Duggal et al., 2014; Rennie et al., 2018), replica-
tion timing (Ryba et al., 2010; Moindrot et al., 2012;
Pope et al., 2014; Ay et al., 2014)), and overall nu-
clear organization (Ya↵e and Tanay, 2011; Ramani
et al., 2016; Chen et al., 2018). Alterations in the
3D structure of the genome have been tied to many
cancers (Meaburn et al., 2009; Misteli, 2010; Fuden-
berg et al., 2011; Hnisz et al., 2016), developmental
conditions including deformation or malformation of
limbs (Lupiáñez et al., 2016), and severe brain anoma-
lies (Spielmann et al., 2018). The wide range of pro-
cesses related to chromosome structure suggests that
understanding this component is crucial to a broader
understanding of many genomic mechanisms, yet it re-
mains a challenge to study this architecture and iden-
tify meaningful structures within the complex system.
In particular, the process of di↵erentiation, by which

a cell changes to a new cell type, is critical to all

multi-cellular life, but the mechanisms behind this
process remain an active field of research with re-
cent work suggesting a role for chromosome struc-
ture in this process. Structural changes have been
observed in chromosomes through lineage specifica-
tion, both across several stages of human cardiogene-
sis (Fields et al., 2017) as well as across human embry-
onic stem cells (ESCs) and four human ES-cell-derived
lineages (Dixon et al., 2015). Fields et al. (2017) identi-
fied both global and local structural dynamics, observ-
ing transitions from repressive to active compartments
around cardiac-specific genes as they are upregulated
through di↵erentiation. Dixon et al. (2015) also noted
structural dynamics across hierarchical scales during
development, with some corresponding gene expres-
sion changes. In addition, it has been shown that
di↵erent chromatin configurations can determine dif-
ferent paths during development by physically sepa-
rating or connecting enhancers with particular devel-
opmental genes (Kragesteen et al., 2018). All of this
work suggests that chromosome structure plays an im-
portant role in the process of cellular di↵erentiation,
with structural alterations related to regulatory mech-
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anisms underlying this key cellular process.

Chromosome structure can be measured by a num-
ber of variants of the chromosome conformation cap-
ture protocol (Dekker et al., 2002), including Hi-
C (Lieberman-Aiden et al., 2009) which permits
genome-wide measurements of the chromosomal ar-
chitectures of a population of cells. Hi-C quantifies
physical proximity by counting cross-linkage frequen-
cies between genomic segments. Because of the depen-
dence on cross-linking, which is likely to induce both
false positive and false negative contacts, and the het-
erogeneity within cell populations, Hi-C can be very
challenging to analyze. Many methods have focused
on identifying local structures called topologically-
associating domains (TADs) (Dixon et al., 2012; Rao
et al., 2014; Crane et al., 2015; Weinreb and Raphael,
2015; Fillipova et al., 2014; Norton et al., 2018), oth-
ers on detecting di↵erential interactions between two
Hi-C matrices (Djekidel et al., 2018; Lun and Smyth,
2015; Bunnik et al., 2018), and still others on translat-
ing the Hi-C contact values into a 3D model of chromo-
some structure (Lesne et al., 2014; Paulsen et al., 2017;
Serra et al., 2017; Trieu and Cheng, 2015). However, it
has proven challenging to study large-scale structures
across the entire genome.

A class of techniques called “Topological data anal-
ysis (TDA)” has gained prominence recently as a gen-
eralized, mathematically grounded set of methods for
identifying and analyzing topological and geometric
structures underlying data. Emerging from work in
applied topology and computational geometry, TDA
aims to infer information about the robust structures
of data (Chazal and Michel, 2017). These methods
have already been applied to various biological con-
texts (Cámara, 2017), including in studies of gene ex-
pression at the single cell level (Rizvi et al., 2017),
viral reassortment (Chan et al., 2013), horizontal evo-
lution (Camara et al., 2016), cancer genomics (Nicolau
et al., 2011; Arsuaga et al., 2015), and other complex
diseases (Li et al., 2015; Hinks et al., 2016). Simi-
lar methods have also been used in tools to enable
large-scale biological database searching (Yu et al.,
2015). The two main methods of TDA are Mapper, a
dimensionality reduction framework and visualization
method, and persistent homology, an algorithm for ex-
tracting geometric and topological structures which de-
scribe the underlying data.

