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Abstract

The maturational schedule of typical brain development is tightly constrained;

deviations from it are associated with cognitive atypicalities, and are poten-

tially predictive of developmental disorders. Previously, we have shown that

the white/gray contrast at the inner border of the cortex is a good predic-

tor of chronological age, and is sensitive to aspects of brain development

that reflect cognitive performance. Here we extend that work to include

the contrast at the white/gray border of subcortical structures. We show

that cortical and subcortical contrast together yield better age-predictions

than any non-kernel-based method based on a single image-type, and that

the residuals of the improved predictions provide new insight into uneven-

ness in cognitive performance. We demonstrate the improvement in age

predictions in two large datasets: the NIH Pediatric Data, with 831 scans
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of typically developing individuals between 4 and 22 years of age; and the

Pediatric Imaging, Neurocognition, and Genetics data, with 909 scans of in-

dividuals in a similar age-range. Assessment of the relation of the residuals

of these age predictions to verbal and performance IQ revealed correlations

in opposing directions, and a principal component analysis of the residuals

of the model that best fit the contrast data produced components related

to either performance IQ or verbal IQ. Performance IQ was associated with

the first principle component, reflecting increased cortical contrast, broadly,

with almost no subcortical presence; verbal IQ was associated with the sec-

ond principle component, reflecting reduced contrast in the basal ganglia and

increased contrast in the bilateral arcuate fasciculi.

Keywords: brain development, cognitive development, age prediction,

cortical white/gray contrast, subcortical white/gray contrast, VIQ-PIQ

discrepancies

1. Introduction

Growth charts, e.g. those from the Centers for Disease Control and Preven-

tion (https://www.cdc.gov/growthcharts/), are used by pediatricians and

parents to track the growth of infants, children, and adolescents. Deviation

from the typical growth trajectory is an indicator of potential issues. But

such charts provide only measures such as height/length, weight, and head

circumference; more detailed measures of brain development can be obtained
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from brain imaging data. Chronological age can be quite accurately predicted

from brain images (Dosenbach et al., 2010; Brown et al., 2012; Franke et al.,

2012; Mwangi et al., 2013; Khundrakpam et al., 2015; Ball et al., 2017; Lewis

et al., 2018), and deviations from the typical maturational schedule are as-

sociated with differences in cognitive functioning (Erus et al., 2015; Lewis

et al., 2018). Determining the extent to which typical cognitive development

rests upon adherence to the typical maturational trajectory is critical to our

understanding of development, and to our ability to utilize brain data to

identify atypical development so that we might intervene. Furthermore, to

the extent that we can associate atypical cognitive development with spe-

cific brain regions, both our understanding and our ability to intervene are

enhanced.

In samples representative of normal development from early childhood

through adolescence, correlations between chronological age and age esti-

mates from brain images are as high as 0.96 based on multi-metric data from

mutiple image types (Brown et al., 2012). Brown et al. (2012) reported sub-

stantially lower correlations for a single image-type; for T1-weighted data

their multi-metric approach, including cortical and subcortical measures,

yielded a correlation between chronological and estimated age of approxi-

mately 0.91. Their multi-metric estimates of age from T2-weighted signal

intensity also show a correlation with chronological age of 0.91, with contri-

butions from both white-matter tracts and subcortical gray matter (Brown

et al., 2012). Estimates of age based on diffusion data show a correlation
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close to 0.9, with the greatest contributions coming from both cortical and

subcortical gray matter, and long-range connections, e.g. the corpus callo-

sum (Mwangi et al., 2013; Erus et al., 2015; Brown et al., 2012). Note that

measures from subcortical material contribute to each of these results. More-

over, Brown et al. (2012) showed, albeit in their multi-image-type model, that

subcortical volume measures were a core contributor to their predictions. In-

deed, the subcortical maturational trajectory differs from that of the cortex,

and differs between different subcortical structures (Raznahan et al., 2014).

Thus, such measures should boost the accuracy of MRI-based age-prediction

models.

Our recent work (Lewis et al., 2018) yielded a correlation between chrono-

logical and estimated age of approximately 0.91, using only T1-weighted

data, and only a single measure: the intensity contrast between white and

gray matter at the inner edge of the cortex. This result is superior to any

single-metric method (e.g. Khundrakpam et al. (2015) or Dosenbach et al.

(2010)), and comparable to the best multi-metric methods using a single

image-type (e.g. Brown et al. (2012) or Ball et al. (2017)). But it seems likely

that this result could be improved upon by including the intensity contrast

between white and gray matter at the boundary between subcortical gray

matter and the surrounding white matter, which is a novel measure, to the

best of our knowledge, but a natural extension of our previous work (Lewis

et al., 2018). Moreover, it seems likely that including the intensity contrast

at the subcortical gray-white boundaries might capture additional aspects
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of brain maturation related to cognitive development. Subcortical regions

play important roles in cognitive, affective, and social functions (Johnson,

2005; Utter and Basso, 2008; van Schouwenburg et al., 2010; Fischi-Gómez

et al., 2014; Humphries and Prescott, 2010; Grazioplene et al., 2015; Bohlken

et al., 2016; Guo et al., 2006; Isaacs et al., 2008), and subcortical abnormal-

ities have been associated with various psychiatric disorders (Rimol et al.,

2010; Hartberg et al., 2011; Cerliani et al., 2015; Hibar et al., 2016; Hoogman

et al., 2017).

