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ABSTRACT

Naturally occurring functional genetic variation is often employed to identify genetic loci that regulate specific traits. Existing
approaches to link functional genetic variation to quantitative phenotypic outcomes typically evaluate one or several traits at a
time. Advances in high throughput phenotyping now enable datasets which include information on dozens or hundreds of traits
scored across multiple environments. Here, we develop an approach to use data from many phenotypic traits simultaneously to
identify causal genetic loci. Using data for 260 traits scored across a maize diversity panel, we demonstrate that a distinct set
of genes are identified relative to conventional genome wide association. The genes identified using this many-trait approach
are more likely to be independently validated than the genes identified by conventional analysis of the same dataset. Genes
identified by the new many-trait approach share a number of molecular, population genetic, and evolutionary features with a
gold standard set of genes characterized through forward genetics. These features, as well as substantially stronger functional
enrichment and purification, separate them from both genes identified by conventional genome wide association and from the
overall population of annotated gene models. These results are consistent with a large subset of annotated gene models in
maize playing little or no role in determining organismal phenotypes.

Main
Genetics seeks to link individual genes to their roles in determining the characteristics of an organism. Early QTL studies
utilized individual phenotypic1 or chromosomal markers2. Now Genome Wide Association Study (GWAS) can scan 100,000’s
or millions of markers for association with a target trait3–5. Statistical methods for Phenome Wide Association Study (PheWAS)
have also developed6–8. Unifying GWAS and PheWAS produces multiple testing problems which make retaining statistical
power challenging9, 10. Multivariate GWAS methodologies have been shown to increase power11–17. However, these approaches
face challenges scaling to hundreds or thousands of traits. Medical record data mining18, 19, high throughput phenotyping20,
and scoring of molecular traits such as transcript and metabolite abundance21–24 are making high dimensional trait datasets
increasingly common. Here we employ a published dataset of 260 distinct traits of maize (Zea mays)25, 26 to evaluate a
multi-trait multi-SNP framework to identify genotype-phenotype associations. Genes identified by our model show greater
independent validation27 and increased similarity to a gold standard set of genes characterized by knockout phenotypes in
maize28.

Maize HapMap3 SNPs25, 26 were imputed and filtered based on minor allele frequency, linkage disequilibrium, and distance
to annotated gene models to produce a set of 557,968 unique SNPs associated with 32,084 maize gene models (See Methods).
Filtering of a set of 57 unique traits scored across up to 16 environments resulted in a set of 260 trait datasets with a median
missing data rate of 18%29. Unobserved trait datapoints were imputed using PHENIX30 (Supplementary Table S1).

Two widely used GWAS methodologies – GLM and FarmCPU31, 32 (Table 1) – were employed to identify gene-trait
associations (Table 1). A given gene may be identified as statistically significantly associated with a phenotype in a single
analysis, but fail to survive multiple testing correction when many trait datasets are analyzed sequentially (Figure 1a). We
developed an approach based upon stepwise regression model – Genome-Phenome Wide Association Study (GPWAS) – fitting
where the set of SNPs fallen in a gene treated as the response variable, and both population structure and individual trait datasets
are employed to explain the patterns of genetic variance across the population (See Methods; Figure S1). In principle, this
approach should address the challenges of partially correlated traits and genotype matrices (Figure 1c). Given the complexities
introduced by the iterative model selection step, we chose to correct for multiple testing using a permutation-based method (See
Methods) which has been shown to be robust in controlling false positives in both GWAS and PheWAS studies33, 34. With an
estimated false discovery rate (FDR) < 1.00e-3, 1,776 genes were classified as significantly associated with phenome-wide
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variation (Figure S2). Comparison gene sets were identified by GLM31 and FarmCPU32 using a same dataset (See Methods;
Table 1).

The accuracy of each of these three approaches was validated using data from a second much larger dataset, the maize
nested association mapping (NAM) population27, 35. The comparison employed the subset of 29,430 gene models with clear 1:1
correspondence between RefGenV4 and RefGenV2 maize gene models. GPWAS identified genes showed substantially higher
overlapped with the validation dataset than GLM GWAS (p=2.15e-5; Chi-squared test) and FarmCPU GWAS (p=9.17e-3;
Chi-squared test).

GPWAS produces a list of the specific traits which have been included in the model for a particular gene (Figure 1b).
However, the associations of individual phenotypes identified within the GPWAS model for a given gene are not rigorously
controlled for false discovery. Anther ear1 (an1) is a classical maize gene shown to encode a Ent-Copalyl diphosphate synthase
involved in gibberellic acid biosynthesis. Knockout alleles of an1 have been show to produce reduced or abolished tassel
branching, reduced plant height, delayed growth, and delayed flowering36. Anther ear1 is also associated with quantitative
variation in tassel spike length37. The an1 gene was not significantly associated with any individual traits in conventional
GWAS in this dataset. GPWAS found the association between this gene and a group of 11 traits was statistically significant
(FDR < 0.001). Many traits incorporated into this model were consistent with the characterized function of this gene (Figure
S3).