Given its rigorous mathematical foundation and
ability to identify important topological structures,
TDA is very well-suited to the analysis of Hi-C data.
Emmett et al. (2015) first applied these methods to
human Hi-C data a few years ago, though computa-
tion limitations at the time restricted this analysis to
only one chromosome at 1Mb resolution. More re-
cently, TDA was used to analyze the similarities be-
tween single-cell Hi-C maps (Carriere and Rabadan,

2018). Carriere and Rabadan (2018) first computed
pairwise distance between all single-cell Hi-C contact
matrices, and applied TDA to the distance matrix be-
tween single cells rather than applying TDA directly
to the Hi-C data, analyzing the results with Mapper.
In this paper, we use persistent homology to identify
the geometric structures in human chromosomes, and
study how they change throughout lineage specifica-
tion and di↵erentiation.
This work presents the first use of TDA to study

the chromosome structures of all 22 human autoso-
mal chromosomes, providing insight into the structural
changes involved in cellular di↵erentiation. We de-
scribe the patterns underlying geometric structures of
Hi-C data, noting that many of these patterns can be
explained by the linearity of the chromosome. Addi-
tionally, we compare the topologies of 14 cell types
representing various stages of di↵erentiation and vari-
ous cell lines, and note that the topological similarity is
largely dictated by cell line rather than di↵erentiation
stage. Looking more closely at di↵erentiation, changes
along each lineage on each chromosome are quantified,
demonstrating that several chromosomes display local
changes consistent across cell lines, and others appear
stable throughout di↵erentiation.

2 Methods

2.1 Overview of TDA

The premise of TDA is that data points are sam-
pled from an unknown continuous geometric structure.
This structure can be described by topological prop-
erties preserved under continuous deformations of the
space, such as the number and size of connected com-
ponents, loops or holes it contains. TDA approxi-
mates a continuous geometry by building a simplicial
complex, or a network of edges and triangles, from
the nodes of the given data points. More complex
simplices of n dimensions can be generated for high-
dimensional data, but for the purposes of Hi-C , which
is only three dimensional, our simplicial complexes are
made up only of simplices of dimension at most 2, i.e.,
nodes, edges, and triangles. We use a Vietoris-Rips
(VR) complex, which is a set of simplices produced
by adding edges between all nodes with distance less
than a given ↵, and a triangle between all sets of three
nodes for which each pair is no more than ↵ apart.
Together these components describe a structure built
from the data, from which the topological features of
the underlying space can be described and quantified
through a process called persistent homology.
Definition: Vietoris-Rips complex Given a set of
points X in a metric space (M,d) and a real num-
ber ↵ � 0, The Vietoris-Rips complex is the set of
simplices {[x0, ..., xk]} such that d(xi, xj)  ↵ for all
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(i, j), with k less than or equal to a given maximum
dimension (Chazal and Michel, 2017).
The analysis of simplicial complexes and their topo-

logical properties is based in homology theory, which
defines the topological properties of any given dimen-
sion of a space. These properties can be represented by
homology groupsH0(X), H1(X), H2(X), ..., Hn(X). A
homology group Hk represents k-dimensional “holes”.
For example, H0 represents the connected com-
ponents of the VR complex, H1 represents one-
dimensional loops, and H2 represents two-dimensional
voids (Spanier, 1966).

Given a set of data points X, we build VR complexes
for di↵erent values of parameter ↵. The basis of persis-
tent homology is the idea that features that persist in
the VR complexes across values of ↵ are the key topo-
logical features of the space generated by the data. A
feature from persistent homology is therefore described
by an interval [b, d], where b represents the birth time
of the feature, or the smallest value of ↵ at which the
feature is found, and d, called death time, the smallest
value of ↵ at which the feature no longer exists. These
features are visualized in two ways: persistence dia-
grams and barcode plots. Persistence diagrams are sets
of (b, d) points in the Euclidean half-plane above the
diagonal. Barcode plots display the same information,
but with each homology group shown as an interval
[b, d], and the y value is the index within the set of
homology groups. For more technical details on TDA
and persistent homology, see Carlsson (2009), Carlsson
(2014), Edelsbrunner and Harer (2010), or Wasserman
(2018).