Here we test these conjectures. We devise methods to extract surfaces for

the caudate, putamen, globus pallidus, and thalamus, and extend our meth-

ods for measuring white/gray contrast at the inner edge of cortex to measure

white/gray contrast at the gray-white boundaries of these subcortical struc-

tures. We then evaluate the impact on age-prediction accuracy of including

subcortical white/gray contrast measures in addition to cortical white/gray

contrast measures. We do so in two large datasets: the NIH Pediatric Data

and the Pediatric Imaging, Neurocognition, and Genetics data. We then as-

sess the relation of the residuals of these age predictions to the verbal and

performance IQ measures available in the NIHPD dataset, and map these

relationships to the brain.
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2. Materials and Methods

2.1. Data

The data used were taken from two large-scale datasets: the NIH Pediatric

data (NIHPD); and the Pediatric Imaging, Neurocognition, and Genetics

data (PING). Detailed descriptions of the NIHPD and PING samples are

given in (Evans et al., 2006) and (Brown et al., 2012), respectively; here we

give a brief summary. Table 1 provides the demographic information for the

two populations.

Subjs (Males) Scans (Males) Mean age Min age Max age

NIHPD 402 (190) 831 (383) 12.5 4.88 22

PING 909 (472) 909 (472) 12.4 3.16 21

Table 1: Subject demographics for the two datasets. Ages are given in years.

2.1.1. The NIHPD sample

The NIHPD data were collected to allow the characterization of healthy brain

development, and the relation between brain development and behaviour.

Both high-quality MRI data and comprehensive clinical/behavioral measures

were collected. Recruitment was epidemiologically based, demographically

balanced, and used strict exclusion factors (biasing the sample upward in

terms of IQ). The sample includes over 400 children ranging from 4.5 to 18.5

years of age, well-distributed across the range. The database is a mix of lon-

gitudinal and cross-sectional data, but we consider all data as cross-sectional,

taking care to ensure that the evaluation of predictive models is not biased
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by this dependence. The data were collected at six sites: Children’s Hospital,

Boston; Children’s Hospital Medical Center, Cincinnati; University of Texas

Houston Medical School, Houston; Neuropsychiatric Institute and Hospital,

UCLA; Children’s Hospital of Philadelphia; and Washington University, St.

Louis. Data were acquired on either a General Electric 1.5T scanner or a

Siemens Medical Systems 1.5T scanner. Pulse sequences and parameters

were chosen to maximize image quality and minimize differences across sites.

Each site acquired multiple image-types (T1-weighted, T2-weighted and PD-

weighted); the current study utilizes only the T1-weighted data, which was

acquired with a 3D T1-weighted spoiled gradient recalled echo sequence with

a resolution of 1mm isotropic.

2.1.2. The PING sample

The PING dataset includes data from more than 900 typically developing

children between the ages of 3 and 20 years, including individuals with learn-

ing or language disabilities. Subjects were excluded if they had a history of

major developmental, psychiatric, and/or neurological disorders, or medical

conditions that affect neurological development, or had had a brain injury.

As opposed to the NIHPD sample, these data are strictly cross-sectional.

Data were collected at 10 sites: Weil Cornell Medical College, University of

California at Davis, University of Hawaii, Kennedy Krieger Institute, Mas-

sachusetts General Hospital, University of California at Los Angeles, Univer-

sity of California at San Diego, University of Massachusetts Medical School,

7

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 31, 2019. ; https://doi.org/10.1101/537043doi: bioRxiv preprint 

https://doi.org/10.1101/537043
http://creativecommons.org/licenses/by-nc-nd/4.0/


University of Southern California, and Yale University. Data were acquired

on either a General Electric 3T scanner, a Siemens Medical Systems 3T

scanner, or a Philips 3T scanner. Pulse sequence parameters were chosen

to maximize image quality and minimize differences across scanners. Across

sites and scanners, a standardized multiple image-type high-resolution struc-

tural MRI protocol was implemented. Each site acquired T1-, T2-, and

diffusion-weighted scans; the current study uses only the T1-weighted data,

acquired with a 3D T1-weighted inversion prepared RF-spoiled gradient echo

sequence with a resolution of 1mm isotropic, using prospective motion cor-

rection. Specific protocols for each scanner manufacturer are provided at 1.

2.2. Surface measurements

2.2.1. Cortical surface extraction

The T1-weighted volumes were processed with CIVET (version 2.1 ; 2016), a

fully automated structural image analysis pipeline developed at the Montreal

Neurological Institute 2. CIVET corrects intensity non-uniformities using N3

(Sled et al., 1998) ; aligns the input volumes to the Talairach-like ICBM-152-

nl template (Collins et al., 1994) ; classifies the image into white matter, gray

matter, cerebrospinal fluid, and background (Zijdenbos et al., 2002; Tohka

et al., 2004) ; extracts the white-matter and pial surfaces (Kim et al., 2005) ;

and maps these to a common surface template (Lyttelton et al., 2007).

1http://pingstudy.ucsd.edu/resources/neuroimaging-cores.html
2http://www.bic.mni.mcgill.ca/ServicesSoftware/CIVET-2-1-0-Introduction
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2.2.2. Subcortical surface extraction

Subcortical segmentation into left and right caudate, putamen, globus pal-

lidus, and thalamus was done using a label-fusion-based labeling technique

based on Coupé et al. (2011) and further developed by Weier et al. (2014),

incorporating ideas from Landman et al. (2012). The approach used a

population-specific template library. In the current work, the library for each

dataset was constructed by clustering (as described below) the deformation

fields from the non-linear transforms produced by CIVET, and using the

central-most subject of each cluster to construct the entries in the template

library. Thus, the template library represented the range of deformations

found in the population.

