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Abstract 

In this work, we aim to investigate whether information based metrics of neural activity are a useful 

tool for the search for consciousness before and shortly after birth. Neural activity is measured using 

fetal magnetoencephalography (fMEG) in human fetuses and neonates. Based on recent theories on 

consciousness, information-based metrics are established to measure brain complexity and to assess 

different levels of consciousness. Different metrics (measures of entropy, compressibility and 

fractality) are, thus, explored in a reference population and their usability is evaluated. For 

comparative analysis, two fMEG channels were selected: one where brain activity was previously 

detected and one at least 15cm away, that represented a control channel. The usability of each metric 

was evaluated and results from the brain and control channel were compared. Concerning the ease of 

use with fMEG data, Lempel-Ziv-Welch (LZW) compression was evaluated as best, as it is 

unequivocal and needs low computational effort. The fractality measures have a high parameter 

space and therefore forfeit comparability, while entropy measures require a higher computational 

effort and more parameters to adjust compared to LZW. Comparison of a channel with brain activity 

and a control channel in neonatal recordings showed significant differences in most complexity 

metrics. This clear difference can be seen as proof of concept for the usability of complexity metrics 

in fMEG. For fetal data, this comparison produced less clear results which can be related to leftover 

maternal signals included in the control channel. Further work is necessary to conclusively interpret 

results from the analysis of fetal recordings. Yet this study shows that complexity metrics can be 

used for fMEG data on early consciousness and the evaluation gives a guidance for future work. The 

inconsistency of results from different metrics highlights the challenges of working with complexity 

metrics as neural correlates of consciousness, as well as the caution one should apply to interpret 

them.  

1 Introduction 

Consciousness is known to be one of the characteristics that make humans unique. But when does 

this aspect of the human mind arise? Is it possible that consciousness already exists before birth? 

From the 24th week of gestation, a fetus can process sensory stimuli at a cortical level, as 

thalamocortical connections are already established (Kostović and Judaš, 2010). Long range 
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pyramidal neurons – which are known to be important for conscious processing (Dehaene et al., 

1998) – are developed around week 26 (Lagercrantz and Changeux, 2009). Yet, it is difficult to 

assess the conscious state of a fetus in the mother’s womb. Fetal magnetoencephalography (fMEG) is 

a tool to noninvasively investigate fetal brain activity in the last trimester of pregnancy and in 

neonates shortly after birth (Preissl et al., 2004). This tool makes it possible to measure a neural 

correlate of consciousness in fetuses and pursue the question of the debut of consciousness in human 

life.  

During the last decades, work in the field of disorders of consciousness led to an increased interest in 

neural correlates of consciousness. One way to find such a correlate is to look at complexity of 

neurological data (Tononi and Edelman, 1998). In nature, complexity of physiology is related to the 

adaptive capacity of an organism (Costa et al., 2002). This is translated into physiological signals 

with long-range correlations across various spatio-temporal scales – a behavior that is named self-

organization – that indicate the presence of self-invariant and self-similar structures (Pritchard and 

Duke, 1995). The self-organizational properties of a complex system can be quantified by estimating 

its dimension (Theiler, 1990), or its ability to compress information (Cover and Thomas, 2012; 

Ruffini, 2017a).  

For a system to be complex, it has to operate on several scales and also show an interplay between 

those scales (Lutzenberger et al., 1995). This is a property of a so-called chaotic system, and can be 

measured in space and time (Elbert et al., 1994). Typically chaos in space is estimated with the 

fractal dimension, which is defined as the dimension of a strange attractor towards which a complex 

system evolves in phase-space (Grassberger and Procaccia, 1983b). Thus, the fractal dimension, 

namely D, describes the overall complexity of an object, which can be the geometrical complexity, 

the space filling property, the roughness of a surface, or the variation of a time series. The fractal 

dimension D is defined by the logarithmic ratio of change in detail with change in scale (Di Ieva, 

2016). This relates to the distinct characteristic of a fractal, namely the property of self-similarity: 

i.e., pieces of an object are similar to larger pieces of it as well as to the whole object (Eke et al., 

2002). In nature, fractals are usually only statistically self-similar which means that smaller excerpts 

are not necessarily exact copies of the larger ones, but they are the same on average (Pritchard and 