2.2 Applying TDA to Hi-C

The methods of TDA use a distance matrix that de-
scribes the distances between all data points. Although
Hi-C data is interpreted as describing the 3D distances
between chromosomal segments, the values of a Hi-C
matrix are contact counts rather than distance values,
where a high contact count implies a low distance. We
use the following transformation to convert a normal-
ized Hi-C matrix M to a distance matrix K:

Ki,j = 1�
⇢

1 i = j
1
m log(Mi,j + 1) i 6= j

where m = 1.01maxi,jD(log(Mi,j) + 1), and D is the
number of rows in the contact matrix. A pseudo-count
of 1 is added to all o↵-diagonal values in the Hi-C ma-
trix to avoid taking a logarithm of zero, and the factor
of 1.01 is included to ensure that all distances where
i 6= j are nonzero.
We use GUDHI (Maria et al., 2014), a Python li-

brary for TDA, to compute persistent homology from
these distance matrices, with the maximum dimension
of simplices created is 2.

2.3 Null models

TheH1 structures identified by TDA represent “loops”
in the input data, or one-dimensional holes in the sim-
plicial complex. We will use the term loop interchange-
ably with H1 structure but it is important to note that
these are not loops in the traditional sense of chro-
matin loops. The loops identified by TDA may be sur-
rounded by non-consecutive genomic segments, unlike
the continuous loops generally studied in chromatin.
In order to understand the TDA loop structures, three
separate null models of distance matrices representing
various properties of the Hi-C data were also analyzed
and compared to the H1 structures of the original Hi-C
data.

The three null models are defined as follows.

• Random permutation: all Hi-C distance values are
permuted randomly, preserving only the symme-
try of the distance matrix and the values them-
selves.

• Edge permutation: the distance values along each
row of the distance matrix were permuted ran-
domly, preserving both the degree of and set of
distances for each node but randomly changing
their assignments. The corresponding columns
were permuted in the same way to preserve sym-
metry.

• Linear dependence: a new distance matrix is cre-
ated, in which each diagonal beyond the main di-
agonal preserves the same mean and standard de-
viation of the original data, with Gaussian noise
added. The dominant pattern of the Hi-C dis-
tance matrices is a decrease in distance as the dif-
ference between the row index and column index
increases. This model represents this same pat-
tern, but does not include any additional struc-
tures such as TADs or compartments.

2.4 Metrics to compare persistence di-
agrams

In order to derive stability results for TDA, Carlsson
(2014) proposed a metric called the bottleneck distance
that quantifies the di↵erence between two persistence
diagrams. The bottleneck distance is based on a per-
fect bipartite matching g between two persistence dia-
grams dgm1 and dgm2, where points in either persis-
tence diagram can also be matched to any point along
the diagonal. The formula for computing the bottle-
neck distance dB is:

dB(dgm1, dgm2) = inf
matching g

max
(x,y)2g

||x� y||1.
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Figure 1: Illustration of the bottleneck distance (dB)
and the Wasserstein distance with p = 1 (W1). Blue
and red dots represent points of two di↵erent persis-
tence diagrams, and grey lines denote the matching
between them. The bottleneck distance represents the
largest distance between two matched points, while the
Wasserstein distance is the average of all distances be-
tween matched points.

The bottleneck distance quantifies the similarity be-
tween two persistence diagrams by the maximum dis-
tance between two points in a matching. It is therefore
a measure of the greatest outlier, rather than the close-
ness of all pairs of points.
In order to avoid this concern, the related Wasser-

stein distance metric can also be used to quantify
the di↵erence between two persistence diagrams. The
Wasserstein distance, Wp, is defined, for some p � 1,
as:

Wp(dgm1, dgm2) = inf
matching g

X

(x,y)2m

||x� y||p1.

