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Liquid biopsies are revolutionizing the fields 
of prenatal non-invasive testing and cancer 
diagnosis by leveraging the genetic differences 
between mother and fetus, and, host and 
cancer. In the absence of genetic variance, 
epigenetics has been used to decipher the cell-
of-origin of cell-free DNA (cfDNA). Liquid 
biopsies are minimally invasive and thus 
represent an attractive option for hard to 
biopsy tissues such as the brain. Here we 
report the first evidence of neuron derived 
cfDNA and cerebellum cfDNA within acute 
neurotrauma and chronic neurodegeneration, 
establishing the first class of peripheral 
biomarkers with specificity for the cell-type 
and brain-region undergoing potential injury 
and/or neurodegeneration.  
 
INTRODUCTION 
It has been two decades since the first 
descriptions of fetal derived cell-free DNA 
(cfDNA) within maternal plasma [1] and the 
identification of tumor derived DNA within 
patient blood [2, 3]. Next generation sequencing 
(NGS) of these rare DNA fragments have 
established a minimally invasive technique 
(blood draw) for the diagnosis and disease 
tracking of cancer and graft rejection, and for 

non-invasive prenatal testing (NIPT). The 
technological advancements in NGS have 
increased the limits of detection of these 
techniques [4] to ~0.02%, which hold the 
promise of early detection of smaller cancers and 
more sensitive clinical patient tracking. 
However, in the absence of genetic markers DNA 
methylation has been used to delineate fetal from 
maternal DNA [5]. The use of cfDNA to identify 
fetal genetic abnormalities and to diagnose 
cancers, known as a liquid biopsies, largely 
removes the risk of serious fetal injury and the 
potential risks and difficulties of cancer biopsies 
[6]. This aspect is particularly attractive for 
neurological diagnosis. Liquid biopsies are 
capable of genotyping neurological tumors e.g. 
neuroblastoma by MYNC [7], and glioblastoma 
by EGFR mutations [8]. Fetal-derived cfDNA is 
detectable in mothers’ blood from 7 weeks of 
gestation when the fetus weighs < 1 gram [9]. 
Considering the average adult human brain 
weighs ~1.3kg and can undergo extensive tissue 
loss as a result of both neurotrauma and 
degeneration, it is likely that the 
apoptotic/necrotic DNA of the brain is shed into 
the peripheral blood. A seminal study identified 
the presence of brain-derived cfDNA in blood 
from subjects who had suffered a Traumatic 
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Brain Injury (TBI), ischemic brain damage 
following cardiac arrest, and multiple sclerosis 
[10], providing the first evidence of brain-
derived cfDNA during neurodegeneration. 
 
DNA methylation is an epigenetic modification 
that is found covalently bound to cytosines 
within a CpG context. Uniquely to neurons, 
global DNA methylation is gained postnatally 
within the CpH context (H= any base other than 
guanine) [11], providing unique DNA 
methylation markers of neuronal cell identity. In 
light of the fact that DNA methylation is 
intricately involved in the regulation of gene 
expression it is likely that DNA methylation can 
not only delineate cell types but also the brain 
regions from which they are derived. Here we 
define CpG and CpH methylation that are 
specific to neurons of the dorsolateral prefrontal 
cortex (DLPFC-NeuN+), and CpG methylation 
with brain region specificity–in particular 
distinguishing the cerebellum from other brain 
regions.  We developed a targeted multiplex next 
generation bisulfite sequencing (tNGBS) method 
assaying genomic regions of DLPFC-NeuN+ and 
cerebellum CpG/ CpH methylation, and perform 
ultra-deep sequencing (up to 100,000X) of 
cfDNA from human cohorts with possible 
indication of acute neurotrauma (blast wave 
exposure), during cognitive decline and with a 
chronic neurodegenerative disease (Parkinson’s 
Disease [PD]). Furthermore, we present new 
analytical methods for cell-of-origin 
deconvolution at single molecule resolution 
using k-mer analysis of raw bisulfite sequencing 
reads, establishing an ultra-fast and precise 
method for bisulfite sequencing based cell 
deconvolution (methylK). We identify an 
increase in DLPFC-NeuN+ cfDNA in response 
to blast wave exposure. Moreover, cognitive 
decline was associated with a decrease in 
DLPFC-NeuN+ cfDNA and evidence of 
cerebellum cfDNA. PD subjects exhibited 

reduced DLPFC-NeuN+ cfDNA across two 
independent cohorts.  
 
Our platform provides a framework for an 
economical and scalable method for the 
identification of cell and brain-region specific 
neurodegeneration through the blood. Molecular 
biomarkers of injury and neurodegenerative 
disease are of critical importance in clinical 
research, both for the pre-symptomatic 
identification of vulnerable subjects, and as a 
marker of injury/ disease progression in clinical 
trials. These represent much needed new end-
points for clinical trials for diagnostic indicators 
of neurotrauma and prognostic indicators of 
progression of neurodegenerative disease.  
 
RESULTS 
Identification of brain-specific DNA 
methylation loci for targeted bisulfite 
sequencing. The majority of cfDNA within 
circulation is derived from blood cells. To 
identify CpG methylation loci capable of 
discriminating brain-derived DNA we 
implemented a 4-step pipeline (Figure 1A), 
initially performing linear modeling between 
CpG methylation microarray (Illumina 
HM450K) profiles from NeuN+ cells (n=71; 
DLPFC and OFC), NeuN- cells (n=78; DLPFC 
and OFC) and 63 profiles generated from brain 
tissue sections by the BrainSpan consortium 
(Supplementary Table 2) (Figure 1A). Each 
brain-tissue/cell was contrast with the CpG 
methylation microarray from 47 whole 
blood/PBMCs (Supplementary Table 2). We 
found a greater number of significant (adjusted 
P-value <0.05 & differential DNA methylation 
beta-value >50%) hypermethylated than 
hypomethylated CpG loci when comparing 
brain-tissue/cells and blood; notably neurons 
were found to have the greatest number of 
hypermethylated CpG (n=14048) (Figure 1B). 
We also contrast brain-tissue/cells with an  
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Figure 1. Characterization of brain-specific DNA methylation regions for cfDNA analysis. A. Genomic loci with brain-
specific CpG or CpH methylation were characterized using a 4-step approach (Supplementary Material). Step1; DMP’s are 
identified between brain and blood and brain and lineage tissues (CpG; Illumina HM450K) or DLPFC-NeuN+ and DLPFC-
NeuN- (CpH; WGBS), followed by the identification of DMR’s (Step2). Step 3; DMPs intersecting DMRs are extended +/-
150bp. Step 4; Extended DMPs within blood-specific DNAase narrowpeaks represent the target regions for bisulfite assay 
design. B. Volcano plot of DMP’s identified between NeuN+ cells and Blood. C. Volcano plot of DMP’s identified between 
NeuN+ cells and Lineage tissues. D. Unsupervised hierarchical clustering of the DNA methylation of 45 CpG found 
hypermethylated within NeuN+ compared to Blood (>90%) and Lineage (>80%). E. Unsupervised hierarchical clustering of 
the DNA methylation of 9 CpG found hypermethylated within Cerebellum tissue compared to Blood (>80%), Lineage (>50%) 
and 20 additional brain regions/brain-derived cells (>70%). 
 
