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Tweet 

A workflow for re-curating and rationally enriching knowledge graphs encoded in Biological Expression             

Language using pre-extracted content from INDRA 

Abstract 

The rapid accumulation of new biomedical literature not only causes curated knowledge graphs to              

become outdated and incomplete, but also makes manual curation an impractical and unsustainable             

solution. Automated or semi-automated workflows are necessary to assist in prioritizing and curating the              

literature to update and enrich knowledge graphs. 

We have developed two workflows: one for re-curating a given knowledge graph to assure its syntactic                

and semantic quality and another for rationally enriching it by manually revising automatically extracted              

relations for nodes with low information density. We applied these workflows to the knowledge graphs               

encoded in Biological Expression Language from the NeuroMMSig database using content that was             
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pre-extracted from MEDLINE abstracts and PubMed Central full text articles using text mining output              

integrated by INDRA. We have made this workflow freely available at           

https://github.com/bel-enrichment/bel-enrichment. 

Database URL: https://github.com/bel-enrichment/results 

Background 

The rapid accumulation of unstructured knowledge in the biomedical literature has motivated its             

structuring and formalization so computers can assist in large-scale reasoning and interpretation. Several             

standard formats have been proposed for storing newly structured knowledge, including Systems Biology             

Markup Language (SBML; Hucka et al. , 2003), Biological Pathways Exchange Language (BioPAX;            

Demir et al. , 2010), Biological Expression Language (BEL; Slater, 2014), Gene Ontology Causal             

Assembly Models (CAMs; Carbon et al. , 2017). Accompanying these standards are public repositories             

containing content generated both in academic and industrial contexts such as the BioModels Database              

(Glont et al. , 2018), Pathway Commons (Cerami et al. , 2011), NDEx (Pratt et al. , 2015), Bio2RDF                

(Belleau et al. , 2008), Open PHACTS (Williams et al. , 2012), and BEL Commons (Hoyt et al. , 2018).                 

Additionally, a significant number of databases use custom formats for knowledge that are not appropriate               

for formalization in a standard format. 

Even though each standard focuses on different aspects of modeling knowledge in systems and              

networks biology, they all give rise to knowledge graphs (KGs) consisting of biological entities (nodes),               

their interrelations (edges), and their associated metadata. While KGs have been useful for qualitative              

modeling of biochemical networks (Rausanu et al. , 2015; Yugi et al. , 2016), cellular signaling (Pilalis et                

al. , 2015; Pon et al. , 2015; Tripathi et al. , 2015), gene regulatory pathways and genetic interactions                

(Kandasamy et al. , 2010; Kamburov et al. , 2013), metabolic pathways (Caspi et al. , 2016; Wishart et al. ,                 

2018), and other systems biology applications, there are several challenges associated with their use. First,               

they contain noise arising from curation, from the loss of information due to representation, and from                

normalization of different knowledge representations (Nickel et al. , 2016; Mihindukulasooriya et al. ,            

2017; Pujara et al. , 2017). Second, they are generally an incomplete representation of the current state of                 

scientific knowledge due to the large amount of uncurated, unstructured knowledge in the literature.              

Third, they progressively become out-of-date as scientific experimentation and investigation elucidates           

new knowledge (Wadi et al. , 2016). Finally, they often lack biological contextual information such as               
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organelle-, cell-, cell line-, tissue-, organ-, phenotype-, or disease-specificity (Hofmann-Apitius et al. ,            

2015; Saqi et al. , 2018). 

KGs also suffer from issues in the normalization and mapping of entities. Though interoperability              

standards and resources like the Minimal Information Required in the Annotation of Models (MIRIAM;              

Laibe et al. , 2007) and Identifiers.org (Juty et al. , 2012) have been developed and implemented to                

promote the semantic interoperability of biological models (and by extension, KGs), curators often             

encounter concepts that are not present in high-quality, publicly available terminologies and can not              

capture the incident knowledge in a semantically meaningful way. These situations require enriching             

previously existing terminologies or, in some cases, developing new ones. For situations when the              

appropriate concept/term is unclear, several tools have been developed and made freely available to the               

community to help curators build semantically interoperable models including the Ontology Lookup            

Service (OLS; Cote et al. , 2007), the Ontology Mapping Service (OxO; https://www.ebi.ac.uk/spot/oxo),            

Zooma (https://www.ebi.ac.uk/spot/zooma), and CEDAR Workbench (Gonçalves et al. , 2017). Further,          

recent work from Domingo-Fernández et al. on mapping pathways between major databases            

(Domingo-Fernández et al., 2018) and a critical assessment of their overlaps and contradictions             

(Domingo-Fernández et al., 2019) has shown that that the adoption of standards like MIRIAM has been                

slow and that while the syntax of the varying formats used by each database may be correct, their                  

semantic interoperability is still lacking. 