This measures the total distance between matched loop
structures, and therefore gives an overall quantification
of the global similarity (Chazal and Michel, 2017). For
this work, p = 1 to make these values comparable to
the bottleneck distances, and we additionally normal-
ized by the cardinality of the matching, resulting in a
value which represents the average distance between all
points in the two persistence diagrams. See Figure 1
for an illustration of the two distance metrics.

3 Results

3.1 Data

We analyzed Hi-C samples from 14 conditions, repre-
senting several di↵erentiation lineages from two di↵er-
ent studies (Fields et al., 2017; Dixon et al., 2015).

Two of these lineages represent paths through human
cardiogenesis, starting with stem cells and continu-
ing through the mesoderm (MES), cardiac progenitor
(CP), and cardiac myocyte (CM) stages. One line,
from RUES2 cells, begins with embryonic stem cells
(ESC), and also includes a fetal heart tissue sample.
The study authors also collected data from WTC11
cells, beginning with a human induced pluripotent
stem cell (PSC), then collecting data at the same
stages as the RUES2 cells: MES, CP and CM (Fields
et al., 2017). The third Hi-C data set represents still
another di↵erentiation starting point, using H1 ESC
cells to generate four human ES-cell-derived lineages:
mesendoderm (ME), mesenchymal stem (MS) cells,
neural progenitor (NP) cells, and trophoblast-like (TB)
cells (Dixon et al., 2015). All data is described in Table
1, including accession codes. Samples from all 14 con-
ditions included two replicates each. All of the Hi-C
data was processed from raw reads to normalized con-
tact matrices at 100kb using the HiC-Pro pipeline (Ser-
vant et al., 2015) and iterative correction and eigen-
vector decomposition (ICE) normalization (Imakaev
et al., 2012). In order to maximize coverage, we com-
bined all of the reads from replicates to produce one
Hi-C matrix per sample.

We generated ten of each of the null models for ev-
ery RUES2 cell type and each chromosome from 13 to
22. The null models on longer chromosomes proved
not to be computationally feasible, but the patterns
across the chromosomes we were able to model were
remarkably consistent (see Figures S15, S16, and S17),
suggesting that the additional data from all three null
models on chromosomes 1 through 12 would follow sim-
ilar patterns.

3.2 Persistent homology in Hi-C data

We visualize the persisent homology groups in the two
ways described previously, persistence diagrams and
barcode plots. We focus here on H0 and H1 struc-
tures and observe a very distinctive pattern in both
structure classes across chromosomes and cell types in
all of our Hi-C data. The majority of H0 structures
die o↵ at a radius of somewhere between ↵ = 0.1 and
↵ = 0.2, suggesting that many new edges are formed
near these values, and relatively few H0 structures per-
sist after this. TDA therefore quickly recovers the lin-
ear structure of the chromosome. The H1 structures
tend to have short lifespans (they are close to the diag-
onal in the persistence diagrams), and most are born at
↵ ⇠ 0.6�0.8, though there are consistently a few loops
born earlier. A representative barcode plot and per-
sistence diagram can be seen in Figure 2, and barcode
plots for all samples on all autosomal chromosomes can
be seen in Figures S1–S14.
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Table 1: All Hi-C samples used for this study.
Sample name Description SRA Accessions Study
RUES2 ESC embryonic stem cell SRX3375347, SRX3375348 Fields et al. (2017)
RUES2 MES mesoderm SRX3375349, SRX3375350 Fields et al. (2017)
RUES2 CP cardiac progenitor SRX3375351, SRX3375352 Fields et al. (2017)
RUES2 CM cardiac myocyte SRX3375353, SRX3375354 Fields et al. (2017)
RUES2 FetalHeart fetal heart tissue SRX3375355, SRX3375356 Fields et al. (2017)
WTC11 PSC pluripotent stem cell SRX4958481, SRX4958482 Fields et al. (2017)
WTC11 MES mesoderm SRX4958483, SRX4958484 Fields et al. (2017)
WTC11 CP cardiac progenitor SRX4958485, SRX4958486 Fields et al. (2017)
WTC11 CM cardiac myocyte SRX4958487, SRX4958488 Fields et al. (2017)
H1 ESC embryonic stem cell SRX378271, SRX378272 Dixon et al. (2015)
H1 ME mesendoderm SRX378273, SRX378274 Dixon et al. (2015)
H1 MS mesenchymal stem cell SRX378275, SRX378276 Dixon et al. (2015)
H1 NP neural progenitor SRX378277, SRX378278 Dixon et al. (2015)
H1 TB trophoblast-like cells SRX378279, SRX378280 Dixon et al. (2015)