Maize genes with known mutant phenotypes – classical mutants28 – are more likely to show significant mRNA expression
in at least one tissue, and tend to be expressed across a broader set of tissues than other gene models (Table 1; Supplementary
Table S2). Genes identified by GPWAS were more likely to be expressed > 1 FPKM in at least one of the 92 tissues/timepoints
than those identified by GLM and FarmCPU, although the latter difference was not statistically significant (p=0.007, p=0.085;
chi-squared test)39, 40 (Table 1). Genes identified by GLM GWAS, FarmCPU GWAS and GPWAS all showed much higher
breadth of expression than other gene models (Supplementary Table S2). Genes identified by GPWAS were longer, contained
both more total SNPs and a higher density of SNPs per KB of gene space than genes identified by conventional GWAS
(Supplementary Table S3). But both of populations showed the same bias towards greater polymorphism rates relative to all
annotated genes (Figure S4; Supplementary Table S3). Permutation testing revealed a modest bias towards the identification of
genes with greater numbers of SNPs by GPWAS, however, this bias was insufficient to explain the patterns observed in real
data (Supplementary Table S4). Classical maize mutants exhibited the opposite pattern, showing less polymorphism than the
overall gene set (Supplementary Table S3). Both genes identified through forward genetics screens and through analysis of
natural variation must play a role in specifying the characteristics of an organism. However, unlike genes identified through
forward genetics, genes identified through analysis of natural variation must also be represented by functionally variable alleles
in the studied population. It may be this second criteria which explains the additional bias towards the identification of genes
with high polymorphism rates in GPWAS and GWAS.

Table 1. Expression Characteristics of Different Gene Populations

Total Gene Models
Expressed Gene Models

(Average FPKM >1)
RefGenV4:RefGenV2

1:1 Gene Models
Overlap with Gene Models

Identified in NAM
RefGenV4 45,045 22,463 (49.9%) 29,430 4,227 (14.4%)

GLM GWAS 2,000 1,393 (69.7%) 1,712 301 (17.6%)
FarmCPU GWAS 880 620 (70.5%) 783 149 (19.0%)

GPWAS 1,776 1,309 (73.7%) 1,615 381 (23.6%)
Classical Mutants 99 75 (75.8%) 99 18 (18.2%)

Maize classical mutants are substantially less likely to exhibit presence absence variation (PAV) (Table 2). Gene models
identified by both GWAS and GPWAS were much less likely to exhibit PAV than other gene models (Table 2; Supplementary
Table S5). GPWAS was less likely to identify gene models with PAV than conventional GWAS (p=1.55e-3; Chi-squared test).
Genes exhibiting PAV in maize are less likely to be conserved at syntenic locations in other species41. The frequency of syntenic
conservation was the inverse of the pattern observed for PAV (Table 2; Supplementary Table S5), and the increased syntenic
conservation of GPWAS identified genes relative to conventional GWAS was statistically significant (p<2.2e-16; p=1.46e-6;
Chi-squared test; GLM and FarmCPU respectively). It was also possible to calculate Ka/Ks ratios for maize genes with syntenic
orthologs in sorghum. Classical mutants show much lower Ka/Ks ratios – a sign of stronger purifying selection – than the
overall population of conserved genes (Figure 2; Table 2). The Ka/Ks ratios of gene models identified by GLM GWAS were
not significantly different from the overall population of conserved gene models (Figure 2; Table 2). Gene models identified by
GPWAS showed significantly lower Ka/Ks ratios than all conserved gene models (p=1.24e-9), gene models identified by GLM
GWAS (p=1.09e-9) and FarmCPU GWAS (p=4.24e-5; Mann–Whitney U test) (Figure 2; Table 2).

A set of 137 GO terms showed statistically significant (Bonferroni corrected p-value < 0.05) enrichment (119 terms) or
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Figure 1. Statistically association between the maize gene Zm00001d002175 and 260 distinct phenotypes. Each diamond or
triangle represents one specific phenotypic dataset. Colors of diamonds and triangles indicate the broad categories each specific
phenotype falls into (see legend within figure). The specific identities of each phenotype ordered from left to right are given in
Supplementary Table S1. (a) The height of each diamond indicates the negative log10 p-value of the most statistically
significant SNP among the SNPs assigned to that gene in a GLM GWAS analysis for that single trait. Conventional GWAS
analysis generally employs either empirically determined statistical significance cutoffs27, or employs Bonferroni correction
based on the total number of tests conducted38. Employing Bonferroni correction, in the dataset above, each individual analysis
would be conducted using a multiple testing corrected p-value cut off of 8.96e-08, while sequential analysis of all 260 traits
should employ a multiple testing corrected p-value of 3.45e-10. The dashed blue line in the top panel indicates a p=0.05 cut off
after Bonferonni correction for multiple testing based on the number of statistical tests in a single GWAS analysis (8.96e-8).
The solid line in the top panel indicates a p=0.05 cut off after Bonferonni correction for multiple testing based on the number of
statistical tests in GWAS for all 260 traits (3.45e-10). (b) The vertical placement of each triangle indicates whether a given
phenotype was included (Sel.) or excluded (Uns.) from the final GPWAS model constructed for this gene. The complete list of
genotypes incorporated into the GPWAS model for Zm00001d002175 are Days to Silk (Summer 2006, Cayuga, NY; Summer
2007, Johnston, NC), Days to Tassel (Summer 2007, Johnston, NC; Summer 2008, Cayuga, NY), GDDDay to Silk (Summer
2006, Cayuga, NY; Summer 2007, Johnston, NC), Main Spike Length (Summer 2006, Johnston, NC), Number of Leaves
(Summer 2008, Cayuga, NY), Leaf Width (Summer 2006, Champaign, IL), NIR Measured Protein (Summer 2006, Johnston,
NC) and Ear Weight (Summer 2006, Champaign, IL). (c) The panel indicates the pairwise pearson correlation coefficient
between each pair of measured phenotypes. Clustering based on phenotypic correlation was used to determine the ordering of
phenotypes along the x-axis. Each tick mark on the x-axes of a and b panels indicates a distance of five phenotypes. Detailed
phenotypes from left to right were in the same order as in Supplementary Table S1 from top to bottom.