As the basis for clustering, the Jacobian was computed for the non-linear

transform produced by CIVET for each subject. The values in the Jacobian

were then extracted as a vector for each voxel within a mask formed by

binarizing the template-based subcortical sementation, eroding it 1 mm and

dilating it 5 mm in order to capture the anatomical context of the nonlinear

registration in this area. These Jacobian vectors were then clustered using an

equal combination of cosine similarity and Euclidean distance with Ward’s

clustering method (Ward Jr, 1963), with the number of clusters chosen as

the square of the natural log of the number of subjects. Then, within each

cluster, the sum-squared distance from each subject to each other subject

was computed, and the subject with the minimum sum-squared distance was

taken as the central-most subject of the cluster.
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To create the library entry for a cluster, the non-linear transform for the

central-most subject was inverted and used to warp the ICBM-152-nl tem-

plate together with the subcortical segmentation defined on it; this pair was

then added to the template library. The template library was thus a set of

warped copies of the ICBM-152-nl template together with their correspond-

ingly warped segmentations. Once the template library had been created,

each subject in the population was non-linearly registered to the n closest

templates in the library (here, n = 7), and the resulting transforms were used

to warp their corresponding segmentations to the subject; the final labelling

was then established via a per-voxel majority vote.

Once the subcortical structures for a subject were labeled, surfaces were

fit to these labels. The surfaces for each structure were created on the ICBM-

152-nl template. These model surfaces were warped to each individual based

on the transforms derived from the label-fusion-based labeling stage, and

adjusted to the final labels by moving vertices along a distance map cre-

ated for each label. The surfaces for each structure were then registered to

their corresponding common surface template to ensure cross-subject vertex

correspondence, as per the cortical surfaces.

2.2.3. White/gray contrast measurements

To extract the white/gray contrast measures, the intensity on the T1-weighted

MRI was sampled inside and outside of the surface at the (cortical or subcor-

tical) gray-white boundary, and the ratio of the two measures was formed.
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More specifically, for the cortex, the gray matter was sampled 1 mm outside

of the white surface, and white matter was sampled 1 mm inside of the white

surface. These choices accommodate both the thinnest areas of the cortex

and very thin gyri. For the subcortical structures, due to the absence of

issues related to the thickness of either the gray matter or the surrounding

white matter, and to the lesser clarity of the boundary between white and

gray, the white matter was sampled 2 mm outside of the subcortical white

surface, and gray matter was sampled 2 mm inside of the subcortical white

surface. An example of the surfaces used to form the white/gray contrast

measures is provided in Figure 1.

In more detail, a distance map was created from the white surface, smoothed

with a Gaussian kernel, and used to create a gradient vector field. At low

resolution, issues arise with this vector field in areas with very thin strands of

white matter, e.g. at the tips of gyri, and so the distance maps were created

at a resolution of 0.25 mm and smoothed with a 0.5 mm FWHM Gaussian

kernel before creating the gradient vector field. The cortical white surface was

moved 1mm inward along this gradient vector field to produce a sub-white

surface, and 1 mm outward to produce a supra-white surface. The inten-

sity values on the T1-weighted image (without non-uniformity correction or

normalization) were sampled at each vertex of both the supra-white surface

and the sub-white surface, and the ratio was formed by dividing the value at

each vertex of the sub-white surface by the value at the corresponding ver-

tex of the supra-white surface. The same procedure produced the contrast
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Figure 1: An example of the surfaces used to form the the white/gray contrast measures.
The surface at the gray-white border is shown in green. This surface is extracted by
CIVET, for the cortex, and by fitting surfaces to the labels created by label-fusion-based
methods, for the subcortical labels. A distance map and corresponding vector field were
created from this, and copies of the surfaces were moved into gray matter (red) and
white matter (blue) along the gradient vectors of this distance map. For the cortex, both
deriviative surfaces were moved 1mm along this vector field; for the subcortical structures,
both derivative surfaces were moved 2mm along this same vector field. Gray matter and
white matter intensity were then measured at each of the vertices of these derivative
surfaces, and the white/gray contrast measure formed as the ratio of white intensity to
gray intensity at corresponding vertices of the two surfaces.
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measures for the subcortical surfaces, but moving inward and outward 2 mm

instead of 1 mm.

Since the intensities that form the ratio are sampled very near to one an-

other, the effects of image inhomogeneities will be small. But, the white/gray

contrast measures are sensitive to scanner-specific differences in tissue con-

trast. To correct for this, we normalized the contrast values per scanner man-

ufacturer. The normalized contrast measure ismn
i = (mun

i −µscanner)/σscanner,

where mun
i is the unnormalized contrast measure and µscanner and σscanner

are the mean and the standard deviation of the contrast values across the

surface and across all of the subjects whose data were acquired on scanner.

This correction is equivalent to scanner-wise z-scoring. This correction was

done separately for each of the surfaces (the two cortical surfaces and the

eight subcortical surfaces). Left and right surfaces were considered together.

The effectiveness of this correction was demonstrated in (Lewis et al., 2018).

For the rest of the paper, we drop the superscripts and always refer to the

normalized contrast.