Duke, 1995). In contrast to fractal dimension, entropy gives information about the dynamical 

properties of an attractor and not about its geometrical shape (Rodríguez-Bermúdez and Garcia-

Laencina, 2015). Chaos in time therefore relates to this stability and sensitivity to initial conditions 

(Elbert et al., 1994; Baranger, 2000). Related to those properties of complex systems, several 

measures were developed to quantify their complexity. The sensitivity to initial conditions can be 

quantified in terms of the Lyapunov exponent and the Kolmogorov entropy, also known as 

information dimension (Theiler, 1990). Different entropy measures as well as the measure of 

compressibility can be employed for this. Ruffini (2017a) recently proposed a theory of 

consciousness that considers the brain an engine that strives to model the world with simplicity, 

while learning it is a result of exchanging information with it. According to this theory, the ability of 

the brain to compress information is an indicator of consciousness.   

In consciousness neuroscience, this quantification of complexity is used in different scenarios. The 

main areas of application are research with patients with disorders of consciousness, anesthesia 

monitoring and sleep studies (e.g. Casarotto et al., 2016). For instance, Burioka et al. (2005) showed 

that approximate entropy calculated on small segments of electroencephalography (EEG) data 

decreases with depth of sleep. In particular, there is a linear decrease from wakefulness over sleep 

stage one until four, while rapid eye movement sleep showed values similar to wakefulness. Analysis 

of data from EEG, MEG and intracranial EEG recordings confirmed this drop of complexity with a 
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drop in wakefulness (Mateos et al., 2018). Complexity was calculated with entropy and 

compressibility measures. Zhang et al. (2009) could differentiate between active sleep and quiet sleep 

in newborns by means of sample entropy. Similarly, the dimensional complexity of the EEG pattern 

measured by correlation dimension (CD) was found to be higher in active sleep compared to quiet 

sleep for infants in their first months of life (Janjarasjitt et al., 2008b; Scher et al., 2009). 

Furthermore, scale free properties caused by the self-similarity of fractals, can be used to differentiate 

between sleep stages whereas an increase or decrease of values depends on the scale free parameter 

estimated (Weiss et al., 2009). 

In general, the measurement of this scale free behavior appears promising in the investigation of state 

transitions (Weiss et al., 2009). Studies with Propofol anesthesia showed a change in scale free 

behavior before and after loss of consciousness (Eagleman et al., 2018) and a difference between 

wakefulness and loss of consciousness as well as recovery from anesthesia (Tagliazucchi et al., 

2016). Also with the help of entropy measures, Eagleman et al. (2018) could show a change in 

complexity of scalp EEG data before and after loss of responsiveness in anesthesia patients. 

Similarly, Schartner et al. (2015) could distinguish between loss of consciousness during Propofol 

induced anesthesia and wakeful rest by means of entropy measures as well as compressibility 

measures. Furthermore, higher entropy values were shown in the EEG data of healthy control 

participants compared to unresponsive wakefulness patients, matched for sex and age (Sarà and 

Pistoia, 2010).  

Compressibility measures in combination with transcranial magnetic stimulation are widely used to 

distinguish between patients with different disorders of consciousness (e.g. unresponsive wakefulness 

state, minimally conscious state, locked in syndrome) and healthy subjects in different sleep stages. 

In addition, sedation with different anesthetics can be differentiated (e.g. Propofol and Ketamine), 

whereby in both cases patients are behaviorally unresponsive but in case of Ketamine they report 

vivid dreams (e.g. Casali et al., 2013; Sarasso et al., 2015; Casarotto et al., 2016; Bodart et al., 2017; 

Rosanova et al., 2018). Moreover, a recent study on MEG revealed increased LZW (Lempel-Ziv 

Welch) complexity during a psychedelic state of consciousness induced using Ketamine, LSD, and 

Psilocybin compared to a placebo effect (Schartner et al., 2017). Regarding other, related, patient 

populations, schizophrenic patients have higher LZW complexity compared to healthy controls 

(Fernández et al., 2011), and depressed patients have higher MEG pre-treatment complexity that 

decreases after 6 months of pharmacological treatment (Méndez et al., 2012). 

