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Abstract 23 

Large-scale surveillance of mosquito populations is crucial to assess the intensity of vector-borne 24 

disease transmission and the impact of control interventions. However, there is a lack of accurate, cost-25 

effective and high-throughput tools for mass-screening of vectors. This study demonstrates proof-of-26 

concept that near-infrared spectroscopy (NIRS) is capable of rapidly identifying laboratory strains of 27 

human malaria infection in African mosquito vectors. By using partial least square regression models 28 

based on malaria-infected and uninfected Anopheles gambiae mosquitoes, we showed that NIRS can 29 

detect oocyst- and sporozoite-stage Plasmodium falciparum infections with 88% and 95% accuracy, 30 

respectively. Accurate, low-cost, reagent-free screening of mosquito populations enabled by NIRS 31 

could revolutionize surveillance and elimination strategies for the most important human malaria 32 

parasite in its primary African vector species. Further research is needed to evaluate how the method 33 

performs in the field following adjustments in the training datasets to include data from wild-caught 34 

infected and uninfected mosquitoes. 35 

  36 
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Introduction 37 

Malaria is holding back development in endemic countries and remains one of the leading causes of 38 

death in children under 5 years-old in sub-Saharan Africa [1-3]. During the past decade, the large-scale 39 

roll-out of long-lasting insecticide treated nets and indoor residual spraying across Africa has resulted in 40 

a substantial reduction in malaria cases [4].  The WHO’s Global Technical Strategy for Malaria 2016-41 

2030 seeks to reduce malaria incidence and related mortality by at least 90% and to eliminate the 42 

disease in a minimum of 35 countries [1]. These bold goals will require new interventions that can 43 

address residual malaria transmission as well as new tools to better monitor their impact on vector-44 

borne disease transmission. Mosquito surveillance is a cornerstone of the control of malaria and other 45 

vector-borne diseases [5]. However, presently, there is no high-throughput, cost-efficient method to 46 

identify Plasmodium infection and infectiousness in mosquitoes. Molecular methods such as ELISA and 47 

PCR are used to determine parasite infection, but these are expensive and laborious [6-8], challenging 48 

resource-poor countries with few funds and limited access to reagents and equipment, and thus are 49 

unsuitable for large-scale surveillance. A further complication is that typically only 1-2% of mosquitoes 50 

may be infected with transmission stage parasites (sporozoites), meaning that very large sample sizes 51 

must be tested to accurately quantify site and time-specific estimates of mosquito infection rates as will 52 

be required to assess progress towards malaria elimination [9]. 53 

 54 

Recent advances indicate several mosquito traits can be accurately identified through analysis of their 55 

tissues with near infrared spectroscopy (NIRS) [10-13] . Here, visible and NIR light (wavelength 400-56 

2500 nanometers) is passed through the whole or part of a mosquito specimen and an absorbance 57 

spectrum is collected instantly without destroying the sample. Changes in spectral peaks at different 58 

wavelengths represent how intensely different molecules absorb light, and thus NIR spectra of 59 

mosquitoes are determined by the biochemical composition of their tissues, which are known to differ 60 

according to age [14, 15], species [16, 17], microbiome [18], physiological stage  [19, 20], and by 61 

pathogen infection [20, 21]. Differences in NIR spectra have been used to distinguish young (e.g. <7 62 

days old) from older (7+ days old) malaria vectors, to identify morphologically identical Anopheles 63 

sibling species, and to detect the presence of the endosymbiont Wolbachia in Aedes aegypti 64 

mosquitoes [10-12]. Most recently, NIRS has been used to detect rodent malaria infections in 65 

laboratory-reared Anopheles stephensi mosquitoes [22] and Zika virus in Ae. aegypti mosquitoes [23]. 66 
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The use of NIRS has not previously been investigated on human malaria infected mosquitoes. The 67 

presence of the parasite-specific proteins and other biochemical changes induced by malaria infection 68 

in the vector may permit these to be distinguished from uninfected mosquitoes using spectral tools such 69 

as NIRS [24, 25] 70 

 71 

Parasite infection in the mosquito can be found in two main forms defined by their parasite development 72 

stages: midgut oocyst infections occurring around 2-8 days after feeding on infectious blood; and 73 

sporozoite infections occurring 9-14 days after infection, characterized by the release of sporozoites 74 

from oocysts into the mosquito’s haemocoel and salivary glands, enabling the mosquito to infect the 75 

next human host.  Given the different nature of the two infection stages the NIRS profile of an oocyst-76 

infected mosquito may not be the same as a sporozoite-infected one. For this reason, we aimed to test 77 

whether NIRS could successfully identify oocyst and sporozoite infections in Anopheles vectors, and 78 

estimate if the method’s prediction accuracy is dependent on the intensity of infection in the mosquito. 79 