2.3. Age prediction

Our age prediction method and its evaluation are unchanged from (Lewis

et al., 2018), but we summarize the method to make this paper more self-

contained. The original 81,924 measurements on the cortical surface were

grouped into 640 parcels by recursively merging the neighbouring triangles

of the surface mesh model, yielding regions of approximately equal surface
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area. We have previously studied predicting age with different number of

parcels and concluded that 640 parcels yielded the most accurate age pre-

dictions (Lewis et al., 2018). The thalamus, caudate, putamen, and globus

pallidus were generated with far fewer vertices, and so we grouped their mea-

surements into 160 parcels per structure in the same way as for the cortical

surface in order to attain parcels with approximately the same surface area

as the cortical parcels. This resulted in 640 parcels also for the subcortical

contrast measures. We assumed a linear model for predicting subjects’ ages

based on the white/gray contrast measurements. The model is

AGE =
P∑
i=j

bjMj + c+ ε, (1)

where AGE is the age of the subject (in days); mj, j = 1 . . . P , are the

contrast measurements for each parcel; bj and c are the model weights to

be learned by the machine learning algorithm, and ε is an error term. We

considered age prediction with subcortical contrast alone, with cortical con-

trast alone, and with both together. Subcortical contrast was formed by

concatenating the contrast measures from the eight subcortical surfaces to

form a vector of length 640. We estimated the parameters b = [b1, . . . , bP ]

and c of the model by penalized least squares with the elastic-net penalty as

implemented in the Glmnet package (Friedman et al., 2010) 3. This equals

3We used a Matlab wrapper described by Qian et al. (2013) of Friedman’s original
Fortran code.
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to the minimization of the cost function

1

2N

N∑
i=1

(AGEi − c−mT
i b)2 + λ[(1− α)||b||22/2 + α||b||1], (2)

where subscript i refers to scans, mi = [mi1, . . . ,miP ] are the measure-

ments for scan i and N is the number of scans. The elastic-net penalty

(1−α)||b||22/2 +α||b||1 is a weighted average of the LASSO and ridge penal-

ties (Zou and Hastie, 2005). The LASSO penalty ||b||1 forces many param-

eters to have a zero-value leading to the variable selection while the ridge

penalty ||b||22/2 helps to ensure that highly correlated variables are selected

simultaneously and they have similar model weights (Zou and Hastie, 2005).

We set α = 0.5, as in Khundrakpam et al. (2015) and Lewis et al. (2018). The

relative weight of the data term and the penalties, denoted by the parameter

λ ∈ R in Eq. (2), was decided based on cross-validation from a sequence of

300 values decreasing on the log scale (Friedman et al., 2010). We standard-

ized the input measurements so that (1/N)
∑N

i=1mij and (1/N)
∑N

i=1m
2
ij = 1

for j = 1, . . . , P . Thus, the parameter estimates bj were also standardized

(called standardized regression coefficients) and more comparable to each

other than the unstandardized coefficients, see e.g. Gelman (2008). The

logic of standardized coefficients is to re-express bj as the effect of a one-SD

change in Mj as opposed to a unit change in Mj .
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2.4. Evaluation of age prediction

We selected the λ and evaluated the age predictions using two nested strat-

ified 10-fold cross-validation (CV) loops (Ambroise and McLachlan, 2002;

Huttunen et al., 2012) 4. The value for the parameter λ was selected in the

inner CV loop by minimizing the mean squared error among the candidate

values, and the age predictions were evaluated in the outer CV loop, thus

avoiding the training on testing data problem. We repeated the nested CV

loops 10 times to reduce the random variation in the evaluation of accuracy

due to the random selection of the folding scheme. The model goodness cri-

teria applied were the correlation coefficient between the chronological and

estimated age, and the mean absolute error (MAE) between the chronolog-

ical and estimated age. For the correlation coefficient, we averaged the 10

distinct correlation values stemming from the 10 CV runs. Since with the

NIHPD sample we had up to three sets of measurements of certain subjects

at different ages, we controlled for the non-independence of the observations

in the CV by placing all the scans of the subject i in the same fold and

thus all scans of a given subject were either in the training set or in the test

set. Therefore, data from subject i was never used to build an age-predictor

for subject i. This is an important consideration and failure to account for

non-independence would lead to positively biased model accuracy estimates.

As described in (Lewis et al., 2018), we computed 95% confidence in-

4The Matlab code used for constructing stratified cross-validation folds for regression
is available at https://github.com/jussitohka/general_matlab
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tervals (CIs) for cross-validated correlations using a bootstrap method and

compared the cross-validated MAEs from the different sets of measurements

using a permutation test.

2.5. Evaluation of relation of residuals to cognitive functioning

With the NIHPD database there are IQ scores for a subsample of 760 scans

from 391 subjects. Previously we showed that the residuals of our age predic-

tions based on cortical contrast, defined as chronological age - predicted age,

were related to cognitive functioning (Lewis et al., 2018). Here, we looked

at these relationships in more detail. First, we assessed the relationship of

the age-prediction residuals to the two aspects of full scale IQ, i.e. perfor-

mance IQ and verbal IQ, in each case assessing one while controlling for the

effect of the other on age prediction, as well as the effect of brain volume,

within a linear mixed-effects model. Then, we decomposed the residuals of

the model that best fit the contrast data, and assessed the relation of the

top two components to performance IQ and verbal IQ.