These findings show that there are many valid approaches to use complexity metrics to quantify 

consciousness, although to our knowledge there are no studies that investigated complexity on early 

consciousness. Yet, the exact relation of the different metrics is hard to grasp and it is difficult to 

define a metric that is most suitable for a specific purpose. Therefore, in the current study, as we use 

a different type of data than previous studies, we follow an explorative approach and apply numerous 

different metrics to our fMEG data (Table 1). The aim of this approach is to capture different aspects 

of complexity and compare the metrics regarding their behavior towards this special type of data and 

their usability when employing them to pursue a novel question. In particular, data from fetal MEG 

recordings with different gestational ages and additional neonatal recordings are used in this study. 

The data included in the analysis previously showed auditory event-related responses, which allowed 

for identification of channels with high brain activity within the sensor space. Such data is used, as it 

is otherwise difficult to localize clusters of brain activity. The goal of the analysis is to evaluate if 

complexity metrics are a useful tool for fMEG analysis in the search for fetal consciousness.       
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Table 1: Overview used Metrics 

 

2 Material and Methods 

2.1 Fetal Magnetoencephalography 

fMEG  is a non-invasive tool to measure heart and brain activity in fetuses in the last trimester of 

pregnancy and in neonates shortly after birth (Preissl et al., 2004). For the recording of fetal- and 

neonatal data, the SARA (SQUID Array for Reproductive Assessment, VSM MedTech Ltd., Port 

Coquitlam, Canada) system installed at the fMEG Center at the University of Tübingen is used 

(Figure 1). To attenuate magnetic activity from the environment, the device is installed in a 

magnetically shielded room (Vakuumschmelze, Hanau, Germany). The system includes 156 primary 

magnetic sensors and 29 reference sensors. The magnetic sensors are distributed over a concave array 

whose shape is designed to match the maternal abdomen. Based on an ultrasound measurement 

(Ultrasound Logiq 500MD, GE, UK) prior to the fMEG recording the position of the fetal head is 

determined and is marked by a localization coil placed on the maternal abdomen. Three additional 

localization coils are placed on the spine, left and right side of the subject, to track position changes 

in relation to the sensor array. An ultrasound directly after the measurement is used to confirm the 

fetal head position. In case of a change in position, datasets are excluded. Auditory stimulation can be 

presented via a balloon placed between the maternal abdomen and the sensor array. Neonates get a 

small, child-appropriate earphone (Ear Muffins from Natus, Biologic, San Carlos, USA), placed on 

one ear. For neonatal recordings a cradle is attached to the fMEG device. The neonate is attended by 

one parent inside the measurement room and is measured asleep or quiet awake. 

2.2 Dataset 

For the current analysis, fetal and neonatal data from previously analyzed studies was used (Linder et 

al., 2014; Morin et al., 2015). The auditory stimulation paradigm used in these studies consists of an 

auditory oddball paradigm with a 500Hz tone as standard and a 750Hz tone as deviant. The standard 

Concept investigated Method Objective 

Entropy Multiscale Entropy Measurement of self-similarity of time series by 

looking at repeating sequences on multiple 

scales 

Entropy Multiscale 

Permutation Entropy 

Measurement of self-similarity of time series by 

looking at probability of patterns in data on 

multiple scales 

Compressibility Lempel-Ziv-Welch 

compression 

Quantification of compressibility of time series 

Fractality Correlation 

Dimension 

Measurement of strangeness of attractor, 

towards which complex system evolves 

Fractality Scale free approaches Detection of power-law exponent that describes 

scale free behavior and additionally description 

of multifractal properties 
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occurs in 80% of times in a pseudorandomized order. Each tone is 500ms long with an inter-trial 

interval of 1500ms. 45 fetal recordings were selected from subjects where auditory event-related 

responses were detected. They have a gestational age range from 29 to 39 weeks – 15 of them in an 

early phase of the third trimester (29-32 weeks), 15 in the middle (33-36 weeks) and 15 in a later phase 

(37-39 weeks) – approximately uniformly distributed over the whole age range. 15 neonatal recordings 

were included with an age range from 4 to 46 days (mean=17.47; SD=12.68). For all subjects, data 

with auditory stimulation (“audio”) and data without stimulation (“spont”) is available. As the length 

of the fetal datasets varies from six to 15 minutes, for all of them only the first six minutes were used. 

The neonatal datasets all have a length of ten minutes. 