Motivation 

Accurately structuring and formalizing the unstructured knowledge in the biomedical literature           

requires careful planning and manual effort from trained curators. The scope of a given project must be                 

defined based on its scientific goals (e.g., to support the interpretation of data, to generate a                

disease-specific knowledgebase, etc.) and limited in its literature content sources (e.g., abstracts, full text,              

patents, etc.) based on a project-specific metric for quality and relevance — both of which are nebulous in                  

description and difficult to generate. The scope must also be limited to certain classes of biological                

entities, their interrelations, and the standard formats that are capable of expressing them. For instance,               

the entities, relations, and formats used during curation are different for protein complex assemblies              

curated by the Complex Portal (Meldal et al. , 2015) and regulatory interactions curated by the Signaling                

Network Open Resource (SIGNOR; Perfetto et al. , 2016). Similarly, curation guidelines must be defined              

reflecting these limits. For example, the guidelines of a project designed to model Tau aggregation               

inhibitors from the chemistry literature might encourage the curators to include direct binding partners of               
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those inhibitors (e.g., GSK-3β, CDK5, etc.) but explicitly exclude the biological mechanisms through             

which the inhibitors' targets result in Tau aggregation that would better be curated during a different                

project focusing on capturing molecular biology from its primary literature. While there is no alternative               

to proper planning, several semi-automated curation workflows such as BELIEF (Madan et al. , 2016) and               

the sbv IMPROVER (Guryanova et al. , 2017) provide assistance by automatically detecting entities and              

relations for curators to accept or fix in order to increase productivity and enforce correct syntax and                 

semantics. However, these and similar systems are limited in their ability to capture the relevant               

chemistry and biology, and reversion to manual curation is often necessary. Finally, the issues of               

insufficient resources and fixed timelines apply to most curation projects, as aptly described by              

Rodríguez-Esteban (2015). 

In the AETIONOMY project (https://www.aetionomy.eu), we manually curated NeuroMMSig, an          

inventory of multiscale and multimodal knowledge graphs that capture mechanistic knowledge in the             

context of neurological disorders (Domingo-Fernández et al. , 2017). We encoded it in BEL because it is                

appropriate for qualitative causal, correlative, and associative relationships between biological entities,           

processes, and measurements across modes and scales. However, it is currently suffering from the issues               

we have previously described: it has not been assessed for confidence, is becoming outdated, and needs to                 

be enriched following a rational approach that best prioritizes the flood of recent literature. 

To address this, we have developed and applied two workflows, described in this paper: the first is for                  

re-curating existing BEL documents to ensure their syntactic and semantic correctness in a scenario where               

there was neither prior syntax validation, curation guidelines for entity nomenclature, nor a second curator               

for achieving inter-annotator agreement. The second is a semi-automated algorithm and reproducible            

workflow for updating and rationally enriching an existing KG that lessens the burden of identifying               

relevant literature, reduces the overhead, as defined by Rodríguez-Esteban, and generates more, higher             

quality, relevant content.  

We applied these workflows to a selection of knowledge graphs in NeuroMMSig and evaluated the               

curation effort (time) and quality in comparison to purely manual curation and other previously reported               

semi-automated curation workflows. We increased the number of nodes and edges in the selected              

knowledge graphs respectively by approximately five and seven times while maintaining the specificity of              

the knowledge graphs. With an improvement to the content underlying NeuroMMSig, the mechanism             

enrichment algorithm on its corresponding web service can return more correct and robust results to               

support the analysis of neuroimaging and genomics data for clinical trials in Alzheimer's disease,              
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Parkinson's disease, and epilepsy. Finally, we have made this workflow freely available at             

https://github.com/bel-enrichment/bel-enrichment so others can include it in their own curation          

workflows. 

Methods 

We first present the re-curation workflow for syntactic and semantic quality assurance before presenting              

our proposed approach for updating and rational enrichment. 