The best-fit model was determined by searching all possible models com-

prised of terms including any of ‘AGE’, ‘SEX’, ‘BRAINVOL’, ‘SITE’, ‘AGE*AGE’,

and ‘AGE*SEX’, as well as the terms required for a mixed effects model,

i.e. ‘random(subjects) + I + 1’, where ‘random(subjects)’ induces equal cor-

relations between observations on the same subject, and ‘I’ allows for inde-

pendent “white” noise in every observation. Each model was assessed using

the SurfStat toolbox (http://www.math.mcgill.ca/keith/surfstat/) and
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the Akaike information criterion (AIC) (Akaike, 1976). The best-fit model

was defined as the one with the lowest AIC. The best-fit model was then

evaluated with SurfStatLinMod to produce the coefficients which were then

passed to SurfStatPCA in order to obtain the first two principal components

of the residuals of the model. The correlation between both of these two

principal components and both of performance and verbal IQ was then as-

sessed to determine if these measures of cognitive functioning were prominent

sources of variance in the residuals of the best-fit model.

3. Results

3.1. Age prediction accuracy

The cross-validated accuracies of the age predictions are reported in Ta-

ble 2 and plotted in Figure 2 with significant differences in mean absolute

Subcortical Cortical Subcortical + Cortical

R MAE R MAE R MAE

NIHPD 0.81 660 0.88 542 0.89 500

PING 0.90 632 0.91 613 0.93 540

Table 2: The cross-validated accuracies of age predictions based on subcortical and cortical
white/gray contrast, and both measures together. The average cross-validated correlation
value (R) for each is given, as well as the mean absolute error (MAE) in days.

errors (MAE) indicated. For either dataset, the inclusion of subcortical con-

trast in addition to cortical contrast produced significantly more accurate

predictions than either alone. For the 1.5T NIHPD data, the age predictions

based on cortical contrast were significantly more accurate than those based
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Figure 2: The cross-validated accuracies of the age predictions based on subcortical and
cortical white/gray contrast, and both measures together. Glmnet was used as the machine
learning algorithm. The correlation plots show, in addition to the average cross-validated
correlation value, the 95 % confidence intervals obtained by a bootstrap method. The
MAE plots show, in addition to the average cross-validated MAE, a permutation test
based comparison between the different methods: n.s stands for not significant, * for
p < 0.05 ** for p < 0.01 and *** for p < 0.001.

on subcortical contrast. For the 3T PING data, subcortical contrast pro-

duced predictions that were not significantly different from those produced

by cortical contrast. These results are visible in the scatter plots of predicted

age versus chronological age (Figure 3). The plots for the predictions based

on subcortical contrast show greater variance than do those based on corti-

cal contrast; and those based on the combination of measures show even less

variance. And notice that for both datasets, and for subcortical contrast,

cortical contrast, and the combination of measures, the age estimates are

biased by neither scanner manufacturer nor gender.

3.2. Age predictors

Our usage of an elastic net penalized linear regression model (Friedman et al.,

2010) reveals the brain regions which contribute most to age-prediction. The

cortical parcels for which the combined cortical and subcortical white/gray

19

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 31, 2019. ; https://doi.org/10.1101/537043doi: bioRxiv preprint 

https://doi.org/10.1101/537043
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 3: Scatter-plots of predicted versus chronological age during a single cross-
validation run (one out of ten) for subcortical contrast alone, for cortical contrast alone,
and for subcortical and cortical contrast combined. The black line has a slope of 1 and
originates at the origin; this line depicts the optimal predictions. The scanner manufac-
turer/gender combinations are shown with different colors. Note that there is no apparent
bias either due to gender or scanner manufacturer, and that prediction error is relatively
uniform across the age span. Note also the lesser spread of the predictions with subcortical
and cortical contrast combined than with either alone.
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Figure 4: The signed importance of different parcels for age predictions for combined
cortical and subcortical white/gray contrast in NIHPD and PING. The signed importance
is defined as the median value of weight bi across the 10 x 10 cross-validation; thus a parcel
has to be selected in the age model at least 50 times during the 10 x 10 cross-validation
runs to show a non-zero value in the plots. The weights were computed using standardized
data so their values are comparable across cortical and subcortical parcels.

contrast measures reliably contribute to age prediction are shown in Fig-

ure 4, for both databases. We defined the signed importance as the median

value of weight of the parcel i (bi) in the linear regression model across the

10 x 10 cross-validation; thus a parcel had to be selected in the age model at

least 50 times during the 10 x 10 cross-validation runs to achieve a non-zero

value. The figure shows the non-zero signed importances of all parcels for

both databases. Across both databases the non-zero signed importances are
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broadly distributed across the cortex and the subcortical structures; they

are found in each lobe and in each subcortical structure. Thus the age pre-

dictions were constructed from information throughout the cortex and the

subcortical structures.

3.3. Residuals and IQ

The mixed-effects linear model assessing the relationship between the age-

prediction residuals and performance IQ (PIQ), controlling for verbal IQ (VIQ)

and brain volume revealed a significant positive relationship (p < 0.00002).

The mixed-effects linear model assessing the relationship between the age

prediction residuals and VIQ, controlling for PIQ and brain volume revealed a

significant negative relationship (p < 0.0174). These relationships are shown

in Figure 5.