purification (18 terms) among genes uniquely identified by GPWAS relative to GLM GWAS. In contrast only 15 GO terms
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Table 2. Differences Among Gene Populationsa

Presence Absence Variation
(Percent)b

Syntenic Conservation
(Percent)c

Ka/Ks
Median; Mean

All Genes
11,971/39,005

(30.7%)
27,735/45,578

(60.9%) 0.200; 0.246

Uniquely Identified
by GLM GWAS

165/1,591
(10.4%)

1,322/1,630
(81.1%) 0.210; 0.251

Uniquely Identified
by GPWAS

98/1,397
(7.0%)

1,292/1,406
(91.9%) 0.169; 0.208

Classical Mutants
4/98

(4.1%)
93/99

(93.9%) 0.144; 0.177

a Comparison for the same set of features in genes Uniquely Identified by FarmCPU relative to GPWAS and Uniquely
Identified by GPWAS relative to FarmCPU are provided in Supplementary Table S5.

b Genes not included in42 were excluded from this analysis.
c The syntenic conservation is defined as orthologs in maize relative to sorghum based on a previous publication43.

(11 enriched and 4 purified) were identified in the corresponding set of genes uniquely identified by GLM GWAS (Figure
3a, Supplementary Table S6). Genes annotated as involved in development, response to stimuli, cell wall and cell membrane
metabolism, hormone signalling, disease response, and transport were all over represented among genes associated with
phenome-wide variation, while those associated with nucleotide metabolism, DNA replication, translation, and telomere
organization were disproportionately unlikely to show such associations. Relative to the total number of gene models a given
GO term is assigned to (e.g. information content), p values of enriched GO terms tends to be more significant (Figure 3a).
Similar results were obtained for FarmCPU even after controlling for total number of genes identified (see Supplementary
Information; Figure 3b; Supplementary Table S6). Number of GO terms per gene and proportion of genes with no assigned GO
term did not differ dramatically between gene populations, however the median GO term assigned to a gene uniquely identified
by GPWAS had higher information content than the median GO term assigned to a gene uniquely identified by GLM GWAS
(See Methods; Supplementary Table S7). These results are consistent with unified GPWAS identifying a less random subset of
annotated genes than sequential GWAS for each trait.

The statistical method we employ for GPWAS requires a complete absence of missing data. It is only because advances
in kinship based phenotypic imputation approach is now available30. It also requires binning individual genetic markers into
groups associated with individual genes. This binning is likely to be imperfect, as regulatory regions of genes can be separated
from coding sequence by tens of Kb in maize45, 46. Noncoding regulatory sequences, many distant from annotated genes, have
been shown to explain approximately 40% of the total phenotypic variation in maize47. Finally, the present GPWAS algorithm
and implementation is quite computationally expensive. We estimate the GPWAS analyses presented here required a total of
approximately 6.9 years of CPU time.

Today, there are only a few datasets which contain as many different traits scored for the same population across multiple
environments as the Panzea dataset. However, the rapid emergence of high throughput plant phenotyping technologies make it
likely that high dimensional trait datasets – where the number of measured phenotypes exceeds even the number of individuals
in the population – will become much more common in the future20. Increases in the total number of phenotypes should
increase the power and accuracy of GPWAS. However, if many highly correlated traits are included, the result can be issues
with multicollinearity that makes the statistical estimation and inference procedures employed unstable. The current statistical
procedure also encounters challenges once the number of input traits exceed the number of individuals in the population. In
these cases, it would be best to avoid the common practice of employing BLUP scores48 as this approach strips out information
on trait plasticity across environments, and trait plasticity is often controls by distinct sets of genes from genes controlling
variation in multi-environment trait means49. Automatic variable selection and/or dimensional reduction could be incorporated
into future GPWAS implementations. Here we have developed a new approach to identify genes with statistical links to a
variation in a large set of diverse plant traits scored for a maize diversity panel across multiple environments, and showed that it
exhibits greater consistency with genes identified as controlling organismal phenotypes in an independent population than do
genes identified using two conventional GWAS approaches. We also showed that gene models identified by GPWAS exhibit
greater structural, molecular, and evolutionary similarity to gold standard maize genes identified through forward genetics than
genes identified by conventional trait-by-trait GWAS. Over the past three decades, without substantial discussion or debate,
many in the scientific community have moved from a definition of genes that was based on organismal function, to one which is
based on molecular features50–52. It may be possible to combine all of these data types to quantitatively determine the subset
gene models likely involved in specifying the characteristics of organisms. These patterns could also guide prioritization in
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Figure 2. Distribution of Ka/Ks values for different populations of genes within the maize genome. The background set is
composed of all maize genes with syntenic orthologs in sorghum and setaria after genes with tandem duplicates and genes with
extremely few synonymous substitutions identified in the original alignment were excluded (See methods). The kernel density
plots for genes uniquely identified by either GLM GWAS or GPWAS, as well as classical mutants are the subsets of each of
these categories which also met the criteria for inclusion in the background gene set. For each population of genes the median
value is indicated with a solid black line, and dashed black lines indicate 25th and 75th percentiles of the distribution.

future reverse genetics efforts.