Syntactic Quality Assurance 

We developed a workflow using git (https://git-scm.com), GitHub (https://github.com), PyBEL (Hoyt et            

al. , 2017), and a novel PyBEL extension PyBEL-Git (Hoyt, 2018) in order to identify and address                

syntactical issues in the BEL documents generated during the AETIONOMY project           

(https://www.aetionomy.eu; Irin et al. , 2015; Kodamullil et al. , 2015; Naz et al. , 2016; Emon et al. , 2017;                 

Hoyt and Domingo-Fernández et al. , 2018) and exposed through the NeuroMMSig mechanism            

enrichment server (Domingo-Fernández et al. , 2017). 

 
Figure 1 : A workflow for syntactic quality assessment. This figure can be found on FigShare at 
https://doi.org/10.6084/m9.figshare.7643006.v1. 

This workflow can be implemented in other web-based version control systems such as GitLab              

(https://gitlab.com) and Atlassian BitBucket (https://bitbucket.org) as well as directly integrated with           
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continuous integration systems such as GitLab CI/CD (https://docs.gitlab.com/ee/ci), Travis-CI         

(https://travis-ci.com), and BitBucket Pipelines (https://bitbucket.org/product/features/pipelines ) using the       

instructions provided at https://github.com/pybel/pybel-git with minimal configuration. 

Semantic Quality Assurance 

We selected ten signatures (and their corresponding BEL documents) from NeuroMMSig based on their              

druggability (number of proteins targeted by drugs that have been assessed in clinical trials), their novelty                

(less preference given to subgraphs corresponding to hypotheses that have repeatedly failed in the clinic;               

namely amyloid-beta aggregation), and their amenability to assay development (based on expert advice)             

as an example for the re-curation workflow outlined below. An enumeration and statistics can be found in                 

Table 1 and the signatures can be explored through BEL Commons (Hoyt et al. , 2018). 

Label Description 
Before 
Re-curation 

After 
Re-curation 

After 
Enrichment 

Nodes Edges Nodes Edges Nodes Edges 

Tau protein 
subgraph 

The downstream effects of the post-translational modification, aggregation, 
and transport of the Tau protein 191 493 261 733 708 2054 

DKK1 Subgraph 
GSK3 Subgraph 

The interaction partners with GSK-3β and its targets of post-translational 
modification. The complementary DKK1 pathway is a specific signaling 
cascade upstream of GSK-3β 128 254 174 377 376 1165 

Inflammatory 
Response Processes related to inflammation in the context of Alzheimer's disease 182 373 341 743 2003 7607 

Insulin Signal 
Transduction 

The molecular relationships between insulin resistance and inflammation, 
motivated by epidemiological studies that suggested a correlation between AD 
and Type II diabetes (Karki et al., 2017). 251 739 315 881 612 1973 

Amyloidogenic 
Subgraph 

The downstream effects of the amyloid precursor protein (APP), its protein 
modifiers, and its cleavage products 493 1223 652 1751 2090 7436 

Non-amyloidoge
nic Subgraph 

Chemicals and processes known to down-regulate the expression of the 
transcript corresponding to APP or the abundance of the APP protein 195 359 325 635 795 2238 

Apoptosis and 
Cell Death 

Processes relevant to AD that result in apoptosis including the Caspase 
subgraph, XIAP subgraph, and Complement system subgraph 104 143 170 229 1065 2401 

Acetylcholine 
Subgraph 

Pathways including biological entities and processes related to cholinergic 
neurons and acetylcholine transmission 106 197 148 337 423 1275 

GABA Subgraph 
Pathways including biological entities and process related to GABAergic 
neurons and GABA transmission 21 30 91 190 305 721 

Reactive 
Oxygen Species 
Subgraph 

The effects of reactive oxygen species, including the Myeloperoxidase 
subgraph, Hydrogen peroxide subgraph, Free radical formation subgraph, and 
Nitric oxide subgraph 104 173 126 224 1401 6277 

Total 1188 3529 1704 5391 5850 23811 

Table 1 : Statistics for the number of BEL nodes and BEL statements in the ten knowledge graphs                 
selected from the NeuroMMSig inventory before re-curation (using the version last updated on December              
6th, 2016), after-recuration, and after enrichment. Later, we discuss these statistics in terms of INDRA               
statements - the discrepancies are due to the ontological reasoner applied in the conversion process from                
INDRA statements to BEL statements. 