To map these relationships with IQ to the brain we determined the best-fit

mixed-effects linear model explaining white/gray contrast, then decomposed

the residuals of that model, and assessed the relation of the top two com-

ponents to performance IQ and verbal IQ. The model with the lowest AIC

among all the possible models comprised of any of ‘AGE’, ‘SEX’, ‘BRAINVOL’,

‘SITE’, ‘AGE*AGE’, and ‘AGE*SEX’, together with ‘random(subjects) + I + 1’

was:

‘AGE + AGE*AGE + BRAINVOL + SEX + SITE + random(subjects) + I + 1’

SurfStatLinMod together with SurfStatPCA were used to obtain the first two

principal components of the residuals of this model. The first principal com-
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ponent, explaining 13.0% of the variance, is shown in Figure 6 mapped to

the cortical and subcortical surfaces; the second principal component, ex-

plaining 3.8% of the variance, is shown in Figure 7. In addition to the first

and second principal components, the figures also show the relation of these

components to each of performance IQ and verbal IQ. The first principal

component involves most of cortex, with the exception of the bilateral pre-

and post-central gyri, the calcarine fissure, and the perihippocampal gyri.

The subcortical structures are almost completely uninvolved. This compo-

nent is related to performance IQ, but not verbal IQ. The second principal

component involves the cortex adjacent to the bilateral arcuate fasciculi, the

Figure 5: The relation between the age prediction residuals and both PIQ and VIQ. The
left scatterplot shows the relation between the age prediction residuals and PIQ, con-
trolling for VIQ and brain volume within a mixed affects model; it is significant positive
relationship (p<0.00002). The right scatterplot shows the relation between the age pre-
diction residuals and VIQ, controlling for PIQ and brain volume within a mixed effects
model; it is a significant negative relationship (p<0.0174).
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Figure 6: The first principal component and its relation to performance IQ and verbal IQ.
Regions in which white/gray contrast measures cannot be generated (due to e.g. adjacency
to the ventricles) are shown in gray. This component captures variation in cortical contrast,
broadly, but not in non-primary areas nor the basal ganglia nuclei of the cerebrum, nor
the thalamus. This component is significantly related to performance IQ (p<0.00002) but
not verbal IQ.
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Figure 7: The (inverted) second principal component and its relation to performance IQ
and verbal IQ. Regions in which white/gray contrast measures cannot be generated (due
to e.g. adjacency to the ventricles) are shown in gray. This component involves the
basal ganglia nuclei of the cerebrum (but not the thalamus) and inversely the bilateral
arcuate fasciculi. It is significantly related to verbal IQ (p<0.0145) but not performance
IQ. Note that this is the inverted version of the second principal component; the actual
relation of the second principal component to verbal IQ is negative. The inversion makes
the interpretation more natural: higher verbal IQ corresponds to greater contrast in the
bilateral arcuate fasciculi and lesser contrast in the basal ganglia.
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middle temporal gyri, and in the opposite direction, the basal ganglia, but

not the thalamus. This component is related to verbal IQ, but not perfor-

mance IQ.

4. Discussion

As anticipated, the extension of our previous work to include subcortical

white/gray contrast in addition to cortical white/gray contrast produced

both increased age-prediction accuracy and additional insight into the ba-

sis of differences in cognitive functioning. In the PING dataset, with over

900 subjects scanned on 3T scanners, the inclusion of subcortical white/gray

contrast yielded an increase in the correlation of predicted and chronolog-

ical age from 0.91 to 0.93 and a decrease in the mean absolute error from

613 days to 540 days. In the NIHPD dataset, with 402 subjects scanned

on 1.5T scanners, the inclusion of subcortical white/gray contrast yielded a

lesser increase in accuracy, with the correlation of predicted and chronologi-

cal age increasing from 0.88 to 0.89, and the mean absolute error decreasing

from 542 days to 500 days. Note that these results, from a single metric in a

single image-type, are exceptional. For the PING data, Ball et al. (2017) pro-

duced predictions of similar, but slightly lesser, accuracy, also using a single

image-type, but using multiple metrics; their correlation between predicted

and chronolgical age was 0.926 and their mean absolute error was approx-

imately 566 days. Brown et al. (2012), also using a single image-type but

multiple metrics, achieved a correlation between predicted and chronolgical
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age of only 0.91, with a mean absolute error of approximately 624 days. And

for the NIHPD data, Khundrakpam et al. (2015), using cortical thickness,

achieved a correlation of 0.84, with a mean absolute error of 613 days. Franke

et al. (2012) achieved an ostensibly superior result with the NIHPD data, but

using a subsample of the scans heavily skewed toward younger subjects, e.g.

32% of their subjects were less than 8 years of age, whereas only 13% of

ours were less then 8 years of age, and only 9% of their subjects were older

than 16 years of age, whereas 15% of ours were older than 16 years of age.

Comparisons across samples that differ in this way are not straightforward.

Development is more rapid in younger subjects and so age prediction is more

accurate; and the sparsity of the results at the upper end of the age scale

in Franke et al.’s sample minimizes the negative impact of any part of the

error that is due to nonlinear issues arising during adolescence. Among those

studies using similar samples to those used in the current work, our methods

produce more accurate predictions, including in comparison to those using

multiple metrics.