additional 36 tissues/cell-types of the human 
body derived from the 3 germ layers 
(Supplementary Table 2) to refine genomic loci 
with brain-tissue/cell-specific CpG methylation. 
Again, we found a greater number of 
hypermethylated CpG loci within brain, 
particularly within neurons (Figure 1C). Using 
stricter thresholds for NeuN+ cells, we identified 
45 CpG sites (Supplementary Table 11) that 
overlapped between the blood and lineage 
comparisons that exhibited >90% and 80% 
differential CpG methylation between neurons 
respectively (Figure 1D). Notably multiple 

methylated CpG loci were annotated to the 
Adenomatosis Polyposis Coli 2 (APC2) gene (3 
CpG), Tripartite Motif Containing 38 (TRIM38) 
gene (2 CpG), SP100 Nuclear Antigen (SP100) 
gene (3 CpG) and the Transmembrane Protein 
106A (TMEM106A) gene (5 CpG), in addition 
to 20 intergenic CpG loci. We identified 13 CpG 
sites that were >80% and 50% differentially 
methylated between NeuN- cells and blood and 
lineage respectively. Furthermore, comparison of 
whole brain tissue sections taken from distinct 
brain regions identified 9 CpG sites that were 
hypermethylated within cerebellum compared to 
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blood (>80%), lineage (>50%), and 20 additional 
brain regions/brain-derived cells (>70 %) (Figure 
1E). Detailed methods for the selection of all 
targets, including CpH DNA methylation, can be 
found within Supplementary Methods. Finally, 
the fragment length of cfDNA (~166-180pb) 
indicates that nucleosome-bound DNA is 
preferentially protected from degradation over 
non-bound DNA [21]. Therefore increased DNA 
degradation of blood-cell derived DNA within 
euchromatic regions of blood cells would be 
expected during apoptosis by endogenous DNase 
activity (reviewed in [22]). In an effort reduce 
background noise (blood cell-derived cfDNA) 
we prioritized hypermethylated loci within blood 
euchromatic regions (Supplementary Methods) 
for targeted assay design (Figure 1F). 
 
Validation of targeted bisulfite sequencing 
assays. Previous groups have shown the utility of 
bisulfite amplicon sequencing using transposase 
library construction (BSAS)[23]. We extend 
from this work and describe protocols for the 
multiplexing of 35 bisulfite amplicons we term 
targeted next generation bisulfite sequencing 
(tNGBS)(Supplementary Materials IV). Bisulfite 
specific assays were designed to amplify 
genomic regions found with brain-specific 
CpG/CpH methylation (Supplementary 
Materials II). Each assay was validated by 
analysis of pooled mixtures of CpG methylated 
and unmethylated DNA standards (CpG assays) 
and/or pooled mixtures of NeuN+ and PBMC 
derived DNA (CpG and CpH assays, 
Supplementary Materials II). The DNA 
methylation levels of targeted CpG/CpH loci 
(from discovery) were highly correlated (R2>0.8) 
with the percentage of DNA methylation of the 
pooled methylation mixtures (Supplementary 
Figure 4). The tNGBS protocol includes 33 
assays targeting genomic regions with brain-
specific DNA methylation (Supplementary 
Methods) in addition to 2 assays targeting spiked 
in Lambda phage gDNA to control for bisulfite 
conversion efficiency. 
 

To validate the specificity of the tNGBS assays 
we performed tNGBS analysis of gDNA from 
PBMC (N=11), NeuN+ (N=13, DLPFC) and 
NeuN- (N=7, DLPFC) cells (Figure 2A & B). 
The analysis revealed highly specific patterns of 
DLPFC-NeuN+ DNA methylation for assays 
designed to regions identified wth NeuN+ CpG 
and CpH methylation. Unsupervised hierarchical 
clustering of samples resulted in distinct 
clustering of DLPFC-NeuN+ cells (Figure 2D & 
E). Unexpectedly we found DLPFC-NeuN+ cells 
exhibited CpH methylation within regions 
identified by CpG methylation (Figure 2D), a 
feature that was also observed in the other 4 
assays identified by CpG methylation analysis 
(Supplementary Figure 5). We performed 
tNGBS analysis of gDNA from cerebellum and 
DLPFC whole tissue sections (matched from 3 
individuals), Ventral White Matter (N=13), 
hippocampus (N=2) and PBMC’s (N=11). 
Unsupervised clustering of tissues revealed 
distinct clustering of cerebellum tissue (Figure 
2F). 
 
Deconvolution of tissue/cell-of-origin of single 
molecules using k-mer matching. Researchers 
have previously used the co-methylated patterns 
of each single molecule (bisulfite sequencing 
read) to quantify the tissue-of-origin of cfDNA 
[10]. However, these methods rely on the 
computationally intensive alignment of bisulfite 
sequencing reads to a reference genome, 
followed by re-analysis of aligned reads for co-
methylated cytosines that establish specificity for 
the tissue-of-origin determination of cfDNA. 
DNA methylation sites on the single-molecule 
level are analogous to the unique gene sequences 
that define transcripts and transcript isoforms. 
Groups have previously shown that DNA 
methylation fractions  across tissue populations 
can be used to define co-methylated haplotype 
blocks for tissue-of-origin detection [24]. Here 
we establish methods that binarize DNA 
methylation fractions of tissues/cells-of-interest 
(methylotype) into  
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Figure 2. tNGBS-methylK pipeline. A. Validation of brain-specific DNA methylation is performed using genomic DNA 
(gDNA) from tissue/cells-of-interest (top), for diagnostic application, cell-free DNA is extracted from patient plasma/serum. 
B. Schematic of targeted next generation bisulfite sequencing (tNGBS) (i) multiplex amplification of bisulfite converted gDNA/ 
cfDNA produces amplicon pool of regions with brain-specific CpG/CpH methylation. (ii) Tagmentation (Tn5) of the amplicon 
pool appends 19bp adapters (grey) that are used to append sequencing adapters (purple). The product can then be sequenced 
using NGS and data analysed by C. methylK pipeline performs two functions; firstly to define DNA methylation k-mers (top) 
DNA methylation (%) of tissues/ cells-of-interest are binarized (< 50% = 0, > 50% = 1) and converted to FASTA format within 
the context of surrounding nucleotides (0=T, 1=C). K-mer indexing is then performed on the tissues/cells-of-interest FASTA 
sequences using Kallisto [20]. Secondly to quantify DNA methylation k-mers (bottom) bisulfite sequencing reads (fastq) from 
cfDNA samples are used within k-mer lookup of k-mer indexes defined. Correlated-methylation (co-methylation) thresholds 
based on signal-to-noise ratios are applied to each sequencing read before defining the tissue/ cell-of-origin of the single-
molecule. D-E. Unsupervised hierarchical clustering (samples) of tNGBS data shows distinct clustering of DLPFC-NeuN+ 
cells from PBMC’s and DLPFC-NeuN- cells for example CpG assay (D) and CpH assay (E). F. Unsupervised hierarchical 
clustering (samples) of tNGBS shows distinct clustering of cerebellum tissue from PBMC’s and other brain regions (VWM, 
Hippocampus and DLPFC).
 