Methods

Genotype and Phenotype Sources, Filtering, and Imputation

Raw genotype calls in RefGenV4 coordinates from resequencing data of the maize 282 association panel26 were retrieved
from PanZea. Missing genotypes were imputed using Beagle (version: 2018-06-10)53. Only biallelic SNPs with less than 80%
missing points were input for imputation. After imputation, SNPs with MAF (Minor Allele Frequency) less than 0.05 or which
were scored at heterozygous in more than 10% of samples were discarded. A phenotype file (traitMatrix maize282NAM v15-
130212.txt) containing total of 285 traits, corresponding to 57 unique types of phenotypes scored in 1 to 16 environments was
downloaded from PanZea. A set of 277 accessions with identical names in the HapMap3 data release and the PanZea trait data
were employed for all downstream analyses.

Maize gene regions were extracted from AGPv4.39 downloaded from Ensembl. SNPs were clustered based on R2 > 0.8
and only one randomly selected SNP per cluster was retained. If the number of SNPs after collapsing highly correlated clusters
exceeded 138 (50% of the number of inbreds scored), a random subsample of 138 SNPs was employed for downstream analyses.
Identical final SNP sets were employed for GPWAS and GWAS analyses.

Of the 285 initial trait datasets, 25 were removed because the data file contained a recorded trait value for only a single
individual among the 277 maize inbreds genotyped, leaving a total of 260 trait datasets. Missing phenotypes were imputed
based on a kinship matrix calculated from 1.24 million SNPs calculated in GEMMA15 and using a Bayesian multiple-phenotype
mixed model30. Accuracy of phenotypic imputation was assessed independently for each trait with sufficient number of real
observations to evaluation using ten iterations of masking 1% of available records for each trait and comparing imputed and
masked values for each trait (Supplementary Table S1).
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Figure 3. Comparison of GO enrichment/purification among genes uniquely identified as associated with phenotypic variation
using different statistical approaches. Each circle is a single GO term in a single analysis. The position of each circle on the x
axis indicates the total number of maize gene models which were assigned this GO term in the maize GAMER dataset44. The
position of each circle on the y axis indicates the statistical significance of the enrichment or purification of this GO term in the
given gene population relative to the background set of all annotated maize gene models. (a) Comparison of the patterns of GO
term enrichment/purification among genes either either uniquely identified as associated with phenotypic variation by GLM
GWAS analysis or uniquely identified as associated with phenotypic variation by GPWAS analysis. (b) As in panel A, but
comparing genes uniquely identified as associated with phenotypic variation by FarmCPU analysis or uniquely identified as
associated with phenotypic variation by GPWAS analysis. Only to 706 genes uniquely identified by GPWAS with the strongest
statistical signal were employed in panel B, to prevent any bias towards more significant p-values which would result from
conducting the analysis with a larger population of genes for GPWAS than for FarmCPU.

GPWAS Analysis
We propose a model selection approach to adaptively choose the most significant phenotypes associated with each gene. Given a
gene, we consider all the SNPs as the multi-responses. For analysis of the given gene on each chromosome, a separate principal
component analysis (PCA) was conducted using markers solely from the other 9 chromosomes to reduce the endogenous
correlations between genes and principal components54. A subset of 1.24 million SNPs distributed across both intragenic and
intergenic regions on all 10 chromosomes was used to perform PCA for both GPWAS and GWAS. The first three PCs were
calculated using R prcomp function and included in GPWAS analysis. Let αin and αout be the criterion thresholds for the
p-values of the phenotypes. If a phenotype with p-value smaller than αin, we consider it as potentially significant and should be
added into the regression model. Whereas, if the p-value of an existing phenotype in the model is larger than αout , we consider
it as insignificant and exclude it from the model. As a default, we choose αin = αout = 0.01 for each gene.

The stepwise selection procedure is as follows:

1. Start with the multi-response model with all the SNPs as responses and the first three PC scores as covariate. Search for
the the most significant phenotype across all the phenotype measurements. Include this phenotype into the model if its
p-value is below αin. Otherwise, declare no phenotype is significant for this gene.
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2. For the `th step, add each one of the remaining phenotypes into the existing model with the covariates that have already
been selected, and calculate its p-value. This p-value measures the effect of this phenotype on the responses given all the
selected phenotypes from the previous steps.

3. Find the remaining phenotype with the minimum p-value. Include this phenotype into the model if its p-value is below
αin. Otherwise, declare no new add in.

4. The newly added covariate may be correlated with the existing covariates in the model. This may change their
corresponding p-values. Fit all the selected phenotypes jointly in the model and drop the phenotype with the largest
p-value that is greater than the cutoff value αout .

5. Repeat steps (2), (3) and (4) until no phenotypes can be added or removed from the model. This is considered as the final
model for the targeted gene.