Because BEL was developed by the biomarker discovery company, Selventa, before the wide             

adoption of semantic resources like Identifiers.org, the Open Biomedical Ontology (OBO) Foundry, and             

the OLS, the language used a custom format for storing the names and identifiers of entities in major                  
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biomedical databases and ontologies such as the HUGO Genome Nomenclature Consortium (HGNC;            

Yates et al. , 2017) Chemical Entities of Biological Interest (ChEBI; Hastings et al. , 2013), the Gene                

Ontology (GO; Carbon et al., 2017), Medical Subject Headings (MeSH; Rogers, 1963), the Disease              

Ontology (DO; Schriml et al. , 2018), the Human Phenotype Ontology (HPO; Köhler et al. , 2018), the                

Cell Line Ontology (CLO; Sarntivijai et al. , 2014), the Experimental Factor Ontology (EFO; Malone et               

al. , 2010), and others. Additionally, Selventa provided several entity type-specific, manually curated            

terminologies for chemicals, protein families, protein complexes, and diseases for entities that had not yet               

been included in any of the other existing resources.  

Because the Selventa terminologies are no longer maintained and the publicly available terminologies             

have far surpassed them in coverage, the first step in re-curation was to normalize entities to high-quality,                 

publicly available terminologies. For example, chemicals were normalized to identifiers from ChEBI,            

ChEMBL (Gaulton et al. , 2017), and PubChem (Kim et al. , 2016) whenever possible; protein families               

and complexes were normalized to FamPlex (Bachman et al. , 2018); and diseases were normalized to DO                

and HPO. Further, because the BEL documents from AETIONOMY were all produced before 2015, the               

entities that were curated using their labels (instead of stable identifiers) needed to be updated. A short                 

investigation showed that HGNC and GO were the least stable namespaces, but combined they had less                

than one hundred entities to be addressed. We therefore concluded that manual intervention was more               

appropriate than developing complicated systems for updating labels. While it is not intended to be the                

focus of this article, we have also begun to build a custom terminology (available at               

https://github.com/pharmacome/terminology) to supplement the publicly available ones for a small          

number (less than 1000) of terms that had not been included in other resources. 

After ensuring both the correctness of BEL syntax and namespace usage, a remaining major aspect of                

re-curation is to address the issues arising from curation lacking inter-annotator agreement. BEL             

statements and their corresponding annotations (metadata) were generated by several independent           

curators and had not undergone quality control either by comparison with the results of independent               

curation of the same document by a second curator, or even minimally checked by a second curator. We                  

applied the following simple guidelines: 

1. Second Curator: check and label all relevant statements with a SET Confidence annotation             

using the Likert scale as described in Table 2 . 

2. Third Curator (curation leader) : after all relevant statements had been checked for correctness,             

check all statements with SET Confidence = "High" or SET Confidence =            
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"Medium" . Change the confidence to SET Confidence = "Very High" on agreement.            

Otherwise, fix the statement. 

Confidence Rationale 

None If the evidence string is nonsense or contains no reasonable biological knowledge, delete it and the related 
statements entirely. It's okay to remove BEL statements that are not supported. 

Low If it's not clear what BEL should represent the biology, add SET Confidence = "Low"  for later discussion. 

Medium If the statement is wrong, fix it and add the annotation SET Confidence = "Medium" . 

High If statement can be asserted from the given evidence, add the annotation SET Confidence = "High" . 

Table 2 . Confidence annotations using the Likert scale for re-curation 

The existence of the confidence guideline can be checked with the PyBEL command line interface with                

the following command: pybel compile --required-annotations "Confidence" . 

Proposed Approach for Updating and Rational Enrichment 

Next, we developed and applied a procedure for enriching a given BEL document in order to cope with                  

the mounting issues of out-of-dateness and incompleteness. Our approach identifies nodes with low             

information density and uses a large-scale corpus of biomedical literature that has been pre-processed by               

automated relation extraction methods to identify the most relevant literature, evidences, and ultimately             

relations. Notably, the previously described quality assurance (i.e., re-curation) workflows for checking            

and addressing the syntactic and semantic correctness of a given BEL document were necessary to               

decrease the noise input into the procedure. Following the re-curation of the ten NeuroMMSig subgraphs,               

we applied the following procedure for rational enrichment: 

1. Knowledge Graph Pre-processing : nodes corresponding to the same gene (i.e., RNA, microRNA,            

Protein, and variants thereof) are collapsed, non-causal relationships (e.g., correlative, associative,           

ontological, etc.) are removed, and several entity types (i.e., abunances, reactions, pathologies,            

and biological processes) are removed. 