FASTA format (Supplementary Figure 6A) that 
can be used for pseudoalignment of raw bisulfite 
sequencing reads using the Kallisto framework, 
termed methylK 
(https://github.com/zchatt/methylK) (Figure 2C).  
As proof-of-concept, we performed methylK 
analysis of PBMC and NeuN+ cells. We found 
incorrectly pseudoaligned raw bisulfite 
sequencing reads from either tissue (PBMC 
pseudoaligned to NeuN+ or NeuN+ 

pseudoaligned to PBMC) typically displayed 
lower posterior probabilities (Supplementary 
Figure 6B & C). Importantly, the fraction of 
reads pseudoaligned to NeuN+ bisulfite FASTA 
sequences with posterior probabilities >0.5 was 
significantly lower (P=3.6 x 10-5, Students T-
test) in PBMC samples compared to DLPFC-
NeuN+ cells (Supplementary Figure 6B). We 
therefore set a posterior probability threshold of 
>0.5 for pseudoaligned reads. This threshold 
retained 76 - 90% of reads originally aligned to 
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NeuN+ assays (bismark) from DLPFC-NeuN+ 
cells while only 0.18-0.6% of reads were retained 
from PBMC samples.  
 
The use of correlated DNA methylation has been 
shown to increase the specificity of cell-of-origin 
deconvolution of cfDNA [10]. Following 
pseudoalignment, the number of co-methylated 
cytosines on each pseudoaligned read for each 
tissue/cell-of-interest can be counted (Figure 2C 
& Supplementary Figure 6D). A signal-to-noise 
ratio (SNR) could then be established by 
calculation of the proportion of tissue/cell-of-
interest pseudoaligned reads with 1:Nth 
methylated cytosines over PBMC samples 
(Supplementary Figure 6E). We observed high 
SNRs as high as 66896:1 and applied a 5000:1 
SNR threshold for all analysis (Supplementary 
Figure 6E). Notably, only NeuN+ assays (n=25) 
and the cerebellum assay passed SNR threshold, 
none of the DLPFC-NeuN- assays or 
hippocampus assay passed threshold and were 
not included within analysis of cfDNA (below). 
 
Measurements of cfDNA purity within subject 
samples. Traditionally, bio-banked serum and 
plasma samples from neurological subjects have 
not been processed via high speed centrifugation 
with the anticipation of cfDNA analysis, which 
has resulted in large background noise (blood cell 
derived DNA). Typically, cfDNA is ~166- 
180bp, corresponding to the approximate length 
of DNA wrapped around one nucleosome core 
(147bp) plus DNA tails following endogenous 
DNase activity (~10bp). The length of assays 
within our tNGBS ranged from 88-245bp. 
Coverage was highly assay specific across the 
population of samples analyzed (Supplementary 
Figure 7A), thus we established a metric, 
Weighted Reads (WR), to account for assay 
specific coverage variability (Supplementary 
Methods III). Generally, PBMC derived gDNA 
had a higher WR than matched cfDNA samples 
(WR; Students T-test, P=2.35 x 10-8), likely due 
to degraded cfDNA. Interestingly, we observed a 
drop-off in the WR of assays >170bp in cfDNA 

samples compared to PBMC (Supplementary 
Figure 7B), thus providing a proxy for cfDNA 
purity (Weighted Read Ratio [WRR], 
Supplementary Methods III) i.e. the coverage 
across assays >170bp would be higher in samples 
with cellular contamination.  
 
We found that the WRR estimates were 
dependent on sample collection and processing 
protocol (Supplementary Figure 8). For instance, 
control samples in which bloods were processed 
proximal to the time of collection (within 4 
hours, Methods) contained a lower WRR than 
control samples collected in serum tubes (P-
value = 0.018). Notably, the lowest WRR were 
observed in samples collected in specialized 
cfDNA collection tubes (Qiagen, ccf-DNA). The 
higher amount of background (non-cfDNA) 
would be expected to reduce the ability to detect 
brain-derived cfDNA. Indeed, we found a higher 
number of DLPFC-NeuN+ cfDNA within 
samples collected in either ccf-DNA and EDTA 
tubes processed proximally compared to samples 
collected in EDTA tubes and processed distally 
or serum collected samples (P < 0.04, Students 
T-test).  
 
Application of cfDNA analysis by tNGBS-
methylK to Acute Blast Exposure, Cognitive 
Decline and Chronic Neurodegenerative 
Disease:  
Army Explosive Entry Personnel (aka 
Breachers). CfDNA was isolated from breachers 
(N=12) on day 1 (prior to training) and on 
training days 7, 8, and 9. During each training 
session, operational blast exposure measured by 
psi-ms was determined by use of mounted 
pressure monitors (Figure 3A). Single-molecule 
deconvolution of DLPFC-NeuN+ cfDNA was 
performed by tNGBS-methylK. We detected 
DLPFC-NeuN+ cfDNA in eight assays. On day 
7 of training the breachers were exposed to 
significantly higher pressure than other training 
days (Students T-test, P-value < 1.6 x 10-13) as 
measured by helmet mounted pressure monitors 
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Figure 3. Brain-derived cfDNA detection as a possible indicator of neurotrauma. A. Schematic of study; blast wave 
exposure of explosive entry personnel was measured (psi-ms) and cfDNA was analysed (tNGBS-methylK) post exposure on 
days 1,7,8 and 9. B. Blast wave exposure (peak daily impulse) of explosive entry personnel across training in which 
significantly higher exposure was recorded on day 7. C. DLPFC-NeuN+ cfDNA was detected in the serums of explosive entry 
personnel and was positively associated with blast wave exposure (Lm) in all 9 assays detected, of which 3 were significant 
(P-value < 0.05). D. Results from the most significant assay from the Lm (C) targeting CpG methylation of DLPFC-NeuN+ 
cells in which three individual personnel had detectable DLPFC-NeuN+ cfDNA on day 7 following increased blast exposure. 
E. Example of an explosive personnel’s DLPFC-NeuN+ cfDNA profile (only assays detectable) over all training days in which 
a peak in DLPFC-NeuN+ cfDNA was observed following day 7 exposure in all 3 assays. 
 