The final model can be represented as:

gk,i = PCk,1βi1 +PCk,2βi2 +PCk,3βi3 +
vi

∑
j=1

Phek,( j)τi( j)+ εk,i j. (1)

Here, the subscript k and i represent the kth observation and the ith gene, respectively. There are vi selected phenotypes
for the ith gene, where vi ≤ 260. The selected phenotypes {Phek,( j)} are a subset of the collection of all the phenotypes
{Phek,1,Phek,2, . . . ,Phek,260}, where τi( j) is the corresponding coefficients for the selected phenotype Phek,( j) of the ith gene.
The first three PC scores PC1, PC2 and PC3 were always included in the model with their effects βi1, βi2 and βi3. Note that gk,i,
βi1,βi2,βi3 and τi( j) could be vectors corresponding to the multiple SNPs within the ith gene. Total phenotypes was iteratively
selected for 35 times for each scanned gene. All the unselected phenotypes were considered as insignificant for a particular
gene. The p-value of each gene was determined by the partial F test through comparing the final model containing both the first
three PCs and the selected phenotypes with the initial model containing only the PCs. Of 32,084 gene models, genomic data of
every 200 genes was extracted and submitted to cluster (Intel Xeon E5-2670 2.60GHz 2 CPU/16 cores per node) in Holland
Computing Center at University of Nebraska-Lincoln for processing GPWAS with input phenotypes.

FDR cut offs of partial F-test were based on the results from 20 permutation analysis where the values for each trait were
independently shuffled among the 277 genotyped individuals and the entire GPWAS pipeline rerun for all genes. The code
implementing the above analyses in R and associated documentation has been published as the ”GPWAS” which is avaliable
from the following link: https://github.com/shanwai1234/GPWAS. Selected significant GPWAS genes with incorporated
phenotypes were listed in Supplementary Table S8.

GWAS Analysis
GLM GWAS analyses were conducted using the algorithm first defined by Price and coworkers31 and FarmCPU GWAS with
the algrothm defined by Liu and colleagues32. Both algorithms were run using the R-based software rMVP (A Memory-efficient,
Visualization-enhanced, and Parallel-accelerated Tool For Genome-Wide Association Study) (https://github.com/XiaoleiLiuBio/rMVP).
Both analysis methods were run using maxLoop = 10 and the variance component method method.bin = ”Fast-LMM”55. The
first three principal components were considered as additional covariates for population structure control. For comparison to
GPWAS results, each gene was assigned the p-value of the single most significant SNP among all the SNPs assigned to that
gene across 260 analyzed phenotypes in the GWAS model.

Nested Association Mapping Comparison
Published associations identified for 41 phenotypes scored across 5,000 maize recombinant inbred lines were retrieved from
Panzea (htt p : //cbsusrv04.tc.cornell.edu/users/panzea/download.aspx? f ilegroupid = 14)27. Following the thresholding
proposed in that paper a SNP and CNV (copy number variant) hits with a resample model inclusion probability ≥ 0.05 which
were either within the longest annotated transcript for each gene AGPv2.16 or within 15kb upstream or downstream from the an-
notated transcription start and stop sites were assigned to that gene. Gene models were converted from B73 RefGenV2 to B73 Re-
fGenV4 using a conversion list published on MaizeGDB (https://www.maizegdb.org/search/gene/download gene xrefs.php?relative=v4).

Gene Expression Analysis
Raw reads from the a published maize expression atlas generated for the inbred B73 were downloaded from the NCBI Sequence
Read Archive PRJNA17168439. Reads were trimmed using Trimmomatic-0.38 with default setting parameters56. Trimmed
reads were aligned to the maize B73 RefGenv4 reference genome using GSNAP version 2018-03-2557. Alignment results were
converted to sorted BAM file format using Samtools 1.658 and Fragments Per Kilobase of transcript per Million mapped reads
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(FPKM) where calculated for each gene in the AGPv4.39 maize gene models in each sample using Cufflinks v2.259. Only
annotated genes located on 10 maize pseudomolecules were used for downstream analyses and the visualization of FPKM
distribution.

Ka/Ks Calculations
For each gene listed in a public syntenic gene list,60, the coding sequence for the single longest transcript per locus was
downloaded from Ensembl Plants and aligned to the single longest transcript of genes annotated as syntenic orthologs in
Sorghum bicolor in v3.161 and Setaria italica v2.262 were retrieved from Phytozome v12.0 using a codon based alignment as
described previously43. The calculation of the ratio of the number of nonsynonymous substitutions per non-synonymous site
(Ka) to the number of synonymous substitutions per synonymous site (Ks) was automated using in-house constructed software
pipeline posted to github (https://github.com/shanwai1234/Grass-KaKs). Genes with synonymous substitution rate less than
0.05 were excluded from the analyses as the extremely small number of synonymous substitutions tended to produce quite
extreme Ka/Ks ratios and genes with multiple tandem duplicates were also excluded from Ka/Ks calculations. Calculated
Ka/Ks ratios of maize genes were provided in Supplementary Table S9.

Presence/Absence Variation (PAV) Analysis
PAV data was downloaded from a published data file42. Following the thresholding proposed in that paper, a gene was
considered to exhibit presence absence variance if at least one inbred line with coverage less than 0.2.

Gene Ontology Enrichment Analysis
All GO analyses used the maize-GAMER GO annotations for B73 RefGenV4 gene models44. Statistical tests for GO term
enrichment and purificiation were performed using the goatools software package63 with support for the Fisher Exact test
provided by the fisher exact function in SciPy. For determining median information content individual GO terms, each GO term
was assigned a score based on the total number of gene models this GO term was assigned to in the maize-GAMER dataset.
This analysis considered only gene models a GO term was specifically applied to in the dataset, but not gene models where the
assignment of the GO term may have been implied by the assignment of a child GO term.