2. Application of Information Density Metric : the remaining nodes are ranked by an information             

density function. We used the sum of the node in-degree and out-degree as this corresponds to the                 

amount of causal information for a given gene in the knowledge graph. In this scenario, isolated                

nodes correspond to genes for which there is no causal information about its interactions with               

other proteins, and leaves (i.e., entities with only one edge) correspond to nodes that have very                

limited information. 
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3. Automated Relation Extraction : the top-ranked genes are used as a query to a knowledge graph               

generated by large-scale automated biological relation extraction. We used the Integrated           

Network and Dynamical Reasoning and Assembler (INDRA; Gyori et al. , 2018) and applied             

several filters to find the most relevant and novel relations. First, the relations that were already                

curated and in the knowledge graph were excluded. Second, INDRA was used to calculate a               

confidence score (between 0.0 and 1.0) for each relation based on evidences from structured              

databases and the frequency of occurrence of similar statements. Those statements with a low              

confidence score (< 0.80) were removed to increase the precision and therefore reduce the              

curation overhead. While INDRA integrates relations extracted from multiple reading systems, a            

corpus of relations from a single machine reading system, such as EVEX, would serve the same                

purpose (Van Landeghem et al ., 2012). 

4. Conversion to BEL : different automated relation extraction systems present various information           

(e.g., entity offsets, events, triggers, etc.) in ways that are not amenable to curation. Because               

INDRA already normalizes this information for several systems to several varieties of the             

indra.Statement Python class, we developed a converter to BEL using PyBEL that can be              

used directly with the indra.assemblers.PybelAssembler Python class. Finally, this         

information is exported to an Excel sheet with several additional columns for tracking INDRA              

statement provenance, curator provenance, the correctness of BEL statements, the type of errors             

found, and the changes made to incorrect BEL statements. Examples and links to the full results                

can be found in the supplementary information. 

For each round of rational enrichment, the procedure was applied to generate several curation sheets               

corresponding to the lowest information genes. Each row was checked with the following procedure: 

1. Place an "x" in the Checked  column. 

2. If the BEL statement correctly corresponds to the Evidence column, place an "x" in the Correct                

column. 

3. Else if the BEL statement can be improved (e.g., assignment of entity types, relation, etc.), correct                

it and place an "x" in the Changed column and annotate the error type in the Error Type column                   

using a controlled vocabulary (see the supplementary data) . Additional guidelines for           

categorizing error types can be found at       

https://github.com/pharmacome/curation/blob/master/indra-errors.rst. 

4. Else if the BEL statement does not correspond to the Evidence column and can not be improved,                 

then "x" should neither be placed in the Correct  nor the Changed  column.  
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5. If the Evidence column contains other BEL statements that were not extracted, duplicate the              

current row's provenance (reference, evidence, etc.) and add the additional BEL statements. Place             

an "x" in the Changed  column but not the Correct  column. 

6. If there are other BEL statements that can be extracted, make a new line with all of the same                   

provenance information (uuid, reference, evidence, etc.) and just place an "x" in the "Changed"              

column. 

This procedure was applied iteratively: as the low information density nodes from the first round gained                

new relations, the knowledge graph was expanded and further low information density nodes were added.               

There are several improvements that could be made to the information density function and prioritization               

of the resulting extracted statements. For example, relations found by INDRA between low information              

density nodes and high information density nodes could be prioritized to maintain the scope and focus of                 

a knowledge graph. 

 
Figure 2 . A workflow for the rational enrichment of knowledge graphs. This figure can be found on 
FigShare at https://doi.org/10.6084/m9.figshare.7642964.v1. 
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Results and Discussion 

While applying the re-curation workflow outlined in Figure 1 , we identified large sections of poor quality                

curation that had to be removed. Additionally, some evidences in the BEL document that were previously                

incompletely curated were completed. Re-curation also required the updating of namespaces from the             

2015 versions to the most current and necessitated some additional revisions. 