3.3 Loop analysis

In order to understand the H1 structures, the patterns
observed in real Hi-C data were compared to our null
models. Traditional chromatin loops have been shown
to correlate with gene activation and bring together en-
hancers and promoters (Rao et al., 2014). More work is
needed to understand the biological significance of the
loop structures from TDA, but Emmett et al. (2015)
suggested that they may represent transcription facto-
ries or other regulatory interactions.

As a representative example, barcode plots of all
loop structures of chromosome 14 in RUES2 MES cells
can be seen in Figure 3a, along with the null models
from this data.

One of the most striking patterns in comparing these
null models to the true data is that the loops in Hi-C
tend to be born at a much higher value of ↵, and sur-
vive only a short time. The model which most closely
resembles this pattern is the linear dependence model,
but the distribution of birth times shows that the linear
dependence model has a long, significant tail towards
the earlier birth times which is absent in real Hi-C
data (Figure 3b). The short life span, which will gen-
erally correspond to smaller loops, is also much more
consistent with the linear dependence model, although
somewhat more pronounced in Hi-C (Figure 3c). The
fact that the linear dependence null model shows these
same patterns as Hi-C data suggests that the linear
property (nodes that are close together in index, or lin-
ear distance, are also close in 3D space) is su�cient to
explain the short loops and birth times concentrated at
high values of ↵. Long loops appear to be created when
nodes with a large di↵erence in their indices (large lin-
ear distance) are close together, as demonstrated by
the loops with very long life spans in the two permuta-
tion models. This appears to be very rare in Hi-C data;
the majority of loop interactions we observe are rela-

tively short, consistent with findings from more tra-
ditional chromosome loop structures which have been
shown to be almost exclusively between loci less than
2Mb apart (Rao et al., 2014).
The greatest di↵erence between the linear depen-

dence model and Hi-C data can be seen in the number
of loops identified (Figure 3d). Although the linear de-
pendence model is again the most similar to real data
in this regard, it typically still contains over three times
the number of loops as the corresponding Hi-C matrix.
This observation could be explained by the existence of
topologically associating domains (TADs) or compart-
ments in real chromosomes, which are absent from the
linear dependence model but a defining characteristic
of Hi-C. These structures serve to isolate chromosome
segments from each other, which likely prevents the
formation of loops between them. If loops can largely
be formed within a TAD or compartment, this would
significantly restrict the total number of feasible loops
which could explain the pattern we see in the persis-
tence diagrams of Hi-C data.

3.4 Comparing topologies across di↵er-
entiation

Although there are some evident changes in topological
structures measured by TDA through di↵erentiation,
the larger di↵erences exist between the three main cell
lines (RUES2, WTC11, and H1, see Figure 4). In-
terestingly, there does not seem to be any more simi-
larity, measured by bottleneck distance averaged over
all chromosomes, between cells at the same stages of
di↵erentiation across the three cell lines than cells at
di↵erent stages of di↵erentiation. For example, the
distance value between cardiac progenitor cells from
RUES2 and WTC11 appears no lower than the value
between RUES2 CP and WTC11 CM cells, and H1
ESC and RUES2 ESC seem no more similar to each
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Barcode plot

Persistence diagram

Figure 2: Representative example of a barcode plot
and persistence diagram from Hi-C data. These figures
were created from chromosome 5 of WTC11 cardiac
progenitor cells, and summarize the output from the
persistent homology computation. Each point or bar
represents one structure, defined by the radius at which
the structure can first be seen (birth radius), and the
last radius before the structure no longer exists (death
radius). These figures are two ways to represent the
same persistent homology information.

other than H1 ESC and RUES2 MES or RUES2 ESC
and H1 ME cells. Global topological features identi-
fied by TDA at the genome-wide scale therefore seem
to be determined more by cell line than di↵erentiation
stage.