2.3 Data Analysis 

2.3.1 Preprocessing 

As first step for all datasets, the maternal magnetocardiogram and fetal magnetocardiogram were 

detected by template matching or using the Hilbert transform algorithm and were subtracted from the 

relevant signal, through signal space projection (Vrba et al., 2004; McCubbin et al., 2006; Wilson et 

al., 2008). One of the two methods was selected depending on which method yielded better results, 

which is the established procedure for fetal brain analysis (e.g., Linder et al., 2014). Matlab 16b was 

used (The MathWorks, Natick, MA) for all further processing steps, expect for the calculation of the 

compressibility measure, where Python 2.7 was used (Python Software Foundation, 

https://www.python.org/). Fieldtrip  (Oostenveld et al., 2010) was used to filter all fetal data between 

0.5 and 10Hz and all neonatal data between 0.5 and 15Hz which is the usual filtering range for the 

analysis of evoked brain responses (Linder et al., 2014; Schleger et al., 2014). Additionally, data was 

down sampled from 610.35Hz to 256Hz. 

In the previous analysis of these datasets, five channels were selected for the analysis of auditory event-

related responses (example for analysis procedure in Schleger et al., 2014). As these were the five 

channels with the highest evoked brain activity, they were selected as brain channels for this study 

(“brain”). Additional to those five channels, five control channels (“control”) were selected that are all 

more than 15cm away from the brain channels. By default, the five channels were situated in the upper 

middle part of the sensor field. However, if the fetus was positioned in a way that was too close to 

those sensors, five channels in the lower middle part were selected. As the five brain channels showed 

similar behavior, for simplicity of the later analysis only the brain channel with the highest amplitude, 

and one control channel, were used. The usability of a single channel for complexity analysis was 

previously demonstrated (e.g., Scher et al., 2005). For later analysis the signal was cut into windows 

of 1 minute (Scher et al., 2009; Kaffashi et al., 2013), to generate a more stationary signal. This results 

in six time-windows for fetal data and ten time-windows for neonatal data. If a time window included 

a signal that was higher than 1pT, it was classified as containing an artefact and the concerning time 

window was removed from the analysis. 

2.3.2 Complexity Metrics 

To measure the informational complexity of the fMEG signal, multiscale entropy (MSE) and 

multiscale permutation entropy (MPE) was used, as well as LZW compression. Additionally, we 

included the geometrical properties of the signal and measured its amount of fractality. As an 

approximation for this, the CD, also known as dimensional complexity (Janjarasjitt et al., 2008b), is 

calculated. In addition, scale free behavior, which is a basic property of a fractal, was taken into 

account.  
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Figure 1: Diagram of data acquisition and processing. Blue: analysis done for previous studies. 

2.3.3 Multiscale Entropy 

MSE calculates sample entropy (SE) for different time scales. If SE is calculated, lower values 

indicate more self-similarity in time series and the calculation is largely independent of recording 

length and relatively consistent (Richman and Moorman, 2000). This traditional entropy measure 

takes only one scale into account, therefore MSE uses a coarse-grained time series with different 

scaling factors which takes long range correlations into account (Costa et al., 2002). By considering 

multiple scales, both highly deterministic and completely random signals result in low values, only 

complex signals can reach a high value (McIntosh et al., 2008).  

For the coarse graining step, the dataset is divided into non-overlapping windows of size τ and the 

data points in each window are averaged. SE is based on the definition of Kolmogorov entropy and is 

defined as the negative logarithm of the probability of two sequences that are similar for m points, to 

be similar at the point m+1 as well (Richman and Moorman, 2000). r describes the tolerance within 

which two points are accounted as similar (Richman & Moorman, 2000). 

For the calculation of MSE the “msentropy” function out of the WFTB Toolbox (Goldberger et al., 

2000; Silva and Moody, 2014) was used. The parameters used in the current analysis are oriented at 

the default parameters described by Costa et al. (2005). We used m = 2, r = 0.15 (15% of the standard 

deviation of the time series) and N = 15360 which is a bit lower than the recommended N = 2 * 10^4 

but was selected in terms of comparability of the different methods and did not show any 

disadvantage compared to an example analysis with a larger N. We chose τ to contain all values 

between 1 and 20 to calculate the SE for 20 different scales whereas scale one equals the original 

time series. A time series is considered as more complex than another if a majority of scales show 

higher entropy values (Costa et al., 2005). For that reason we used the average MSE over all scales 

for all further comparisons. 