To evaluate the enrichment workflow outlined in Figure 2 , we defined weekly curation rounds in               

which each of the five curators were tasked to curate the enrichment template generated by INDRA for                 

the first 30 prioritized genes. Curators worked 10 hours per round for one month (4 weeks; one round per                   

week) to curate BEL statements from a pool of 113 genes. A database of statements was generated by                  

INDRA using the REACH (Valenzuela-Escárcega et al. , 2015; Valenzuela-Escárcega et al. , 2018), and             

Sparser (McDonald, 2000) readers to extract a total of 17096 statements containing these genes from all                

MEDLINE abstracts and PubMed Central full text articles available in August 2018. Of these, 2989 were                

manually evaluated. 917 statements (30.7%) were marked as correct by the curators, 1454 statements              

(48.6%) required manual corrections, and the remainder (20.7%) could not be corrected. The criteria for               

correctness was that all aspects of the statement, including the subject and object entities, relationship               

type, phosphorylation and other post-translational modifications, were extracted to the same extent as             

careful manual curation could. Ultimately, excluding the statements that could not be corrected, 79.3% of               

the automatically extracted, manually revised BEL statements were recovered. After curation, the            

recovered statements were converted into a BEL knowledge graph that contained 4228 nodes and 17002               

edges complementary to the original ten subgraphs selected from NeuroMMSig. The discrepancies in the              

number of INDRA statements to BEL statements is due to the ontological reasoning process that occurs                

during conversion. For example, INDRA statements about protein complex formation are converted to             

bi-directional BEL statements, INDRA statements about post-translationally modified proteins induce          

edges to the reference protein, and INDRA statements about bound proteins create a variety of additional                

BEL nodes representing their constituents and membership edges connecting them. 

There are two main aspects that are commonly used to formally evaluate a biocuration workflow: the                

time required to complete the task and quality of the curation compared with a gold standard. To evaluate                  

whether the proposed approach for rational enrichment allows curating a larger amount of statements              

without compromising the quality, we calculated the average number of minutes required to curate one               

statement using our proposed workflow and compared it with previous estimates calculated conducting             

manual curation of BEL statements (Szostak et al. , 2015; Madan et al. , 2016) (Figure 3a) . While the                 
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average curation effort was significantly lower than manual curation (2.19 minutes per BEL statement in               

our workflow vs. 3.2 minutes per BEL statement in manual curation), our calculations included the time                

used by the curators to annotate the various errors made by the reading system(s). Therefore, if the                 

curation exercise would have exclusively focused on curating BEL statements, the average would have              

been even lower. Moreover, it is important to note that our proposed approach does not explicitly require                 

the time nor expertise required for corpora generation because the reading systems (e.g., REACH and               

Sparser) and assembly systems (i.e., INDRA and PyBEL) are applied to all available literature. 

Figure 3. a) Recovered BEL statements per minute. Note that the time reported here includes the time                 
invested in annotate the statement as well as INDRA errors. b) A comparison of the curation effort                 
between genes for which INDRA had high accuracies (top 20) and genes presenting low accuracies               
(bottom 20). 

Although the amount of time required to curate a certain amount of statements with the proposed                

approach is lower compared to standard manual curation, the curation effort is also highly variable               

depending on which gene was curated (Figure 3a). To investigate how the curation effort depends on the                 

accuracy of the reader extracting BEL statements, we compared the average curation effort between genes               

whose statements were accurately and poorly extracted (Figure 3b) . We observed that the curation effort               

required to extract statements in genes whose statements were highly accurate (top 20) was significantly               

less (p < 0.004; Student's T) than the effort required to curate low accuracy (bottom 20) genes, which                  

effectively took as long as manual curation. We conclude that the high variability associated with the                

average curation times per curator can be explained by the extra invested time in the genes presenting low                  

recall. 

The second aspect we evaluated was the performance in terms of quality. To investigate the direct                

quality of the BEL statements coming from INDRA, we analyzed the distributions of correct statements               

before curation observed in each gene (accuracy investigation) (Figure 4a) . Most of the genes presented               
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accuracies close to the mean accuracy (35.75%) with only a few outliers whose limited number of                

extracted statements lead to their respective high or low accuracies (see Supplementary Figure 1) .              

Furthermore, in accordance with previous research assessing the quality of automatic and manual relation              

extraction (Rinaldi et al., 2016), the accuracies we observed again indicated that BEL statements must be                

manually curated in order to generate high quality networks. After curation, the distribution of statements               

that were correct plus statements that were fixed during curation (i.e., excluding statements that were               

incorrect and could not be fixed) shifted completely to long-tailed distribution with an average of 74.63%                

BEL statements successfully extracted (Figure 4b) . The remaining statements (approximately 25%) could            

either not be coded in BEL nor contained any relevant information about the particular gene. 