3.5 Chromosome-specific topological
changes through di↵erentiation

Using both bottleneck and Wasserstein distances, we
identify specific chromosomes with global and local
changes through the various stages of di↵erentiation
(Figure 5). Recall that the bottleneck distance is an
L1 norm, and therefore measures the maximum dis-
tance between paired H1 structures (i.e. the greatest
outlier), while the Wasserstein distance is an average
distance between all H1 structures. A low Wasser-
stein distance points to global similarity between con-
ditions, because on average, structures from both con-
ditions are close to each other. A high bottleneck dis-
tance suggests only that there is at least one structure
which is significantly di↵erent between the two condi-
tions, and therefore can point to more local di↵erences.
Therefore chromosomes with high bottleneck distance
and low Wasserstein distance must contain few loop
structures that di↵er considerably between the two ho-
mologies, suggesting some local changes rather than
global changes between di↵erentiation stages. Across
all three lineages, chromosomes 1, 2, 10, 14, and 22 fit
this profile, suggesting that while there are no major
global changes to the topological structures of these
chromosomes through di↵erentiation as suggested by
their low Wasserstein distance, there are some signifi-
cant local di↵erences between the Hi-C matrices sug-
gested by the high bottleneck distance. Chromosome
21 stands out as having a consistently high Wasser-
stein distance across our three lineages, suggesting the
topology of this chromosome may change more globally
through di↵erentiation.

By looking at the distances between H1 ESC cells
and four of their possible progeny, we note that the
biggest structural changes appear to occur early in dif-
ferentiation of these lineages. Across all chromosomes,
the distances between H1 ESC cells and neural pro-
gentitors are the smallest of the four, while there ap-
pear to be the most topological changes between ESC
and mesendoderm, and ESC and mesenchymal cells.
ME and MS represent earlier stages of di↵erentiation,
suggesting that the biggest changes in these lineages
occur early on in the di↵erentiation process. The one
lineage we have beginning with PSC cells rather than
ESC shows a di↵erent trend, where the PSC to MES
transition has the lowest distance between topological
structures rather than the highest (Figure 5d,f).
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RUES2 MES, chr 14 Linear dependence

Edge permutation Random permutation

a b

c d (α)

(α)

Figure 3: Loop analysis through multiple null models. (a) Barcode plots (showing only loop structures) from
chromosome 14 of RUES2 MES cells, along with the corresponding barcode plots from the three null models. (b)
Normalized histogram of the birth times of all loops in RUES2 data from true Hi-C and each null model. Hi-C
clearly shows the tightest distribution, with almost no loop birth times before 0.6. (c) Normalized histogram of
loop life spans (length of a barcode line) shows that the loops from real Hi-C data are very small, similar to the
linear dependence model. (d) Normalized histogram of the ratios of numbers of loops in each null model to the
number of loops in the corresponding Hi-C matrix, showing that all null models result in significantly more loop
structures overall than those found in real Hi-C data.
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Figure 4: Comparison of all 14 samples studied. This heatmap represents the bottleneck distances between each
pair of samples in our data, averaged over all 22 chromosomes. With the exceptions of the high distances between
the two later stages and two earlier stages of WTC11 di↵erentiation, the pattern of low distance within one cell
line dominates these comparisons. This pattern can be seen by the lighter blocks along the diagonal with limits
corresponding to the changes in cell line.
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Figure 5: Distances between each consecutive stage of di↵erentiation on all autosomal chromosomes. Each row
represents one cell line, the left column shows bottleneck distances, and the right column gives Wasserstein distances.
Each point represents the distance between the loop topologies of two consecutive stages of di↵erentiation.
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4 Discussion