(Figure 3B). Linear regression was performed 
using the DLPFC-NeuN+ cfDNA fragments/mL 
of plasma for each subject, contrasting the daily 
maximum impulse exposure of each individual 
(psi-ms), representing the acute pressure 
exposure. Due to the high signal-to-noise ratio, 

half of residual variances were exactly zero and 
thus eBayes was unreliable. All DLPFC-NeuN+ 
assays displayed a positive association (Fold-
Change) between daily maximum impulse 
exposures (Figure 3C), of which 3 assays were 
significantly associated (p-value < 0.05) with this 
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Figure 4. Brain-derived cfDNA detection in Parkinson’s Disease and non-neurodegenerative controls. A. Schematic of 
study design; Two independent cohorts of PD and non-neurodegenerative controls were compared for brain-derived cfDNA 
(tNGBS-methylK). B. Volcano plot of P-values and fold change of detected DLPFC-NeuN+ cfDNA between PD and controls 
in cohort 1 (Raj). C & D Boxplots of detected DLPFC-NeuN+ cfDNA within controls and PD patients for the two DLPFC-
NeuN+ assays with highest significance (B). Volcano plot of P-values (Lm) and fold change of detected DLPFC-NeuN+ 
cfDNA between PD and controls in cohort 2 (Walker). F. Boxplot of aggregate of detected DLPFC-NeuN+ cfDNA within 
controls and PD patients. G. Boxplot of aggregate of detected DLPFC-NeuN+ cfDNA detected within cohort 2 cognitively 
impaired PD patients and cognitively intact PD patients. 
 
acute exposure (Figure 3C). We observed an 
increase of 3 individual DLPFC-NeuN+ assays 
within an individual following day 7 blast 
exposure (Figure 3E).  
 
Parkinson’s Disease. We investigated the 
presence/differences in DLPFC-NeuN+ cfDNA 
within a chronic neurodegenerative disease, PD, 
by comparison to non-neurodegenerative 
“controls”. CfDNA analysis (tNGBS-methylK) 
was performed in 2 independent cohorts of PD 
and controls (cohort 1 “Raj” and cohort 2 
“Walker”) (Figure 4A). DLPFC-NeuN+ cfDNA 
was detected by 7 assays in both PD and control 
subjects within both cohorts. Linear modelling 
within cohort 1 (PD; n=10, control; n=10) did not 
reveal any significant differences in the amount 
of DLPFC-NeuN+ cfDNA between PD and 
control subjects (Figure 5B). 6/7 assays recorded 
higher amounts of DLPFC-NeuN+ cfDNA 
within control subjects, the two assays of highest 
significance exhibited a fold-change increase of 
104 and 675 in controls (P-value=0.15 and 0.3 
respectively) (Figure 5C & D). Overall, controls 

contained higher amounts of DLPFC-NeuN+ 
cfDNA than PD cases (fold-change=182, 
DLPFC-NeuN+ cfDNA aggregate).  
 
These results were unexpected as we had 
hypothesised that subjects with a chronic 
neurodegenerative disease would exhibit an 
increase in the amount of brain-derived cfDNA. 
To explore this further we collected cfDNA from 
an additional 18 PD subjects and 14 controls 
within specialised tubes (ccfDNA Qiagen) that 
reduce background noise (contributed by PBMC 
gDNA). Again, we observed higher amounts of 
DLPFC-NeuN+ cfDNA within controls than PD 
subjects (DLPFC-NeuN+ aggregate fold-
change=25.8, P-value=0.03) (Figure 4E & F). 
Therefore, both PD cohorts exhibited the same 
directional effects (all but one assay) in which 
DLPFC-NeuN+ derived cfDNA fragments were 
higher in controls. In cohort 2, the cognitive 
capacity of PD subjects were also assessed by a 
board certified neurologist. Subjects with mild-
moderate to marked impairment were classified 
“impaired” (8/18 subjects), the remaining 10 
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Figure 5. Brain-derived cfDNA detection during cognitive decline in type-2 diabetic cohort. A. Schematic of study design; 
cognitive assessments were performed in a cohort of type-2 diabetic patients 3 time-points over 36 months and cfDNA was 
analysed (tNGBS-methylK) at each follow-up. B. Results of linear modelling of DLPFC-NeuN+ cfDNA detected within type-
2 diabetic serums and matched Clinical Dementia Rating (CDR) scores. All DLPFC-NeuN+ assays were negatively associated 
with CDR, an aggregate of all DLPFC-NeuN+ assays was marginally significant (P=0.05). C. CDR scores (top) and aggregate 
DLPFC-NeuN+ cfDNA results (bottom) from cognitively stable type-2 diabetics (n=12). D. CDR scores (top) and aggregate 
DLPFC-NeuN+ cfDNA results (bottom) from type-2 diabetics exhibiting cognitive decline over 36 months (n=10). E. 
Cerebellum cfDNA was detected within the type-2 diabetic cohort (n samples = 64) at significantly higher levels compared to 
explosive entry personnel and Parkinson’s Disease (n samples = 100) patients’ samples. F. Results of linear modelling of 
cerebellum cfDNA detected within type-2 diabetic serums and matched CDR scores. G. Cerebellum cfDNA detected within 
T2D-stable (top) and T2D-decliners (bottom) for the most significant assay detected (F). H. Examples of DLPFC-NeuN+ and 
Cerebellum cfDNA changes over 36-month follow-ups within T2D-stable (top) and T2D-decliners (bottom). *p-value = 0.03, 
students t-test. 
 
subjects were classified “intact”. Group-wise 
comparisons revealed the highest levels of 
DLPFC-NeuN+ cfDNA within the “impaired” 
group (mean; impaired=114, intact=18) (Figure 
4G), however these results were not significant 
(P=0.22, Students T-test). 
 