Figure 4. a) The distribution of the accuracies in triple identification by INDRA for each gene. X-axis:                 
Correct statements (%). Y-axis: Number of genes (frequency). b) Distribution of recovered statements             
after curation (mean: 74.63%). 

While curating the BEL statements, we also annotated the errors made throughout the process of reading,                

assembly by INDRA, and conversion to BEL by PyBEL in order to identify common mistakes and to                 

assist in the improvement of these three systems. The results showed that the most common error is                 

caused by the name-entity recognition system that identifies the entities participating in the relation              

(Figure 5). Other common errors arose from the improper assignment of the subject and object entities,                

from evidences that did not actually include relations between the subject and object entities, and               

statements that were semantically incorrect due to a negation word (e.g., not, no, none, neither, etc.). 
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Figure 5. The frequencies of common errors found while curating BEL statements generated from 113               
genes. Further details about each error type and the annotation process are available in the guidelines                
available at https://github.com/pharmacome/curation/blob/master/indra-errors.rst. 

The five curators were tasked with tagging interesting examples of the common mistakes that could be                

used to inform the development of the reading systems (REACH, Sparser, etc.) and the assembly systems                

(INDRA and PyBEL). Because the authors of this manuscript maintain the INDRA and PyBEL packages,               

identifying the causes of errors in assembly was relatively straightforward. For example, BEL statements              

containing biological processes were consistently output using invalid BEL syntax, including the            

activity() function, which is reserved for proteins and other physical entities. We addressed this by               

updating the previously mentioned indra.assemblers.PybelAssembler class. Another error type that was           

not addressed until after the evaluation was completed was the determination of the role of direct physical                 

interaction in causal relations. INDRA makes use of linguistic cues from the text mining systems along                

with information from protein-protein interaction databases to determination if a relation involves a             

physical interaction between proteins, but this information was not incorporated into the            

indra.assemblers.PybelAssembler class. Instead, by default all relations were output using BEL           

statements implying physical contact: "directly increases" (i.e. increases via contact) and directly            

decreases (i.e., decreases via contact). This issue has since been fixed. In general, the direct/indirect               

distinction is difficult to detect automatically in natural language, though it is very important in the                

generation of mechanistic and mathematical models arising from biological knowledge.  

In Table 3 , we present a small sampling of the errors and corresponding suggestions for improvement in                 

the reading systems. We present a much more thorough enumeration of the errors found in statements for                 

the 113 curated genes in the supplementary information. Besides generating new content quickly, this              

curation procedure includes information to allow for the evaluation of the automated relation extraction              

systems and for the proposition of improvements. For example, new groundings can be proposed for               
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entities that were often mismatched. A prominent example was the misidentification of tau (a human               

protein) and taurine (an amino acid). 

Additionally, new rules could be suggested for rule-based systems to avoid issues with the              

mis-identification of the order of the subject and object as in the example of “Bak expression was also                  

induced in cells overexpressing the stress-induced transcription factor GADD153, but Bak expression            

was inhibited in cells expressing an antisense GADD153 construct” (Lovat et al. , 2003) whose use of the                 

passive voice may have caused REACH to interpret the statement as " Bak increased GADD153 ."              

Ultimately, we believe we can use these examples to provide useful feedback to the developers of the                 

reading systems and improve future extraction. 

Gene Evidence Issue Suggestion 

MRC1 In conclusion, these results suggest that BCR 
and ABL kinase abrogates MMR activity to 
inhibit apoptosis and induce mutator 
phenotype. (Stoklosa et al., 2008) 

MRC1, also known as 
MMR, was confused with 
Mismatch repair (MMR) 

Machine learning methods 
generating contextual word 
embeddings could be used 
to improve the named entity 
recognition component 
such as NeuralCoref 
(https://github.com/huggingf
ace/neuralcoref) 

TIMP1 In our work, the restoration of cholesterol efflux 
capacities from EPA enriched HMDM treated 
with both the adenylate cyclase activator 
forskolin and the phosphodiesterase inhibitor 
IBMX strongly suggests that EPA decreased 
the ABCA1 mediated cholesterol efflux from 
HMDM through a PKA dependent pathway. 
(Fournier et al., 2016) 

TIMP1, also known as EPA, 
was confused with 
eicosapentaenoic acid 
(EPA) 

Improve the named entity 
recognition 
(disambiguation) process, 
for example, by updating 
synonym dictionaries in 
rule-based systems. 