2.3.4 Multiscale permutation Entropy 

MPE calculates permutation entropy (PE) for multiple time scales. In comparison to other complexity 

measures PE is very robust towards noise (Bandt and Pompe, 2002; Zanin et al., 2012). PE looks at 
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different patterns within a time series with the idea that those patterns do not have the same 

probability of occurrence and that this probability can be informative regarding the underlying 

dynamics of the system (Zanin et al., 2012). PE uses short samples of a time series to look at their 

permutation patterns and their frequency of occurrence in relation to all possible permutation patterns 

(Bandt and Pompe, 2002). PE can be used to quantify complexity of a dynamical time series as it 

refers to its local order structure (Ouyang et al., 2013). A large value of PE indicates that all 

permutations are equally likely, a value close to zero signifies a very regular time series (Ouyang et 

al., 2013). 

MPE was calculated using the “MPerm” function by Ouyang (2012, November 21)1. Like for MSE, 

the first step is a coarse graining where we selected the same τ as in the MSE calculation which is 

denoted as s in the MPE analysis. In this study m = 4 was selected for the length of the short samples 

and a time delay t = 1 which corresponds to the default value. Like for the MSE, the average MPE 

over all scales was used for further comparisons. 

2.3.5 Lempel-Ziv-Welch Compressibility 

The LZW compression is a measure closely related to Kolmogorov complexity and Shannon entropy 

(Gao et al., 2011), and is originally described by Ziv and Lempel (1978). For LZW compression, a 

dictionary that starts with the shortest new sequence in a time series is built and then adds longer 

sequences until it captures all non-repetitive sequences (Ruffini, 2017b). The length of this dictionary 

defines the amount of compressibility of a time series (Aboy et al., 2006). LZW values increase with 

increasing frequency but not with increasing amplitude as well as with increasing power of noise and 

increasing signal bandwidth (Aboy et al., 2006).  

To calculate LZW, a signal of length n has to be binarized, which in our case is done by a median 

split as a threshold. In particular, values below the median are indicated as zero, whereas values 

above the median as one. The median split is relatively robust to outliers compared to other methods 

(Aboy et al., 2006). After the binarization process, the data can be compressed to a set of “words”, 

c(n), and the description length of the dictionary is defined as the number of included words times the 

bits needed to encode those words plus the bits needed to define a new symbol in the dictionary 

(Ruffini, 2017b). 

The complexity counter, c(n), is then normalized by the length of the data string (Aboy et al., 2006). 

In the current analysis, ρ0, which represents the c(n) normalized by the original string length, is the 

value used to indicate LZW compressibility. A higher ρ0 value indicates higher complexity, thus, 

less ability to compress. For a more detailed description of the process of compression, the reader is 

referred to Aboy et al. (2006), and for the algorithm used in the current analysis to Ruffini (2017b).  

2.3.6 Correlation Dimension 

The CD is a measure for the strangeness of an attractor, which is closely related to the fractal 

dimension D. In addition to the geometrical properties of the attractor it takes the dynamics of 

coverage of the attractor into account (Grassberger and Procaccia, 1983b). The CD uses the statistics 

of pairwise distances to estimate dimension and is based on the scaling of mass with size (Theiler, 

1990). Correlations between points of long-time series on the attractor are used for that (Grassberger 

and Procaccia, 1983b). For a complete description of a higher dimensional nonlinear system, a time 

                                                 

1 Multiscale permutation entropy (MPE), version 1.3. Retrieved from 

https://ch.mathworks.com/matlabcentral/fileexchange/37288-multiscale-permutation-entropy–mpe- 
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series – which is an observation in one dimension – has to be unfolded into a higher dimensional 

space, the so called “embedding space” (Janjarasjitt et al., 2008a). The process of embedding a time 

series in a higher dimension is described by (Takens, 1981).  

The CD is calculated using the correlation integral, defined as the ratio of the distances between any 

two points that are smaller than a radius r and all possible distances (Theiler, 1990). To determine the 

distance in the time series of the points to be correlated, the time delay τ is introduced. τ can be set 

with the help of the autocorrelation function (Janjarasjitt et al., 2008a).  