 80 

In this paper, we present the successful application of NIRS to differentiate Plasmodium falciparum-81 

infected mosquitoes from uninfected mosquitoes, providing the first evidence of detection of human 82 

malaria infections in the A. gambiae mosquito vector by this cost-effective, fast and reagent-free 83 

method. The development of a tool such as NIRS to measure malaria infection rates in mosquito 84 

populations would be of great service to malaria pre-elimination efforts as it would allow the processing 85 

of large numbers of mosquitoes increasing the accuracy of the estimates of human exposure to malaria 86 

infection across different regions, and advancing malaria vector surveillance in Africa.  87 

 88 

Results 89 

Experimental infections 90 

Approximately 750 female A. gambiae (Keele line) [26] of different ages (3-6 days old) were offered a 91 

blood meal containing NF54 gametocyte cultures in standard membrane-feeding assays (SMFAs) in 92 

three independent replicate experiments. Control (uninfected) mosquitoes were generated by feeding 93 

approximately 450 mosquitoes the same blood after gametogenesis was completed. Both groups were 94 

represented with mosquitoes of similar ages, between 3 and 6 days old (Table 1 and 2 of 95 

supplementary information). Mosquitoes were maintained for 7 and 14 days under insectary conditions 96 
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to allow oocyst (D7) and sporozoite (D14) development, on each day of sampling live mosquitoes were 97 

removed, killed and immediately scanned using NIRS.   98 

 99 

Mosquitoes fed on infectious blood were analysed by quantitative polymerase chain reaction (qPCR) for 100 

intensity of infection. Additionally, 60 mosquitoes from the control groups (30 from feed 2 and 3 101 

respectively) were also analysed by qPCR to confirm the absence of malaria infection. No mosquitoes 102 

from these control groups tested positive for infection.  103 

 104 

The minimum number of parasite genomes detectable per mosquito was 10 parasite genomes/ per μl of 105 

DNA extract, calculated from standard curves generated for each qPCR run using a 5-point 10-fold 106 

serial dilution of DNA extracted from asexual NF54 cultures synchronized to ring stage. This gives a 107 

threshold detection of ~500 parasite genomes per mosquito for the qPCR assay. 108 

 109 

Near infrared spectra selection  110 

A total of 634 A. gambiae (Keele strain) were scanned using NIRS (Table 1). DNA was extracted and 111 

analyzed for P. falciparum infection by qPCR as described above. Samples with inconclusive qPCR 112 

results or poor spectra quality were excluded (n=72).  Poor quality or outlier spectra were visually 113 

identified by comparing them to all other spectra, and spectra that were prominently flat or prominently 114 

noisy were excluded, as described elsewhere [10]. Thus, NIR absorbance spectra and respective 115 

infection status data from a final total of 562 mosquitoes were used to estimate the accuracy of NIRS 116 

for prediction of malaria infection (Figure 1). 117 

 118 

Model prediction accuracy  119 

The relationship between spectra and infection was analyzed using partial least square regression 120 

(PLS). Training datasets were used to perform multiple leave-one-out cross validations (LOOCV) and 121 

develop two calibrations, one for prediction of oocyst infection and another for prediction of sporozoite 122 

infection. The calibrations were then validated using test datasets composed of samples with unknown 123 

infection status that had not been included in the calibration’s training dataset. The number of factors 124 

used in the calibration was 12, determined from the prediction residual error sum of squares (PRESS) 125 
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and regression coefficient plots (see supplementary information). In the PLS model, a value of “1” was 126 

assigned to all the actual uninfected samples whereas a value of “2” was assigned to the actual 127 

infected mosquitoes (infection as defined by the qPCR results). The PLS calibration derived 128 

components used to transform the original spectra of each predicted independent sample into a PLS 129 

score; a score value of 1.5 was considered as the threshold for correct or incorrect classification, 130 

meaning any mosquito with PLS score below 1.5 was predicted as uninfected and equal or greater than 131 

1.5 was predicted as infected. The PLS model showed that NIR spectra from both oocyst and 132 

sporozoite infected mosquitoes were distinct from their counterpart uninfected mosquitoes with 91.2% 133 

(86.7% - 94.5%) and 92.8% (87.1% - 96.5%) self-prediction accuracy respectively (Figure 2a and 3a). 134 