Type 2 Diabetes with cognitive impairment. 
CfDNA was isolated from type 2 diabetics (T2D; 
N=22) at 3 time-points over a 36-month follow-
up, at each time-point cognitive assessments 

were also performed (CDR) (Figure 5A). At 36 
months follow up 10 patients were rated as 
having mild cognitive impairment (MCI; 
CDR=0.5) or mild dementia (CDR=1), referred 
to as “T2D-decliners” (Figure 5D upper). The 
remaining 12 T2D subjects were cognitively 
normal (T2D-stable, CDR=0) over the 36 month 
follow-up (Figure 5C upper). Single-molecule 
deconvolution of DLPFC-NeuN+ cfDNA was 
performed by tNGBS-methylK. DLPFC-NeuN+ 
cfDNA was detected by 7 assays. Linear  
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regression was performed using the DLPFC-
NeuN+ cfDNA fragments/mL of plasma for each 
subject, contrasting CDR score. No assays 
passed significance (P-value < 0.05), however all 
assays exhibited the same negative association 
(fold-change) with CDR (Figure 5B). Notably, 
an aggregate of all DLPFC-NeuN+ cfDNA 
detected for each subject was marginally 
significant (P=0.05) (Figure 5B), of which the 
highest amount was detected at baseline when 
T2D-decliners were pre-symptomatic (Figure 5D 
bottom). Unexpectedly, T2D-stable subjects 
displayed a group-wise increase in DLPFC-
NeuN+ cfDNA at 36 months (Figure 5C bottom). 
Interestingly, we detected/ observed progressive 
increases in DLFPC-NeuN+ cfDNA at each 
follow-up in 50% (6/12) of T2D-stable subjects 
compared to just 10% (1/10) of T2D-decliner 
subjects. 
 
Single-molecule deconvolution of cerebellum 
cfDNA by tNGBS-methylK analysis was 
performed across all cohorts. Cerebellum cfDNA 
was detected by 7 assays found to have a signal-
to-noise ratio > 5000:1 for cerebellum gDNA 
compared to PBMC gDNA (original cerebellum 
assay and 6 NeuN+ assays). The T2D cohort 
contained significantly higher amounts of 
cerebellum cfDNA than all other cohorts 
(P=0.03, Students T-test) (Figure 5E). Linear 
modelling of cerebellum cfDNA and CDR 
revealed that one assay (original cerebellum) was 
significantly associated with CDR (P=0.04) 
(Figure 5F). The highest amounts of cerebellum 
cfDNA were observed at the 18-month follow-up 
of the T2D-decliners, the time-point in which 
cognitive decliners first reported CDR scores 
>0.5 (Figure 5G). The detection of cerebellum 
cfDNA within 2/3 T2D-stable (3 serum samples) 
coincided with the detection of DLPFC-NeuN+ 
cfDNA (Figure 5H [top]), similarly the detection 
of cerebellum cfDNA within 2/3 T2D-decliners 
(4 serum samples) coincided with the detection 
of DLPFC-NeuN+ cfDNA. The detection of 
cerebellum cfDNA was preceded by DLPFC-
NeuN+ cfDNA in the remaining T2D-stable and 

decliner subjects (Figure 5H [bottom]). 
Therefore, the detection of cerebellum cfDNA 
did not precede the detection of DLPFC-NeuN+ 
cfDNA. 
 
DISCUSSION 
Characterization and validation of brain-
specific CpG/ CpH methylation. CpH 
methylation is obtained postnatally [11] and 
contributes largely to cell specification of 
neuronal subtypes [25]. However, it has not been 
established if these DNA methylation signatures 
are common across the population and whether 
they are stable and maintained throughout 
advanced aging, when neurodegenerative disease 
is more likely to occur.  Here we validate CpH 
regional methylation at single-base resolution, 
representing, to our knowledge, the largest 
cohort of single-base resolution validation of 
human neuronal CpH methylation signatures and 
find highly consistent patterns of the CpH 
methylation distinct to all DLPFC-NeuN+ cells 
analysed. We also validate NeuN+ CpG 
methylated loci detected by genome-scale CpG 
microarray and observe distinct clustering of 
DLPFC-NeuN+ cells that was, unexpectedly, 
driven by CpH methylation within the same 
genomic loci. Considering that CpG methylation 
was shared between DLPFC-NeuN+ and NeuN- 
cells it is possible that local DNA 
methyltransferase activity common to DLPFC 
cell-types may lead to spontaneous DNA 
methyltransferase activity outside of the CpG 
context within post-mitotic neurons.  
 
We were able to validate the first DNA 
methylation assay with brain-region specificity 
to the cerebellum using CpG loci identified from 
CpG methylation microarray. Considering that 
CpH methylation occurs ~20x more frequently 
than CpG methylation in human neurons [11], it 
is highly likely that CpH methylation will be 
more discriminatory of DNA derived from brain 
regions.  Thus WGBS of neurons from brain 
regions implicated in specific neurodegenerative 
diseases  (e.g. the substantia nigra in PD) has the 
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high potential to lead to disease-specific 
biomarkers. It is worth noting that CpH 
methylation standards are not currently available. 
To initially screen for efficient bisulfite assays 
designed to genomic regions of CpH methylation 
we serially pooled DLPFC-NeuN+ gDNA with 
PBMC gDNA from a single subject. Considering 
the effectiveness of CpH methylation in 
characterising neuron derived DNA, and the 
ability of CpH methylation to discern neuronal 
subtypes [1], the synthesis of a set of genome-
wide CpH methylation standards will be essential 
in expanding cfDNA analytics to discern 
indications of neurotrauma and track prodromal 
and long-term neurodegeneration of specific 
cortical-regions/ layers. 
 
Genome-wide chromatin states are highly cell-
type-specific [26], of which a large number have 
been characterized by exploiting the properties of 
enzymes that preferentially digest open 
chromatin (i.e. DNase [27] and transposase [28]) 
followed by Next Generation Sequencing (NGS). 
Such profiles are analogous to the endogenous 
DNase mediated DNA degradation that occurs 
during apoptosis (reviewed in [22]). Blood-cell-
derived cfDNA contributes to the large majority 
of cfDNA, representing an enormous 
background signal against which to identify rare 
cfDNA derived from other cell-types such as 
neurons. Here we present methodology for the 
inclusion of cell-specific chromatin profiles in 
the identification of DNA methylation regions 
for cfDNA analysis and believe this strategy will 
benefit assay design in the fields of oncology and 
transplantation monitoring and may help expand 
cfDNA technology to disease monitoring in rare 
disease with limited cfDNA contribution. In 
addition, blood samples collected from subjects 
suffering from possible 
neurotrauma/degenerative disease have 
traditionally not been collected/ processed using 
methods that limit background noise (blood 
derived cfDNA). We provide a method (WRR) 
that can establish the amount of non-cfDNA 
background that we hope will aid other 

researchers in determining the purity of cfDNA 
within their plasma/ serum biobanks. 
 