Power and FDR evaluation of GPWAS and GWAS using simulated data
SNP calls for the entire set of 1,210 individuals included in Maize HapMap3 were retrieved from Panzea26, filtered, imputed,
and assigned to genes as described above resulting in 1,648,398 SNPs assigned to annotated gene body regions in B73
RefGenV4. 2,000 randomly selected genes associated with 30,547 SNP markers were employed for downstream simulations.
In each simulation, 100 genes (5%) were selected as causal genes. For each causal gene in each simulation, a causal SNP was
selected for simulating phenotypic effects. A total of 100 phenotypes were simulated in each permutation of the analysis, with
10 traits simulated with heritability of 0.7, 30 traits simulated with heritability of 0.5 and 60 traits simulated with heritability of
0.3. Effect sizes for each SNP for each phenotype in each permutation were drawn from a normal distribution centered on zero
using the additive model in GCTA (version 1.91.6)64.

The resulting simulated trait data and genuine genotype calls were analyzed using GLM GWAS, FarmCPU GWAS, and
GPWAS as described above with the exception of calculating population structure principal components using a sample (1% or
157,748 SNPs) of the total SNPs remaining after filtering, rather than only the subset of SNPs assigned to the 2,000 randomly
selected genes included in this analysis. For each analysis, the set of 2,000 genes was ranked from most to least statistically
significant based on the significance of the single most significantly associated SNP (for GLM and FarmCPU GWAS) or the
significance of the overall model fit relative to a population structure only model (for GPWAS). Power evaluation for GPWAS
was defined as the number of true positive genes to the total number of causal genes and FDR was defined as the number of
false positive genes to the total number of positive genes. Power and FDR were calculated in a step size of five genes from 5
total positive genes to 500 (i.e. {5,10,...,450,500}).

References
1. Sax, K. The association of size differences with seed-coat pattern and pigmentation in phaseolus vulgaris. Genetics 8, 552

(1923).

2. Sprague, G. The location of dominant favorable genes in maize by means of an inversion. Genetics 26, 143–149 (1941).

3. Klein, R. J. et al. Complement factor h polymorphism in age-related macular degeneration. Science 308, 385–389 (2005).

4. DeWan, A. et al. Htra1 promoter polymorphism in wet age-related macular degeneration. Science 314, 989–992 (2006).

5. Atwell, S. et al. Genome-wide association study of 107 phenotypes in arabidopsis thaliana inbred lines. Nature 465, 627
(2010).

8/17

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted March 18, 2019. ; https://doi.org/10.1101/534503doi: bioRxiv preprint 

https://doi.org/10.1101/534503


6. Denny, J. C. et al. Phewas: demonstrating the feasibility of a phenome-wide scan to discover gene–disease associations.
Bioinformatics 26, 1205–1210 (2010).

7. Pendergrass, S. et al. The use of phenome-wide association studies (phewas) for exploration of novel genotype-phenotype
relationships and pleiotropy discovery. Genet. epidemiology 35, 410–422 (2011).

8. Denny, J. C. et al. Systematic comparison of phenome-wide association study of electronic medical record data and
genome-wide association study data. Nat. biotechnology 31, 1102 (2013).

9. Shameer, K. et al. A genome-and phenome-wide association study to identify genetic variants influencing platelet count
and volume and their pleiotropic effects. Hum. genetics 133, 95–109 (2014).

10. Lu, Y. et al. Systems genetic validation of the snp-metabolite association in rice via metabolite-pathway-based phenome-
wide association scans. Front. plant science 6, 1027 (2015).

11. Korte, A. et al. A mixed-model approach for genome-wide association studies of correlated traits in structured populations.
Nat. genetics 44, 1066 (2012).

12. O’Reilly, P. F. et al. Multiphen: joint model of multiple phenotypes can increase discovery in gwas. PloS one 7, e34861
(2012).

13. Van der Sluis, S., Posthuma, D. & Dolan, C. V. Tates: efficient multivariate genotype-phenotype analysis for genome-wide
association studies. PLoS genetics 9, e1003235 (2013).

14. Stephens, M. A unified framework for association analysis with multiple related phenotypes. PloS one 8, e65245 (2013).

15. Zhou, X. & Stephens, M. Genome-wide efficient mixed-model analysis for association studies. Nat. genetics 44, 821
(2012).

16. Wang, Y. et al. Pleiotropy analysis of quantitative traits at gene level by multivariate functional linear models. Genet.
epidemiology 39, 259–275 (2015).

17. Turley, P. et al. Multi-trait analysis of genome-wide association summary statistics using mtag. Nat. genetics 50, 229
(2018).

18. Pendergrass, S. A. et al. Phenome-wide association study (phewas) for detection of pleiotropy within the population
architecture using genomics and epidemiology (page) network. PLoS genetics 9, e1003087 (2013).

19. Denny, J. C., Bastarache, L. & Roden, D. M. Phenome-wide association studies as a tool to advance precision medicine.
Annu. review genomics human genetics 17, 353–373 (2016).

20. Walter, A., Liebisch, F. & Hund, A. Plant phenotyping: from bean weighing to image analysis. Plant methods 11, 14
(2015).

21. Wen, W. et al. Metabolome-based genome-wide association study of maize kernel leads to novel biochemical insights. Nat.
communications 5, 3438 (2014).

22. Matsuda, F. et al. Metabolome-genome-wide association study dissects genetic architecture for generating natural variation
in rice secondary metabolism. The Plant J. 81, 13–23 (2015).