One of the major challenges in the application of TDA
to Hi-C data is the computational complexity of the
methods combined with the scale of Hi-C. Due to com-
putational limitations, the structures studied here are
fairly large-scale; the Hi-C data analyzed is at a rel-
atively low 100kb resolution, and our study only in-
cludes 14 samples. By studying smaller sections of the
genome, perhaps near a gene of interest or within a
particular structure of interest, higher resolution Hi-C
or 5C could be used with TDA to identify small-scale
topological structures. We were also only able to study
intra-chromosomal matrices, but the topology of inter-
chromosomal interactions would likely yield interesting
insights as well. Another consequence of the computa-
tional complexity of TDA is our focus on only 0- and 1-
dimensional features. Emmett et al. (2015) speculate
that the 2-dimensional voids may represent interest-
ing biological features such as transcription factories.
Future improvements in the data structures and al-
gorithms underlying TDA would significantly improve
our ability to study the topology of the full genome.
It would additionally be very interesting to trace the

loop structures back to the genomic locations that de-
fine these features, though topologically the existence
of each of these features is all that matters, rather
than defining exactly where in the data set they can
be found. Unfortunately, this localization problem is
challenging because each H1 structure is an equiva-
lence class rather than a specific loop. The defini-
tion of the “optimal” loop defining this equivalence
class is therefore ambiguous. It remains nontrivial,
even NP-hard (Chen and Freedman, 2011) under cer-
tain assumptions, to identify which member of this
equivalence class is somehow representative or opti-
mal, though this would facilitate the interpretation of
these structures in the biological context.
The nature of Hi-C , as an experiment based on

cross-linking over a full population, does not permit
a transformation from the Hi-C counts to a true dis-
tance metric. Our distance matrices therefore do not
satisfy the triangle inequality, which may a↵ect the
TDA results in unpredictable ways. One possibility
to improve this concern is to use any of the methods
that estimate a 3D structure from Hi-C, or select only
the Hi-C values that satisfy a metric definition Duggal
et al. (2013), and infer distances which would be ge-
ometrically consistent. However, this induces another
source of error, and it is unclear whether the results
would be more reliable.

5 Conclusion

We have presented the first application of TDA to
study the topology of all 22 human autosomal chro-

mosomes. By studying clusters and loops of 14 sam-
ples from various cell lines and stages of di↵erentia-
tion, we identify generative principles of chromosome
structure. Our models suggest that the linearity of
the chromosome is su�cient to explain the short lifes-
pan of its loops, but additional structures in Hi-C
likely lead to the small number of loops and their late
birth times. We also show that topological structure is
largely determined by cell line rather than stage of dif-
ferentiation, and that there are few chromosome-wide
changes through di↵erentiation. We do, however, find
evidence for local structural changes on several chro-
mosomes consistent across all three cell lines studied.
TDA shows promise for further analysis of Hi-C data,
especially as computational limitations are overcome
permitting analysis of higher dimensional features at
higher resolution.
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Cámara, P. G. (2017). Topological methods for ge-
nomics: present and future directions. Current
Opinion in Systems Biology , 1, 95–101.

Camara, P. G. et al. (2016). Topological data analy-
sis generates high-resolution, genome-wide maps of
human recombination. Cell Systems, 3(1), 83–94.

Carlsson, G. (2009). Topology and data. Bulletin of
the American Mathematical Society , 46(2), 255–308.

Carlsson, G. (2014). Topological pattern recognition
for point cloud data. Acta Numerica, 23, 289–368.

Carriere, M. and Rabadan, R. (2018). Topologi-
cal data analysis of single-cell Hi-C contact maps.
arXiv:1812.01360 .

Cavalli, G. and Misteli, T. (2013). Functional impli-
cations of genome topology. Nature Structural and
Molecular Biology , 20(3), 290–299.

Chan, J. M. et al. (2013). Topology of viral evolution.
Proceedings of the National Academy of Sciences ,
pages 18566–18571.

Chazal, F. and Michel, B. (2017). An introduction to
topological data analysis: fundamental and practical
aspects for data scientists. arXiv:1710.04019 .

Chen, C. and Freedman, D. (2011). Hardness results
for homology localization. Discrete & Computa-
tional Geometry , 45(3), 425–448.