Technological developments for cfDNA 
methylation analysis. Here we present multiplex 
bisulfite NGS protocols (tNGBS) that are 
capable of simultaneous analysis of 35 genomic 
regions. The benefit of DNA methylation 
biomarkers of cell-type is that numerous sites can 
be used to identify the same cell type, improving 
assay specificity through internal validation. 
Considering the diversity of cell-types within the 
human body, we anticipate that cfDNA 
methylation analysis will be expanded to 
incorporate many genomic-sites of interest of 
various cell types. This will pose a strain on 
computational methods that rely on the 
alignment of bisulfite sequencing reads to a 
reference genome. Thus we present new 
analytical methods (methylK) for the analysis of 
cfDNA methylation. Binarization and k-mer 
based lookup represent an ultra-fast method of 
single-molecule deconvolution that will scale 
with the increase in targeted loci anticipated. 
Further, methylK analysis should have a variety 
of applications outside of cfDNA methylation 
analysis, i.e. analysis of any tissue with a variety 
of cell-types. 
 
Application of cfDNA methylation analysis in 
possible neurotrauma and neurodegenerative 
disease. Breachers: Injuries from exposure to 
explosive blasts rose dramatically during the 
Iraq/Afghanistan Wars, motivating 
investigations of blast-related neurotrauma. In 
this effort, we have undertaken human studies 
involving “breachers”, military and law 
enforcement personnel who are exposed to 
repeated blast as part of their occupational duty. 
Breachers are typically in close proximity to 
controlled, low-level blast during explosive 
breaching operations and training, being exposed 
to blast overpressure waves. Career breachers 
(with upwards of hundreds of blast exposures) 
have reported a range of physical, emotional, and 
cognitive symptoms, including headache, sleep 
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issues, anxiety, and lower cognitive 
performance, akin to some symptoms of mild 
TBI. To our knowledge, we report the first 
evidence of DLPFC-NeuN+ cfDNA following 
low-level blast exposure within a longitudinal 
operational breaching training. During the course 
of the training, blast overpressure was measured 
using mounted pressure monitors. It should be 
noted that the breacher personnel did not report 
clinical symptoms associated with mild-TBI 
following exposure. Brain-derived cfDNA 
biomarkers represent a new class of biomarker 
for indication of possible acute brain injury and 
warrant validation in additional sub-clinical 
cohorts. Further, this technology offers a 
framework to advance the application of brain-
derived cfDNA tNGBS to sports-related 
concussion. 
 
Parkinson’s Disease: There are currently no 
validated biofluid biomarkers in clinical use for 
PD, although several peripheral blood markers 
have been proposed as candidates, such as α-
synuclein, DJ-1, uric acid, and epidermal growth 
factor (EGF) (reviewed in [29] and [30]). There 
is a critical need for the identification of 
biomarkers of neurodegeneration that are 
economical and can thus be administered to pre-
symptomatic patients, e.g. those with familial 
risk factors, and to track disease progression in 
clinical trials. Here we perform, to our 
knowledge, the first analysis of brain-derived 
cfDNA in PD. Our data, replicated in 2 distinct 
PD cohorts, indicate that DLPFC-NeuN+ cfDNA 
in PD subjects is lower than in age-matched non-
neurodegenerative controls.  
 
A number of explanations could explain these 
observations. Firstly, the numbers of 
dopaminergic neurons lost prior to clinical 
presentation has been estimated to be from 48-
91% [31]. Our PD subjects may have already 
experienced a significant amount of 
neurodegeneration, thus the number of residual 
degenerating neurons contributing to brain-
derived cfDNA would be limited. Another 

potential explanation is that the primary neurons 
undergoing degeneration in PD (dopaminergic 
neurons of the substantia nigra pars compacta) do 
not share DNA methylation profiles with 
DLPFC-NeuN+ for which our assays were 
established. Considering the role of the prefrontal 
cortex in executive functions and the selective 
degeneration of the prefrontal cortex in AD [32], 
the detection of DLPFC-NeuN+ cfDNA may be 
more specifically associated with prefrontal 
cortex degeneration and cognitive dysfunction. 
In line with this theory, we observe a trend of 
higher DLPFC-NeuN+ cfDNA in PD subjects 
with mild-moderate cognitive impairment 
compared to cognitively intact subjects. Further 
studies are required to investigate differential 
markers of various cortical regions, as certain 
regions of cortex are known to also be affected in 
PD [33]. 
 
Type 2 diabetes: Patients with type 2 diabetes 
have an increased risk of developing mild 
cognitive impairment, vascular dementia and AD 
[34, 35]. The etiological mechanisms are 
multifactorial, however hyperglycemia and 
vascular disease are likely to be involved 
(reviewed in [36]). Considering the heightened 
risk, it is imperative to have an economical test 
of neurological damage that can be applied at a 
population scale to identify patients within the 
pre-symptomatic stages of cognitive decline. 
Here we perform the first analysis, to our 
knowledge, of brain-derived cfDNA in type 2 
diabetics with cognitive impairment.  Through 
intra-individual longitudinal cognitive 
assessments, we were able to assess patients 
undergoing cognitive decline. Importantly the 
study design enabled us to collect and analyze 
pre-symptomatic samples prior to the onset of 
significant cognitive impairment. We report a 
negative association of DLPFC-NeuN+ cfDNA 
with CDR that is indicative of an active period of 
neurological damage prior to cognitive decline. 
In T2D-decliners the highest amount of DLPFC-
NeuN+ cfDNA was detected 18-months prior to 
cognitive decline. We also detected DLPFC-
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NeuN+ cfDNA within the T2D-stable subjects; 
interestingly the highest amounts detected were 
at the last follow-up visit. Future follow-up 
evaluations of this cohort will be important to 
establish if these T2D-stable subjects exhibiting 
detectable DLPFC-NeuN+ become cognitively 
impaired.  
 
We also report the first evidence of cerebellum-
derived cfDNA. The detection of cerebellum 
cfDNA was almost exclusively found within type 
2 diabetic cohort and was exclusively detected at 
or after the detection of DLPFC-NeuN+ cfDNA. 
Structural imaging studies have shown that 
cerebellar grey matter atrophy is a feature in the  
progression of AD, however functional 
neuroimaging have shown that there is an 
increase in cerebellar activation in MCI and AD 
which has been suggested to represent a 
compensatory mechanism (reviewed in [37]). It 
is therefore plausible that early detection 
DLPFC-NeuN+ cfDNA and subsequent 
detection of cerebellum cfDNA represents a 
quantifiable peripheral biomarker reflecting 
cognitive reserve. This could represent important 
metrics for staging of subjects within the disease 
course. This requires validation within larger 
cohorts and future efforts should also focus on 
the development of additional cerebellum 
cfDNA assays.  
 