23. Diepenbrock, C. H. et al. Novel loci underlie natural variation in vitamin e levels in maize grain. The Plant Cell tpc–00475
(2017).

24. Kremling, K. A. et al. Dysregulation of expression correlates with rare-allele burden and fitness loss in maize. Nature 555,
520 (2018).

25. Flint-Garcia, S. A. et al. Maize association population: a high-resolution platform for quantitative trait locus dissection.
The Plant J. 44, 1054–1064 (2005).

26. Bukowski, R. et al. Construction of the third-generation zea mays haplotype map. GigaScience 7, gix134 (2017).

27. Wallace, J. G. et al. Association mapping across numerous traits reveals patterns of functional variation in maize. PLoS
genetics 10, e1004845 (2014).

28. Schnable, J. C. & Freeling, M. Genes identified by visible mutant phenotypes show increased bias toward one of two
subgenomes of maize. PloS one 6, e17855 (2011).

29. Zhao, W. et al. Panzea: a database and resource for molecular and functional diversity in the maize genome. Nucleic Acids
Res. 34, D752–D757 (2006).

30. Dahl, A. et al. A multiple-phenotype imputation method for genetic studies. Nat. genetics 47, 466 (2015).

9/17

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted March 18, 2019. ; https://doi.org/10.1101/534503doi: bioRxiv preprint 

https://doi.org/10.1101/534503


31. Price, A. L. et al. Principal components analysis corrects for stratification in genome-wide association studies. Nat.
genetics 38, 904 (2006).

32. Liu, X., Huang, M., Fan, B., Buckler, E. S. & Zhang, Z. Iterative usage of fixed and random effect models for powerful and
efficient genome-wide association studies. PLoS genetics 12, e1005767 (2016).

33. Tian, F. et al. Genome-wide association study of leaf architecture in the maize nested association mapping population. Nat.
genetics 43, 159 (2011).

34. Namjou, B. et al. Phenome-wide association study (phewas) in emr-linked pediatric cohorts. Front. genetics 5, 401 (2014).

35. McMullen, M. D. et al. Genetic properties of the maize nested association mapping population. Science 325, 737–740
(2009).

36. Bensen, R. J. et al. Cloning and characterization of the maize an1 gene. The Plant Cell 7, 75–84 (1995).

37. Brown, P. J. et al. Distinct genetic architectures for male and female inflorescence traits of maize. PLoS genetics 7,
e1002383 (2011).

38. Consortium, I. H. et al. A haplotype map of the human genome. Nature 437, 1299 (2005).

39. Stelpflug, S. C. et al. An expanded maize gene expression atlas based on rna sequencing and its use to explore root
development. The plant genome 9 (2016).

40. Walley, J. W. et al. Integration of omic networks in a developmental atlas of maize. Science 353, 814–818 (2016).

41. Schnable, J. C., Springer, N. M. & Freeling, M. Differentiation of the maize subgenomes by genome dominance and both
ancient and ongoing gene loss. Proc. Natl. Acad. Sci. 108, 4069–4074 (2011).

42. Brohammer, A. B., Kono, T. J., Springer, N. M., McGaugh, S. E. & Hirsch, C. N. The limited role of differential
fractionation in genome content variation and function in maize (zea mays l.) inbred lines. The Plant J. 93, 131–141
(2018).

43. Zhang, Y. et al. Differentially regulated orthologs in sorghum and the subgenomes of maize. The Plant Cell tpc–00354
(2017).

44. Wimalanathan, K., Friedberg, I., Andorf, C. M. & Lawrence-Dill, C. J. Maize go annotation—methods, evaluation, and
review (maize-gamer). Plant Direct 2, e00052 (2018).

45. Studer, A., Zhao, Q., Ross-Ibarra, J. & Doebley, J. Identification of a functional transposon insertion in the maize
domestication gene tb1. Nat. genetics 43, 1160 (2011).

46. Castelletti, S., Tuberosa, R., Pindo, M. & Salvi, S. A mite transposon insertion is associated with differential methylation
at the maize flowering time qtl vgt1. G3: Genes, Genomes, Genet. 4, 805–812 (2014).

47. Rodgers-Melnick, E., Vera, D. L., Bass, H. W. & Buckler, E. S. Open chromatin reveals the functional maize genome.
Proc. Natl. Acad. Sci. 113, E3177–E3184 (2016).
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Supplementary Information
Genetic marker data was obtained from resequencing data of 277 inbreds from the Buckler-Goodman maize association panel
which was published as part of the maize HapMap3 project25, 26. Maize HapMap3 contains data for a total of 81,687,392 SNPs,
however, after removing SNPs with high missing data, those which were not polymorphic among the 277 specific individuals
employed here, and a number of other quality filtering parameters, a total of 12,411,408 SNPs remained, of which 1,904,057
SNPs were assigned to 32,084 annotated gene models in the B73 RefGenV4 genome release (See Methods). Filtering to
eliminate redundancy between SNPs in high LD with each other assigned to the same gene, it further reduced this number to
557,968 unique SNPs.

A phenotypic dataset consisting of 57 specific traits scored for the Buckler-Goodman maize association panel across one to
sixteen distinct environments for a total of 285 unique phenotypic datasets was obtained from Panzea29. Filtering to remove
phenotypic datasets with extremely high missing data rates left a total of 260 trait datasets with a median missing data rate of
18%. Of the total 72,020 potential trait datapoints (277 inbreds × 260 traits) 23.6% or 16,963 trait datapoints were unobserved.