For the current analysis, the “gencorint” function was used to determine the CD (Grassberger and 

Procaccia (1983a), Albano et al. (1988), Theiler (1986) out of the Chaotic systems Toolbox, 

Leontitis, 20042). For setting the embedding parameter, we used the false nearest neighbor algorithm 

(Kizilkaya (2012)3, Kennel et al. (1992)), and determined an embedding dimension of m = 4 for the 

current dataset. To determine the right time delay τ, an autocorrelation function was calculated for 

each subject and time window and the zero point of it was used as individual value of τ. If a time 

window showed an for this type of data unrealistic autocorrelation function (zero point <10), it was 

excluded from further analysis. Except for those two parameters all other parameters were set to the 

default values suggested in the function. For algorithmic efficiency, the slope of the CD can be used 

as an approximation of the CD (Theiler, 1990). In the current analysis, a linear fit over all points was 

performed to determine this slope. The slope value was used for all further comparisons. 

2.3.7 Scale Free Approaches 

The self-similarity of a fractal can be expressed by a mathematical power-law with a distinct 

exponent (Eke et al., 2002). One of these exponents is the Hurst exponent (H), which is also referred 

to as “self-similarity parameter” (Zilber, 2014). It expresses the probability that an event is followed 

by a similar event and is related to the fractal dimension (D) by D = 2 – H. A value of H = 0.5 shows 

that a time series is uncorrelated (e.g. white noise). 0.5 < H is an indication for long range 

correlations and H < 0.5 for long-range anti-correlations (Kantelhardt et al., 2002). For some fractal 

processes one power-law exponent is not enough to characterize them and a multifractal formalism 

can be used to describe several exponents (Di Ieva, 2016). In case of multifractality, the scaling 

function of a signal is not linear anymore and can thus not be described by a single scaling exponent 

H but by a nonlinear scaling function (Zilber, 2014). Those multiple H are called Hölder exponents 

and can be used to span a multifractal spectrum. The width of this spectrum (M) is a measurement for 

the amount of multifractality (Zilber, 2014). 

Self-similar processes also described as 1/𝑓 or scale free behavior can be mainly observed in the 

infraslow frequency range of the power spectrum (Zilber, 2014). This knowledge is important for the 

selection of scale ranges in scale free analysis. For the following analysis, the focus is on self-similar 

processes in the range 0.5-2 Hz. To assess H and M, two methods for multifractal analysis are 

employed. For both, all data was normalized to avoid the influence of amplitude differences. 

                                                 

2 Chaotic systems toolbox, version 1.0. Retrieved from https://ch.mathworks.com/matlabcentral/fileexchange/1597-

chaotic-systems-toolbox 

3 Minimum embedding dimension, version 1.0. Retrieved from 

https://ch.mathworks.com/matlabcentral/fileexchange/37239-minimum-embedding-dimension 
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Table 2: Comparison of usability of methods 

Method Computational 

Effort 

Parameter 

Space 

Comparability Overall Usability 

MSE moderate moderate high OK 

MPE moderate moderate moderate OK 

LZW very low small high good 

CD high large moderate weak 

MFDFA low large low weak 

WLBMF low large low weak 

 

2.3.7.1 Multifractal detrended fluctuation analysis 

The multifractal detrended fluctuation analysis (MFDFA) is a robust analysis for the estimation of 

the multifractal spectrum of power-law exponents of a natural time series (Ihlen, 2012). Its basis is 

the detrended fluctuation analysis (DFA), one of the most popular methods to estimate scale free 

behavior in physiological signals which follows the idea that fluctuations within a signal are 

following a power-law as a function of the number of sample points (Zilber, 2014). The root mean 

square (RMS) of a signal is calculated over different scales (s) with n segments and a certain number 

of points within each segment. Larger scales are more affected by slower fluctuations, smaller scales 

more by faster fluctuations (Ihlen, 2012). For each scale the RMS of the individual segment 

(RMS(s)) – local fluctuation – is calculated, and an overall RMS (F) is computed from these values. 

The slope of the values of F over different scales equals H. In case of MFDFA this calculation is 

done for multiple orders q. As a result MFDFA obtains the set of weighted F values whose slopes 

obtain multiple q-order Hurst exponents. They can be used, to trace back the multifractal spectrum 

and its width M (Ihlen, 2012). For a more detailed description of the calculation steps, see Ihlen 

(2012).  