Looking ahead. Brain-derived cfDNA represents 
a new class of peripheral biomarkers that can 
characterize the cell-type and brain region 
affected by neurological damage. While this is a 
proof-of-concept study, the pipeline we establish 
has great potential to be extended to various 
neuronal cell types and brain regions. One 
limitation of the discovery phase (at the time we 
performed this study) was the availability of 
WGBS data for various cell types of the human 
brain, particularly within regions affected in 
common neurodegenerative diseases. 
Characterization of DNA methylation within 
tissues/cell-types that are distinctly affected in 
different neurodegenerative diseases (i.e. 

substantia nigra in PD) holds the potential for 
establishing disease-specific assays. However, 
many questions remain to be answered with 
respect to each neurological condition.  At what 
point during disease progression is brain-derived 
cfDNA detectable? Are there peak times during 
disease development? Is there any diurnal 
variability? Is cfDNA from different brain 
regions detectable at different disease stages? 
Can these markers be used in therapeutic trials to 
identify appropriate times to administer 
treatments or to monitor disease progression? 
CfDNA analysis is a blood-based method that 
can be implemented in large populations and 
with great frequency which will 
enable epidemiological analysis; do particular 
genetics, dietary, lifestyle activities etc. lead to an 
increase in brain-derived cfDNA? Is brain-
derived cfDNA a risk factor for disease? 
Unfortunately, there are more questions than 
answers at the moment, but the potential is vast. 
 
METHODS 
Subjects and Sample Processing. Postmortem 
specimens: Dorsolateral prefrontal cortex 
(DLPFC) and ventral white matter (VWM) were 
dissected from cases diagnosed with either 
schizophrenia (n=24), major depressive disorder 
(n=24), or control subjects with no known 
neuropsychiatric disorder (n=24). No subjects 
had been diagnosed with any neurodegenerative 
disease at time of death. Subjects had a broad age 
range (22-72 years) with a mean age of 50 years 
(subject details in Supplementary Table 1). 
 
Blood-derived samples and processing: Breacher 
Subjects; In collaboration with the Walter Reed 
Army Institute of Research, to investigate the 
effects of repeated blast wave exposure in 
explosive entry personnel (Breachers), serum 
samples were taken from 12 breachers following 
training days 1,7,8 and 9. All samples were from 
male subjects with an average age of 29.67 yrs 
(SD 3.87 yrs) (Supplementary Table 10). Briefly, 
serum was separated by centrifugation at 3000g 
for 15min at RT and was clarified by additional 
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centrifugation at 10,000g for 10min; 4C. The 
extracted serum was stored at -80C until cfDNA 
extraction and tNGBS processing 
(Supplementary Protocol).  
 
Parkinson’s Disease Subjects; Cohort 1: Whole 
blood was collected within 10mL EDTA tubes 
and processed within 3 hours of collection. Blood 
was centrifuged at 1700 rpm for 10 minutes and 
plasma was pipetted 1mL aliquots at -80C. 
Additional subject details can be found in 
Supplementary Table 9. 
Cohort 2: Whole blood was collected from a 
separate cohort of 18 subjects within PAXgene 
Blood ccfDNA Tubes (Qiagen). Blood plasma 
was separated by centrifugation for 15 minutes at 
1900g and clarified with a second centrifugation 
for 10 minutes at 1900 x g. Subjects cognitive 
impairment was assessed by clinical evaluation 
by board-certified neurologist (RHW). 
Additional subject details can be found in 
Supplementary Table 6. 
 
Control Subjects; Whole blood was collected 
from 14 subjects with no known neurological or 
neurodegenerative disorders as part of an 
ongoing longitudinal study of suicidal behavior. 
Blood samples were collected and processed as 
described for PD Cohort 2. Additional subject 
details can be found in Supplementary Table 7. 
 
Subjects with Type 2 Diabetes with Cognitive 
Decline; As part of the Israel Diabetes and 
Cognitive Decline (IDCD) study [12], whole 
blood was collected from subjects within serum 
tubes and stored on ice for a maximum of 6 hours 
before laboratory processing. The blood tubes 
were centrifuged (10 minutes, 1,500 rpm) at 
room temperature. Serum was then pipetted from 
top and stored at -80C. All subjects were 
diagnosed with Type 2 diabetes. Cognitive 
assessments were performed using the Clinical 
Dementia Rating (CDR) [13] at baseline and 
each follow-up to measure cognitive decline. 
Bloods and CDR were assessed during the same 
visit. Two groups of participants were selected: 

Decliners (N=10), i.e. participants whose CDR 
declined from a status of no dementia (CDR=0) 
to a status of questionable dementia (CDR >= 
0.5) or frank dementia (CDR>1) at two 
consecutive follow-ups (18 and 36-months). The 
second group was of control subjects in which 
CDR scores = 0 at all three follow ups follow-up. 
Additional subject details can be found in 
Supplementary Table 8. 
 
Fluorescent activated cell-sorting (FACS). 
Neuronal nuclei were isolated from the DLPFC 
dissections using methods previously described 
[14].  Briefly, frozen sections of the DLPFC 
(~100mg) from each subject (N=72) were 
homogenized on ice, cells were lysed using a cell 
lysis buffer, and nuclei were isolated by high-
speed centrifugation through a sucrose buffer. 
Nuclei were immunostained using the Alexa-
Fluor conjugated anti-NeuN antibody (Abcam, 
ab190195) and isolated by FACS (BD FACS-
Aria). 
 
DNA methylation microarray profiling. DNA 
extracted from all 216 (72 NeuN+ DLPFC, 72 
NeuN- DLPFC and 72 Ventral White Matter 
[VWM]) samples was subjected to genome-wide 
DNA methylation interrogation by the Illumina 
HM450 DNA methylation microarray, of which 
192 passed QC (described below).  The analyses 
were performed using R Language 3.03[15], an 
environment for statistical computing, and 
Bioconductor 2.13[16]. Raw data files (.idat) 
were processed by minfi package [17]. All 
samples displayed a mean probe-wise detection 
call p-value for the 485512 array probes < 
0.0005. Beta-values (logit transformed M-
values) were used for DNA methylation 
reporting. Sample removal:samples were 
removed that did not match phenotypic sex and 
methylation-based sex calling using the getSex 
function of minfi. Samples with non-matching 
genotypes (HM450 SNP interrogating probes) 
between tissues of the same individual were also 
removed; 192 samples were retained following 
sample removal (Supplementary Table 1). 
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Publicly Available Data for Methylated cfDNA 
Target Identification. DNA methylation 
microarray data: We obtained 63 additional 
publicly available HM450 datasets from different 
brain regions generated by the BrainSpan 
consortium and 24 HM450 NeuN+/- derived 
from the occipital frontal cortex (OFC) 
(GSE50798) (Supplementary Table 2), resulting 
in a joint collection of 279 DNA methylation 
microarray profiles from the human brain. 
Publicly available HM450 data from peripheral 
blood (GSE41169 & GSE32148), various 
primary and cultured peripheral tissues 
(GSE29290, GSE20945 & ENCODE) derived 
from the 3 germ layers were obtained, termed 
“Lineage” (Supplementary Table 2). 
 