TRPV1 Moreover, recently TRPV1 has been 
demonstrated to be either inhibited or activated 
by PIP 2. (Morelli et al., 2014) 

Only the inhibition 
relationship was extracted 

Rule-based relation 
extraction systems could be 
appended with new rules to 
handle sentences with 
multiple objects. This and 
similar examples could be 
included in the training data 
for machine learning-based 
relation extraction. 

NUMB This interaction is mediated by the NPXY motif 
of LNX1 and leads to ubiquitination of Numb by 
the RING domain of LNX1, thereby targeting 
Numb to proteasomal degradation. (Young et 
al., 2005) 

The complex sentence 
structure of "ubiquitination" 
and "targeting" event were 
not resolved properly, and 
the ubiquitination was 
omitted. 

Rule-based systems like 
REACH that explicitly 
handle ubiquitination events 
could be appended with 
new rules. 

USF2 Taken together, the results shown in Figs. 5A, 
B and C suggest that USF2 stimulates the 
transcriptional activity of NFκB by enhancing 
the degradation of IκBα. (Wand et al., 2009) 

Relation should be treated 
as an indirect, rather than 
direct, increase 

Update the INDRA 
PybelAssembler to make 
use of information about 
whether a relation is 
mediated through physical 
contact. 
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Table 3 : Examples of errors that resulted in suggestions for improvements for the underlying relation               
extraction systems. 

After applying the re-curation workflow to our selection of knowledge graphs in the NeuroMMSig              

inventory, we increased the number of nodes from 1188 to 1704 (~1.5x) and edges from 3529 to 5391                  

(~1.5x). After applying the enrichment workflow, the number of nodes increased to 5850 (~5x) and edges                

to 23811 (~7x). A more granular summary can be found in Table 1 . With a 5x increase in nodes, we                    

would expect to see a 10x increase in edges if the new nodes were completely disconnected from the                  

pre-existing nodes in the knowledge graph, which shows that we have been able to maintain the                

specificity of the knowledge graphs to a reasonable degree. In total, our curators spent 80 hours on the                  

enrichment step to generate 17,002 new BEL statements with an average rate of 3.54 edges per minute.                 

The resulting enriched knowledge graph can be used in reproductions of previous analyses leveraging the               

NeuroMMSig inventory to assess their robustness, deliver new insights, and improve future analyses             

when the results are incorporated into a future release of the NeuroMMSig mechanism enrichment server.               

Additionally, the statements comprise a large training set for future machine learning approaches for text               

mining. 

Conclusions 

We have proposed and applied a generalizable workflow for enriching and updating existing biological              

knowledge graphs with a focus on the reduction of curation time both in literature triage and in extraction.                  

While its realization involved spreadsheets rather than a bona fide curation interface, we believe that it                

could be adopted by both BEL-specific curation interfaces (e.g., BELIEF, BioDati Studio ) and more              1

general biological relation curation interfaces (e.g., NOCTUA , Factoid , WikiPathways (Slenter et al. ,            2 3

2017)). Furthermore, INDRA is flexible enough to generate curation sheets for curators familiar with              

formats other than BEL, such as BioPAX or SBML. 

This workflow is by no means the ultimate solution for finding relevant content. Using pre-extracted               

statements as a stand-in for relevance allows a given knowledge graph to be expanded, but it requires                 

several rounds to find the limits of a given pathway or graph, during which the scope of the curation could                    

be lost. We plan to investigate other methods for identifying relevant content by combining topic               

modeling with mind maps to not only identify content at the entity level, but on a higher abstraction that                   

allows for capturing of entire areas of biology. These methods could compensate for the simplications that                

1 https://studio.demo.biodati.com 
2 http://noctua.berkeleybop.org 
3 https://github.com/PathwayCommons/factoid 
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we made to the curation task, such as removing relations containing chemicals, biological processes, and               

phenotypes. Additionally, they could enable earlier-stage curation that is more focused on achieving             

reasonable coverage of the available knowledge rather than high granularity enrichment. 

Ultimately, as automated relation extraction technologies improve, they will be used to more significantly              

supplement manual curation efforts. We expect to see many upcoming workflows leveraging these             

exciting prospects.  
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