And, in addition to the residuals of our age predictions reflecting indi-

vidual differences in cognitive functioning, as was also the case using only

cortical white/gray contrast (Lewis et al., 2018), the inclusion of the sub-

cortical white/gray contrast measures yields a clear distinction between the

relation of the age-prediction errors and VIQ versus PIQ. PIQ was shown to

be positively related to the age-prediction residuals, while VIQ was shown to

be negatively related to the residuals. Thus, the younger a subject’s brain

27

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 31, 2019. ; https://doi.org/10.1101/537043doi: bioRxiv preprint 

https://doi.org/10.1101/537043
http://creativecommons.org/licenses/by-nc-nd/4.0/


appears relative to their chronological age, the higher that subject’s PIQ;

and the older a subject’s brain appears relative to their chronological age,

the higher that subject’s VIQ. A number of previous age-prediction studies

have sought to relate their errors to cognitive function, but have generally

found no relationship between the two, e.g. Ball et al. (2017) and Khun-

drakpam et al. (2015). Khundrakpam et al. (2015) report a significant rela-

tion between the age-prediction errors and the interaction of PIQ and VIQ,

which is in agreement with our findings of relations in opposing directions for

the relation between the age-prediction residuals and VIQ versus PIQ. But,

Khundrakpam et al. (2015) found no relation between either PIQ or VIQ

and their age-prediction errors. Interestingly, Erus et al. (2015) reported

that individuals with brains that appeared younger than their chronological

age showed inferior cognitive processing speed, and vice-versa. To the extent

that processing speed correlates with PIQ, Erus et al.’s results conflict with

the results here; and to the extent that processing speed correlates with VIQ,

their results align with ours. But, it is unclear how processing speed relates

to PIQ and VIQ; significant processing speed relations included verbal mem-

ory, but also attention, face memory, spatial memory, emotion identification,

motor speed, and sensory-motor processing speed.

The inclusion of the subcortical white/gray contrast measures also pro-

vided novel insights into the brain-basis of the opposing relationships between

the age-prediction residuals and PIQ versus VIQ. The top two components

of a principle component analysis of the residuals of the best-fit model for
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the contrast data showed a categorical distinction in the brain-basis of PIQ

versus VIQ, with the first component related to PIQ but not VIQ, and the

second component related to VIQ but not PIQ. And the mappings of these

components to the brain show that inter-individual PIQ differences involve

much of the cortex but not the primary sensory areas nor any of the sub-

cortical structures, while inter-individual VIQ differences involve the basal

ganglia and the bilateral arcuate fasciculi but not the thalamus nor the rest

of the cortex.

A natural interpretation of the positive relation between PIQ and the

first principle component is that greater cortical contrast represents a greater

degree of myelination in the fibers that interconnect wide-spread cortical re-

gions, and that this greater myelination yields more efficient communication,

and that this is a correlate of PIQ. This interpretation fits well with Jung

and Haier’s 2007 Parieto-Frontal Integration Theory (P-FIT) of intelligence.

The same interpretation applies to the positive relation between VIQ and

the arcuate fasciculi portion of the second principle component. The arcuate

fasciculi are bundles of white-matter fibers that interconnect critical compo-

nents of the language network, e.g. Broca’s area in the inferior frontal gyrus,

Wernicke’s area at the posterior of the superior temporal gyrus, and auditory

cortex in the superior and middle temporal gyri. In adults, language is lat-

eralized; in infants, language is bilateral (Perani et al., 2011; Holland et al.,

2007; Broce et al., 2018; Su et al., 2018). The development of the arcuate

fasciculi is reflected in cognitive ability (Schmithorst et al., 2005; Lebel and
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Beaulieu, 2009).

A natural interpretation of the negative relation of VIQ and the basal

ganglia portion of the second principle component is similar. But, the inter-

nal architecture of subcortical structures shows substantial alterations over

development, in part due to the myelination of invading fibers, in part due

to maturation of fibers inter-connecting sub-nuclei, and in part due to al-

terations in cell structure (Takase et al., 2004; Wierenga et al., 2014; Geer-

aert et al., 2018). The impact of these changes on the T1 signal are not

completely understood, but white/gray contrast decreases rapidly with age.

Thus the negative relation between the age-prediction residuals and VIQ cor-

responds to a positive relation between VIQ and the state of maturation of

the basal ganglia. The basal ganglia are considered to be “cognitive pattern

generators” (Graybiel, 1997) regulating sequential processing, and central to

sequence learning, including vocal sequences (Packard and Knowlton, 2002;

Graybiel, 2005; Ölveczky et al., 2005; Dominey et al., 2003; Houk et al., 1995;

Damasio, 1983; Kotz et al., 2009; Price, 2012). The accuracy of phonologi-

cal processing is correlated with greater activation in the left caudate (Moro

et al., 2001); the speed of phonological processing is correlated with greater

activation in the left putamen (Tettamanti et al., 2005; Wildgruber et al.,

2001). Syntactic processing, likewise, appears to involve the left caudate and

putamen, as well as the globus pallidus (Friederici et al., 1999; Kotz et al.,

2003; Friederici et al., 2003b,a; Newman et al., 2010). And, most directly

related to the findings here, morphological measures of the basal ganglia have
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been associated with IQ (MacDonald et al., 2000; Isaacs et al., 2008; Grazio-

plene et al., 2015), with some specificity of the core relation being between

the caudate and VIQ (Isaacs et al., 2008; Grazioplene et al., 2015).