The MFDFA toolbox (Ihlen (2012), MFDFA1 algorithm) was used in this study. As the algorithm is 

built for random-walk like signals – which are integrals of noise-like signals (Zilber, 2014) – first we 

checked whether the data resembles noise or random-walk signals. This is determined by the value of 

H, which was calculated by a simple DFA. As a cutoff H = 1.2 was selected (< noise like, > random 

walk like; after Ihlen, 2012). If the signal is noise like, it is transformed into a random-walk signal, 

and if it is random walk like, this step is skipped. As a second step, a general linear detrending of the 

signal is performed. For the current analysis 19 equally spaced scales ranging from 128 to 512 data 

points, within s, were chosen. q was selected to range from -5 to 5 in steps of 0.1 (number of q: nq = 

100). The value of Hq at q = 2 equals H (Ihlen, 2012). The scale free parameters H and M were 

evaluated in the further analysis. 
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Figure 2: Results from analysis of different metrics on data from neonates with auditory stimulation. 

* depicts significant, ** highly significant, difference. 

2.3.7.2 Wavelet-leader based multifractal formalism 

Wavelet-leader based multifractal formalism (WLBMF) poses a fast, theoretically efficient and 

robust analysis method for multifractal properties of real-world data (Zilber, 2014). It uses wavelet 

leaders to derive the multifractal properties of a signal by the knowledge of the scaling exponents.  

This can be done because wavelet leaders precisely reproduce the Hölder exponents of a signal 

(Wendt et al., 2007). Wavelet leaders are defined as the maximum wavelet coefficients within a 

predefined segment (Ciuciu et al., 2008). The log-cumulants (c1-c3) of the scaling exponents give 

information about the shape of the multifractal spectrum. Whereas c1 equals its maximum, c2 its 

width and c3 its asymmetry (Wendt et al., 2007; Zilber, 2014). 

For the calculation of the wavelet-leader based multifractal formalism (WLBMF) the toolbox 

described in Wendt et al. (2007) was used. A Daubechies wavelet with three vanishing moments was 

selected as a mother wavelet. The scales for the WLBMF were chosen in accordance with the scales 

of the MFDFA with jmin = 7 and jmax = 9. To increase the reliability of the results, Wendt et al. 

(2007) implemented a bootstrapping process to obtain sets of log-cumulants, which opens up new 

possibilities for statistical testing. In the present analysis, we used 100 bootstraps and then averaged 

over the bootstrapped values to retrieve the variables of interest. For a more detailed description see  
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Figure 3: Results from analysis of different metrics on data from neonates without stimulation. ** 

depicts significant difference. 

Wendt et al. (2007). In the present study we only evaluated c1 and c2, whereby c1 is supposed to be 

equivalent to H and c2 to M (Zilber, 2014). 

2.3.8 Statistical Analysis 

For statistical analysis the results of all time windows of a certain subject and condition were averaged. 

Those mean values were then tested for normality with a Kolmogorov-Smirnoff test. As they showed 

to be not normally distributed, groups were compared with a Wilcoxon signed rank test. Significance 

level was set to α = 0.05 in all cases. Due to the explorative nature of the analysis no Bonferroni 

correction was done.  

3 Results  

3.1 Usability of Methods 

After testing several methods for determining complexity of fMEG data, a first step was to evaluate 

those methods for potential future use. As shown in Table 1 we evaluated them in terms of 

computational costs, parameter space, comparability regarding their prevalence in the literature and 

summarized this with the term ‘overall usability’. Thereby a low computational effort is favored, as 

well as a small number of parameters that can be adjusted. Abundance of literature is seen as an 

advantage, to ensure comparability of results. Overall LZW had the best overall usability as it is  
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Figure 4: Results from analysis of different metrics on data from fetuses with auditory stimulation. * 

depicts significant, ** highly significant, difference. 

unequivocal and fast and is therefore preferable for future analysis. Nevertheless, this evaluation 

concerns the present field and has only limited significance for other research questions and other 

types of data.  