Chen, Y. et al. (2018). Mapping 3D genome organi-
zation relative to nuclear compartments using TSA-
Seq as a cytological ruler. The Journal of Cell Biol-
ogy , 217(11), 4025–4048.

Crane, E. et al. (2015). Condensin-driven remodelling
of X chromosome topology during dosage compen-
sation. Nature, 523(7559), 240–244.

Cremer, T. and Cremer, C. (2001). Chromosome ter-
ritories, nuclear architecture and gene regulation in
mammalian cells. Nature Reviews Genetics, 2(4),
292–301.

Dekker, J. et al. (2002). Capturing chromosome con-
formation. Science, 295(5558), 1306–1311.

Dixon, J. R. et al. (2012). Topological domains in
mammalian genomes identified by analysis of chro-
matin interactions. Nature, 485(7398), 376–380.

Dixon, J. R. et al. (2015). Chromatin architecture reor-
ganization during stem cell di↵erentiation. Nature,
518(7539), 331–336.

Djekidel, M. N. et al. (2018). FIND: difFerential chro-
matin INteractions Detection using a spatial Poisson
process. Genome Research, 28(1), 412–422.

Duggal, G. et al. (2013). Resolving spatial inconsis-
tencies in chromosome conformation measurements.
Algorithms for Molecular Biology , 8, 8.

Duggal, G. et al. (2014). Higher-order chromatin do-
mains link eQTLs with the expression of far-away
genes. Nucleic Acids Research, 42(1), 87–96.

Edelsbrunner, H. and Harer, J. (2010). Computational
topology: an introduction. American Mathematical
Society.

Emmett, K. et al. (2015). Multiscale topology of chro-
matin folding. arXiv:1511.01426 .

Fields, P. A. et al. (2017). Dynamic reorganization
of nuclear architecture during human cardiogenesis.
bioRxiv , page 222877.

Fillipova, D. et al. (2014). Identification of alternative
topological domains in chromatin. Algorithms for
Molecular Biology , 9, 14.

Fudenberg, G. et al. (2011). High order chromatin
architecture shapes the landscape of chromosomal
alterations in cancer. Nature Biotechnology , 29(12),
1109–1113.

Hinks, T. S. et al. (2016). Multidimensional endotyp-
ing in patients with severe asthma reveals inflamma-
tory heterogeneity in matrix metalloproteinases and
chitinase 3–like protein 1. Journal of Allergy and
Clinical Immunology , 138(1), 61–75.

Hnisz, D. et al. (2016). Activation of proto-oncogenes
by disruption of chromosome neighborhoods. Sci-
ence, 351(6280), 1454–1458.

Imakaev, M. et al. (2012). Iterative correction of Hi-C
data reveals hallmarks of chromosome organization.
Nature Methods, 9(10), 999–1003.

Kragesteen, B. K. et al. (2018). Dynamic 3D chromatin
architecture contributes to enhancer specificity and
limb morphogenesis. Nature Genetics, 50(10), 1463–
1473.

Le Dily, F. et al. (2014). Distinct structural transitions
of chromatin topological domains correlate with co-
ordinated hormone-induced gene regulation. Genes
& Development , 28(19), 2151–2162.

Lesne, A. et al. (2014). 3D genome reconstruction from
chromosomal contacts. Nature Methods , 11(11),
1141.

Page 11

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted February 5, 2019. ; https://doi.org/10.1101/540716doi: bioRxiv preprint 

https://doi.org/10.1101/540716
http://creativecommons.org/licenses/by/4.0/


Li, L. et al. (2015). Identification of type 2 diabetes
subgroups through topological analysis of patient
similarity. Science Translational Medicine, 7(311),
311ra174.

Lieberman-Aiden, E. et al. (2009). Comprehensive
mapping of long-range interactions reveals fold-
ing principles of the human genome. Science,
326(5950), 289–293.

Lun, A. T. and Smyth, G. K. (2015). di↵Hic: a Biocon-
ductor package to detect di↵erential genomic inter-
actions in Hi-C data. BMC Bioinformatics , 16(1),
258.
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