Similar GO analysis results were obtained for FarmCPU even after controlling for total number of genes identified (see
Supplementary Information). Analysis using the 706 genes uniquely detected genes by FarmCPU GWAS found only a single
significantly enriched GO term GO:0009987 ”cellular process”, while, even when the number of uniquely GPWAS identified
genes was constrained to be identical to the number of uniquely identified FarmCPU GWAS genes, 67 GO terms still showed
significant enrichment (58 terms) or purification (9 terms) (Figure 3b, Supplementary Table S6).
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Supplementary Table 1: 260 phenotypes employed in this study with corresponding missing data rate, imputation accuracy
and classified phenotype group.

Supplementary Table 2: Expressed genes and expression breath of different gene populations.
Supplementary Table 3: Gene length and SNP density in each gene population.
Supplementary Table 4: Correlation between significant level and SNP number per gene of genes generated from permuted

and real data in GPWAS and GLM GWAS.
Supplementary Table 5: Conservation features for unique gene sets between FarmCPU GWAS and GPWAS.
Supplementary Table 6: GO terms enriched and purified in each gene population.
Supplementary Table 7: Statistics of GO terms assigned to each gene population.
Supplementary Table 8: Selected significant genes with incorporated phenotypes in GPWAS model.
Supplementary Table 9: Ka/Ks value per gene in maize version 4.
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Figure S1. Description of GPWAS algorithm implementation (a) Example of trait and genotype matrices employed for
GPWAS. (b) Flow chart schematization of the GPWAS algorithm.
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Figure S2. Permutation testing based estimation of false discovery rates for GLM GWAS, FarmCPU, and GPWAS. For each
panel, the dark curve shows the distribution of per gene p-values obtained from twenty permutations of genotype and trait data
(See Methods), while the light curve indicates the distribution of per gene p-values obtained from the analysis of the
non-permuted dataset. Red lines indicate the p-value analyses employed in these analysis, corresponding to p=8.96e-8 for
GLM and FarmCPU, calculated based on 557,968 SNPs and p=1.00e-23 calculated based on on a target FDR < 0.001 for
GPWAS. Genes on the right side of red line were pulled for analyzes. An equivalent FDR cut off for GLM GWAS would
require an uncorrected p-value cut off of approximate 1e-14, and 31 genes would remain statistically significantly associated
with traits at this threshold. For FarmCPU GWAS, the minimum FDR achieved was FDR < 0.029 at a p-value threshold of
1e-15, with 38 genes remaining statistically significantly associated with traits at this threshold. Left Panels (a-c) show the
entirely of the distributions, while right panels (d-f) display a zoomed in view of the regions of the curve where the p-value
threshold employed.
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Figure S3. The power of GLM GWAS model, FarmCPU GWAS model and GPWAS model on detecting maize Anther ear1
((an1)) gene (Zm00001d032961). Dashed line is p value after Bonferroni correction with 557,968 (SNPs) hypothesized testings.
Solid lines in GLM GWAS and FarmCPU are stricter Bonferroni corrected p-value with their original number of hypothesis
multiplied by the number of phenotypes (260) tested. Scales on ytick labels are -log10 p values. Sel. and Uns. standed for
phenotypes selected and unselected by the GPWAS model. Phenotypes incorporated in the GPWAS model are Germination
count (Summer 2006, Johnston, NC), Days to Tassel (Summer 2007, Cayuga, NY; Summer 2007, Johnston, NC), GDDDays to
silk (Winter 2006, Miami-Dade, FL), Tassel Length (Summer 2007, Cayuga, NY), Spikelets Primary Branch (Summer 2006,
Champaign, IL), Secondary Branch Number (Summer 2006, Boone, MO), Plant Height (Summer 2006, Cayuga, NY), NIR
measured protein (Summer 2006, Johnston, NC), NIR measured oil (Summer 2006, Johnston, NC; Winter 2006, Miami-Dade,
FL), Cob weight (Summer 2007, Johnston, NC), Ear diameter (Summer 2007, Johnston, NC) and Total kernel volume (Summer
2006, Cayuga, NY). Among them, flowering time, plant height, and tassel branch number are all consistent with the known
mutant phenotype36. Germination count (Summer 2006, Johnston, NC) was also identified as part of the model for the an1
gene in the GPWAS analysis. While there are no published reports of altered germination in the an1 mutant, such a phenotype
would be consistent with the role of an1 in gibberellic acid metabolism65. Every five phenotypes were added a xtick label.
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Figure S4. Numbers of SNPs per gene in uniquely identified genes by GPWAS, uniquely identified genes by GLM GWAS,
and total (random) genes with identified SNPs. (p<2.2e-16 between uniquely identified genes by GLM GWAS and between
uniquely identified genes by GPWAS, Mann–Whitney U test).
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Figure S5. Power and FDR evaluation of GPWAS model with GLM and FarmCPU GWAS models on simulated phenotypes
from variable heritabilities. Ten random sets of 100 QTNs were used to simulate 100 replicated phenotypes with 10% h2 as 0.7,
30% h2 as 0.5 and 60% h2 as 0.3. For one simulated phenotype set, positive genes were defined as top m ranked significant
genes of 2,000 genes. Ratios of power to FDR in GWAS models were calculated as the mean value of total simulated
phenotypes under different heritabilities (h2) in each rank, while these ratios were calculated using all 100 simulated
phenotypes in GPWAS model in each rank.
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