When tested on samples with unknown infections status that had not been included in the training 135 

dataset, the calibration maintained high sensitivity and specificity at both detecting oocyst and 136 

sporozoite infection, with 87.7% (95%CI: 79.9% -93.3%; Cohen’s kappa=0.75)) and 94.5% (95%CI: 137 

87.6% - 98.2%; Cohen’s kappa=0.86) prediction accuracy respectively (Figures 2b and 3b). 138 

Infection load and prediction accuracy 139 

The parasite load in a mosquito is of epidemiological importance as there is evidence of a continual 140 

increase in transmission potential with increasing sporozoites numbers [27]. To test if the NIR prediction 141 

output scores were affected by parasite load qPCR was done to estimate the relative number of 142 

parasite genomes in each infected mosquito (Table 2) and used to evaluate the calibration model’s 143 

accuracy. The oocyst-infected mosquitoes in the test data set had a range of infection loads (Median: 144 

1925, IQR: [295 to 4883]). Two oocyst-infected mosquitoes were misclassified as uninfected, both of 145 

which had relatively low infection loads (357 and 389 parasite genomes/l of DNA extract) (Figure 4a). 146 

Generalised linear mixed-effects models were used to investigate the effect of infection load and 147 

infection presence on the PLS scores (response variable) of the predicted samples. The age of the 148 

mosquitoes on the day of the infectious feed was included as a random effect. It was observed that the 149 

presence of oocyst infection influenced the NIRS prediction score (Coefficient: 0.67; 95%CI: 0.41 to 150 

0.93; p<0.001) but the infection load did not (Coefficient: -0.000003; 95%CI: -0.0000074 to 0.0000015; 151 

p-value: 0.21). The sporozoite-infected mosquitoes in the test dataset had a range of infection loads 152 

(Median: 8841, IQR: [2516 to 20112]). Five sporozoite-infected mosquitoes were misclassified as 153 

uninfected:  two presented with the lowest infection loads of the test dataset (33 and 38 parasite 154 

genomes/l of DNA extract); the other three had relatively high infection loads (1156, 6660 and 12591 155 
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parasite genomes/l of DNA extract) (Figure 4b). The presence of sporozoite significantly affected the 156 

PLS scores of the predicted samples (Coefficient: 0.75; 95%CI: 0.51 to 1.00; p-value: <0.001) as did 157 

the infection load (Coefficient: 0.0000019; 95%CI: 0.0000013 to 0.0000025; p-value<0.001).  158 

 159 

DISCUSSION 160 

This is the first study to show that NIRS can be used to accurately detect human malaria in A. gambiae 161 

mosquitoes. NIRS predicted oocyst infection with 87.7% accuracy (79.9% - 93.3%) and sporozoite 162 

infection with 94.5% accuracy (87.6% – 98.2%). The NIRS predictive accuracy for sporozoite infection 163 

of >90% in this study concurs with previous work done using the rodent malaria in Anopheles 164 

stephensi, which found that NIRS could detect the presence of sporozoites in infected mosquitoes with 165 

77% accuracy [22]. Unlike the previous study, the present calibration model was also capable of 166 

identifying oocyst-infected mosquitoes. The PLS calibration of the present study was based on a 167 

narrower interval of the electromagnetic spectrum, 500 to 2400 nm, compared to 350 to 2500 nm. This 168 

narrower range excludes noise present in the extremities of the spectra due to light source and sensor 169 

limitations and therewith improved the prediction accuracy of the calibration model. Furthermore, the 170 

previous study used spectra from mosquitoes that had been saturated with chloroform which was used 171 

to knock them down. This contamination led to clear chloroform peaks in the NIR spectra which may 172 

have added to the noise and reduced prediction accuracy of the calibration. Differences between the 173 

vector species and parasite species may also have played a role in the small discrepancy of predictive 174 

accuracy between studies. In addition, the experimental approach used in the present study, also 175 

permitted to account for the potentially confounding effects of the infected bloodmeal, given that control 176 

group had been fed the same blood but with inactivated gametocytes. 177 

 178 

Near infrared light is absorbed differently by diverse biochemical compounds which, in the mosquito, 179 

may consistently vary with between species, age and in this case infection status. It is hypothesized 180 

that biochemical changes occurring in the mosquito, as a consequence of P. falciparum infection, made 181 

it possible to distinguish between infected and uninfected mosquitoes using NIRS. Consistent 182 

differences between the NIR absorbance spectra of infected and uninfected mosquitoes may be related 183 

to the presence of parasite-specific molecules in the infected mosquitoes [28-30]. Also, it is possible 184 

that tissue changes may occur in the mosquitos due to their immune response to the parasite which 185 
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could have an effect on the biochemical composition of the mosquito [28]. Additionally, it is known that 186 