3.2 Detection of Brain Activity 

Neonatal data: In the neonatal datasets, the comparison of brain vs. control resulted in a significant 

difference for both audio and spontaneous data for LZW, MSE, MPE and CD (p < 0.001; for MSE: 

p=0.016 & p=0.007). In all cases, the control channel showed higher values compared to the brain 

channel. For the scale free metrics in both cases H/c1 could not differentiate between brain and 

control but M/c2 showed a significant difference (p < 0.001). In case of M, the channel with the brain 

activity appeared more multifractal than the control channel, whereas in case of c2, the opposite was 

observed. For detailed results, see Figures 2 and 3.    

Fetal data: For the comparison of brain vs. control of in the fetal datasets, no clear tendencies could 

be found. The LZW calculation, as well as the MPE and CD metric did not reveal a significant 

difference, neither for audio data nor for spontaneous data. Some of the calculated metrics showed a 

difference for audio data only (MSE: p>0.001; H: p=0.02), one metric for both types of data (c1: 

p=0.01 audio; p=0.03 spont), and one metric for spont data only (c2: p=0.03). For detailed results, 

see Figures 4 and 5.   
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Figure 5: Results from analysis of different metrics on data from fetuses without stimulation. * 

depicts significant difference.  

4 Discussion 

The usability rating of the different metrics revealed that, concerning the ease of use with fMEG data, 

LZW was evaluated as best, as it is unequivocal and needs low computational effort. The fractality  

measures have a high parameter space and therefore forfeit comparability, while entropy measures 

require a higher computational effort and more parameters to adjust compared to LZW.  

In the neonatal population, the channel with brain activity showed lower complexity compared to the 

control channel, measured by MSE, MPE, LZW and CD. As in this scenario, the control channel 

records environmental noise, it shows us that these metrics can clearly differentiate between a 

physiological signal and noise. These rather clear results can be seen as proof of concept for the 

general usability of complexity metrics in fMEG. For fetal data, this comparison produced less clear 

results – only MSE and scale free metrics showed a significant difference. This could be due to the 

fact that the control channel does not consist of pure environmental noise like in neonatal recordings 

but can also contain leftovers of physiological signals produced by fetus and mother. 

Magnetocardiographic activity of both, mother and fetus, should be taken into account as major 

confounds here. The different preprocessing steps that need to be performed, to evaluate fetal 

compared to neonatal data should be considered likewise. 
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The inconsistency of results from different metrics highlights the challenges of working with 

complexity metrics as neural correlates of consciousness, as well as the caution one should apply to 

interpret them. Especially, if a dataset consists of as many different aspects as fMEG data does, the 

choice of the right metric is crucial. Therefore, there is a need for more systematic, comparative 

studies, to evaluate the relations of different complexity metrics as well as their sensitivity to small 

changes in analysis parameters. Entropy measures during sleep for example, can reverse their 

direction, depending on the time scale used for calculation (Miskovic et al., 2019). Based on the 

assumption, that when using multiple scales to calculate entropy, random signals result in lower 

entropy values than complex signals (McIntosh et al., 2008), in the current study we would have 

expected higher MSE and MPE values for the brain compared to control channel, especially in 

neonatal data. Yet, we found the opposite in our results. This challenge especially accounts for 

metrics with high parameter space like the scale free metrics that even showed contradicting results 

in our analysis (M and c2 in neonatal data). The claim of these measures being equivalent (Zilber, 

2014) did therefore not hold for the present results. Besides the analysis parameters, the 

preprocessing steps play a crucial role. We can see this for example in the relatively low LZW values 

in our results, that are related to the previous bandpass filtering of our data, as LZW values decrease 

with decreasing signal bandwidth (Aboy et al., 2006).  

Further work is necessary to conclusively interpret results from this analysis of fetal MEG 

recordings. Even if largely explorative, this study shows that complexity metrics can be used for 

fMEG data on early consciousness and the evaluation gives a guidance for future work. The broad 

usage of LZW across a variety of studies, in combination with its use in earlier work on 

consciousness research, makes this metric especially interesting, as results can be compared to other 

subject populations. Yet, we need a better understanding of each metric and its sensitivity to different 

aspects of the data as well as their relation to different aspects of complexity, to use these empirical 

measures of complexity to assess the conscious state of a growing human being. However, as a 

precise assessment of fetal states is still challenging, the implementation of complexity metrics into 

fMEG research is a goal, that opens up interesting possibilities.  
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