Thus the second principle component indicates co-maturation of the ar-

cuate fasciculi and the basal ganglia. Both the arcuate fasciculi and the basal

ganglia have been linked to language, but to the best of our knowledge have

not been linked to each other. That link could, of course, be a coincidence;

the covariation that places the arcuate fasciculi and the basal ganglia into the

same principle component might be chance. But it seems more likely that the

role of the basal ganglia in phonological and syntactic processing is impact-

ing the development of the arcuate fasciculi. Moreover, connectivity from

the basal ganglia to cortical regions within the language network has been

reported. In non-human primates, tracer injection studies have shown basal

ganglia afferents from wide-spread regions of cortex (Yeterian and Van Hoe-

sen, 1978; Yeterian and Pandya, 1993; Van Hoesen et al., 1981), and basal

ganglia projections to a number of cortical regions in the prefrontal cortex

including the supplementary motor area (SMA), the pre-SMA, and most no-

tably to a region of the ventral premotor cortex claimed to be homologous

to Broca’s area (Akkal et al., 2007; Middleton and Strick, 2000). In humans,

diffusion tractography has also shown connectivity between Broca’s area and

the putamen (Ford et al., 2013); tractography, however, cannot distinguish

the directionality of connections, but a dynamic causal modeling analysis of

functional MRI indicated unidirectional connections from the putamen to

31

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 31, 2019. ; https://doi.org/10.1101/537043doi: bioRxiv preprint 

https://doi.org/10.1101/537043
http://creativecommons.org/licenses/by-nc-nd/4.0/


the left inferior frontal gyrus (Booth et al., 2007).

Of course, this interpretation is speculative. Speculative in part because

the white/gray contrast measure is a ratio, and the intensity measures that

comprise it cannot be considered in isolation; in part because the sign of a

principle component is arbitrary; and in part because the co-variation that

yields a principle component may stem from unrelated sources. The neu-

robiological properties underlying differences in the T1-weighted signal are

not completely understood, but differences in the quantity and structure of

myelin between white-matter and gray-matter, and the changes in myelin

across development, are reflected in T1 relaxation times (Agartz et al., 1991;

Barkovich et al., 1988; Barkovich, 2000; Peters, 2002). Thus the positive

relation between cortical contrast and both PIQ and VIQ might stem from

either relatively increased myelin within the white-matter, or relatively re-

duced myelin within the gray-matter, e.g. from a lesser degree of invasion

of white-matter fibers into the cortex. Which of these is the case is unclear.

Likewise, the negative relation between VIQ and contrast within the basal

ganglia might stem from either relatively increased myelin within the basal

ganglia, or from relatively decreased myelin in the surrounding white-matter.

Again, which of these is the case is unclear. A confirmation of our interpre-

tation of the contrast measures might be obtained from quantitative MRI,

where the intensity measures in gray-matter and in white-matter are indi-

vidually meaningful. But, to the best of our knowledge, no publicly available

developmental data of this sort currently exists. Likewise, the conjectured
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impact of the development of the basal ganglia on the development of the ar-

cuate fasciculi might be explored via analysis of longitudinal functional data

in conjunction with quantitative MRI data; but, to the best of our knowl-

edge, no publicly available developmental data of this sort currently exists.

Future research should address these questions.

But regardless of the interpretation, the combination of cortical and sub-

cortical white-gray contrast provides improved age-prediction accuracy over

cortical white/gray contrast alone, and indicates a heretofore unseen dis-

tinction in the impact of VIQ versus PIQ on such predictions, as well as

identifying the brain-basis of such a distinction.

5. Acknowledgments

This research has been supported by grant 316258 from the Academy of

Finland (to JT), by grant ANRP-MIRI13-3388 from the Azrieli Neurodevel-

opmental Research Program in partnership with the Brain Canada Multi-

Investigator Research Initiative (to ACE), and by grants from the Canadian

Institutes of Health Research and the Natural Sciences and Engineering Re-

search Council of Canada (to DLC). It also benefited from computational

resources provided by Compute Canada (www.computecanada.ca) and Cal-

cul Quebec (www.calculquebec.ca).

Data used in the preparation of this article were obtained from the NIH

Pediatric MRI Data Repository created by the NIH MRI Study of Normal

Brain Development. This is a multisite, longitudinal study of typically de-

33

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 31, 2019. ; https://doi.org/10.1101/537043doi: bioRxiv preprint 

https://doi.org/10.1101/537043
http://creativecommons.org/licenses/by-nc-nd/4.0/


veloping children conducted by the Brain Development Cooperative Group

and supported by the National Institute of Child Health and Human De-

velopment, the National Institute on Drug Abuse, the National Institute

of Mental Health, and the National Institute of Neurological Disorders and

Stroke (Contract #s N01- HD02-3343, N01-MH9-0002, and N01-NS-9-2314,

-2315, -2316, -2317, -2319 and -2320). A listing of the participating sites

and a complete listing of the study investigators can be found at http://

pediatricmri.nih.gov/nihpd/info/participating_centers.html. This

manuscript reflects the views of the authors and may not reflect the opinions

or views of the NIH.

Data used in the preparation of this manuscript were obtained and ana-

lyzed from the controlled access datasets distributed from the NIMH-supported

Research Domain Criteria Database (RDoCdb). RDoCdb is a collaborative

informatics system created by the National Institute of Mental Health to

store and share data resulting from grants funded through the Research Do-

main Criteria (RDoC) project. This manuscript reflects the views of the

authors and may not reflect the opinions or views of the NIH or of the Sub-

mitters submitting original data to RDoCdb.

6. References
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