DNAse hypersensitivity data; DNAse narrow 
peak datasets produced from brain and blood 
samples by the ENCODE consortium to identify 
brain-specific euchromatic regions are described 
in Supplementary Table 3.   
 
Whole Genome Bisulfite Sequencing (WGBS) 
data; WGBS data from FACS sorted (NeuN+ and 
NeuN-) DLPFC from 2 adults (1 male, 1 female) 
were generated by Lister et al (GSE47966). 
 
Identification of brain region and cell specific 
methylated cfDNA targets. cfDNA targets 
derived from CpG methylation microarray data: 
We devised a generalizable 4-step pipeline 
(Figure 1A) for the identification of loci and /or 
genomic regions displaying brain region or brain 
cell specific DNA methylation - the analysis was 
performed for each brain region or cell type of 
interest separately. Differential Methylated 
Position (DMP) analyses were performed using 
LIMMA [18] and Differential Methylated 
Region (DMR) analyses within brain 
regions/cells and contrasting non-brain tissue and 
cell types were performed using bumphunter 
algorithm [19]. The brain region/cell specific 
DMRs were further screened and filtered using 
overlapping DNase hypersensitivity datasets, 

contrasting chromatin accessibility peaks 
between brain vs. blood.   
 
CfDNA targets derived from CpH methylation 
from NeuN+/NeuN- Whole Genome Bisulfite 
Sequencing data:  We utilized adult WGBS data 
produced from the prefrontal cortex (1 male, 1 
female) that was FACS separated into NeuN+ 
and NeuN- as described in Lister et al 
(GSE47966). CpH cytosines with >4X coverage 
were retained and hyper/hypomethylated 
cytosines were defined as 100/0% methylated 
respectively. We identified cell-specific CpH 
hypermethylation sites by comparison of hyper-
hypomethylated CpH cytosines between each 
cell-type.  The number of hypermethylated CpH 
sites was then calculated within +/-50bp of each 
cell-specific hypermethylated CpH which 
defined the density of CpH hypermethylation. 
Genomic regions were prioritized for targeted 
assay design based on the density of 
hypermethylated CpH loci. 
 
Multiplex Bisulfite Sequencing cfDNA Target 
Regions Assay Design and Testing is described 
in detail in Supplementary Materials II 
 
Targeted Next Generation Bisulfite Sequencing 
(tNGBS). CfDNA extraction, Bisulfite 
conversion, PCR and NGS library construction 
necessary for tNGBS are described in detail in 
the Supplementary Materials II. As reference for 
the tNGBS analyses, postmortem brain 
specimens were included and sequenced. 
Specifically, matched DLPFC (n=3) and 
cerebellum (n=3) tissues were dissected from 3 
subjects (Supplementary Table 5). DLPFC 
NeuN- (n=6), NeuN+ (n=12) and VWM (n=11) 
also interrogated by HM450 microarray were 
also analyzed (Supplementary Table 1). 
Additionally, details of the tNGBS analyzed 
samples and sequencing are provided in the 
Supplementary Tables 4-10. Libraries were 
denatured following Illumina protocols and 
sequenced on either the Illumina MiSeq using 2 
x 26bp PE sequencing or Illumina HiSeq2500 
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using 2 x 50bp PE sequencing. Additional details 
can be found within Supplementary Table 4. 
 
Processing of tNGBS data: Paired-end 50bp 
reads were trimmed to 26bp using fastqutils 
truncate function for combined analysis with 
paired-end 26bp reads. Fastq files were 
processed using cutadapt to trim poor-quality 
reads (< Q30). A targeted  bisulfite reference 
genome was generated using bismark command 
bismark_genome_preparation for the fasta file 
that includes all 35 assay targets and Lambda 
genome. Trimmed paired-end reads were then 
mapped to the targeted bisulfite reference 
genome using bismark. Stacked DNA 
methylation calls and coverage were obtained 
using bismark_methylation_extractor (-p --
comprehensive --merge_non_CpG). 
 
Quality Control tNGBS: The mean DNA 
methylation percentage of all cytosines within 
Lambda assays were used to determine the 
conversion efficiency of each bisulfite 
conversion reaction. We found that 24 of the 254 
samples analyzed in this study had a bisulfite 
conversion efficiency < 98%, including 1 VWM, 
2 DLPFC NeuN+ and 3 PBMC and 18 subject 
cfDNA samples. We removed the whole tissue 
samples with <98% conversion efficiency from 
further analysis and annotated the subject cfDNA 
samples. 
 
K-mer analysis of raw bisulfite sequencing reads: 
Cell-type specific DNA methylation patterns are 
analogous to gene sequences that delineate 
transcripts; gene sequence substrings (k-mers) 
can delineate between transcripts, similarly 
bisulfite sequencing k-mers are unique between 
DNA fragments exhibiting cell-specific DNA 
methylation patterns within a pooled mixture of 
DNA. Recently Bray and colleagues [20] 
described Kallisto, an ultra-fast method that 
matches k-mers in raw sequencing reads to 
transcript specific k-mers using a hash table. We 
establish wrapper scripts to make Kallisto 
applicable to bisulfite sequencing cell-of-origin 

detection, outlined within Figure 4. These scripts 
are available at 
https://github.com/zchatt/methylK.  Briefly, the 
DNA methylation of all cytosines within 
genomic regions that exhibit cell-specific DNA 
methylation were binarized (methylated >0.5, 
unmethylated <0.5) using the cytosine DNA 
methylation fractions derived from analysis of 
the tissue/cell-of-interest, referred to as 
methylotypes. Methylotypes, stored in .vcf 
format, were sorted (Picard) and converted to 
FASTA format using gatk -T 
FastaAlternateReferenceMaker. The FASTA 
files were then indexed using Kallisto software 
[18].  Pseudoalignment of raw FASTQ reads 
were then performed using Kallisto [18]. 
Posterior probability thresholds (>0.5) were 
applied to pseudoaliogned reads to reduce false-
positive pseudoalignment. Additionally, 
methylated cytosines were counted within each 
pseudoaligned read. Signal-to-noise thresholds 
were calculated for pseudoaligned reads with 1 to 
26 (read length) co-methylation events by 
comparing the fraction of pseudoaligned reads 
with co-methylation events between brain 
tissue/cell and PBMC e.g. NeuN+ and PBMC. 
All pseduoaligned reads used in this study were 
found to have signal-to-noise thresholds 
>5000:1. Pseudoalignment of raw bisulfite 
sequencing reads from cfDNA defines the 
cell/tissue of origin. To normalize the data, 
pseudoaligned reads from cfDNA reads were 
divided by the cfDNA concentration (the ratio of 
total ng cfDNA extracted to total mL plasma or 
serum used for extraction). 
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