Plasmodium infection alters metabolic pathways in mosquitoes and leads to higher energy resource 187 

storage [31] which may lead to differences in NIRS spectra.  More research is needed to better 188 

understand the underlying biochemical features that enable NIRS to distinguish between Plasmodium-189 

infected and uninfected mosquitoes.  190 

 191 

The prediction accuracy of the NIRS calibration to detect sporozoite infection was influenced not only 192 

by the presence of Plasmodium falciparum sporozoites but also the parasite load (number of parasite 193 

genomes). This was not the case of the calibration to detect oocysts, which was only significantly 194 

influenced by the presence of infection in the midgut. It is possible that slight differences in DNA 195 

extraction efficiency between samples may have affected the estimate number of parasite genomes in 196 

each insect sample and therefore it is imprudent to make conclusions on how strongly infection load 197 

may be influencing the PLS output scores. The performance accuracy of NIRS was similar to qPCR 198 

(sporozoite detection: Cohens kappa=0.86; oocyst detection: Cohens’s kappa=0.75). The strong inter-199 

rate agreement between the two methods, suggests that NIRS may have similar sensitivity and 200 

specificity as qPCR at detecting malaria sporozoites in the mosquito host. ELISA is less specific than 201 

PCR [32], however due to its low-cost and ease, it is routinely the assay chosen by surveillance 202 

programs to measure the proportion of mosquitoes that carry sporozoites and the entomological 203 

inoculation rate (EIR). It is possible that EIR estimates could be improved by using a more accurate 204 

diagnostic test.  However, a direct comparison of NIRS and ELISA was not the objective of this study.  205 

Presently NIRS still requires further optimization and validation in the field before being considered as a 206 

possible replacement for ELISA in surveillance programs. While the results presented in this paper are 207 

promising, NIRS calibrations generated using lab-reared mosquitoes do not necessarily represent the 208 

diversity of vectors in the field, providing no guarantee of the robustness of the method when tested on 209 

wild-caught mosquitoes. Calibrations must be based on training datasets that capture the diversity of 210 

field-mosquitoes reducing confounders that may affect the classification accuracy, including, different 211 

mosquito species, age, infection, size, insecticide resistance status, microbiome, and origin. NIRS is a 212 

promising technology that may provide an accurate and high-throughput solution to monitoring malaria 213 

transmission in the vector as progression towards elimination is made. Such a tool may revolutionize 214 

how entomological data is used by control and research programmes given that the same test can 215 
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report various entomological parameters, including age, species and infection status, therewith 216 

compiling vast information of epidemiological importance to understanding how vector populations and 217 

malaria transmission are changing. Future research efforts and resources need to be directed at 218 

evaluating the best way of generating and optimizing calibrations based on wild-caught mosquitoes for 219 

each entomological parameter, and validating these using specimens from different ecological and 220 

geographical regions. 221 

 222 

.  223 

 224 

MATERIALS AND METHODS 225 

Mosquitoes 226 

Mosquitoes from a colony of A. gambiae (Keele line) [26] were reared under standard insectary 227 

conditions (26±1°C, 80% humidity, 12 hr light:12 hr dark cycle) at the University of Glasgow, Scotland, 228 

UK. Larvae were fed on Tetramin tropical flakes and Tetra Pond Pellets (Tetra Ltd, UK). Pupae were 229 

transferred into cages for adult emergence. Adult mosquitoes were fed ad libitum on 5% glucose 230 

solution containing 0.05% (w/v) 4-aminobenzoic acid (PABA). SMFA was done with 3-6 days old 231 

mosquitoes. 232 

 233 

Parasite culture and standard membrane feeding assays (SMFA) 234 

P. falciparum (NF54) parasites were cultured using standard methodology to produce infectious 235 

gametocytes [33], using human blood and serum obtained from the Glasgow and West of Scotland 236 

Blood Transfusion Service. Standard membrane feeding assays (SMFA) were conducted on three 237 

different occasions using gametocytes produced in vitro:  the first SMFA was done with a high 238 

gametocyte density (approx. 1% gametocytes) and the two-subsequent feeds with a lower density (~ 239 

0.1% gametocytes) to produce more uninfected mosquitoes. For each SMFA, 300 female A. gambiae 240 

s.s (Keele line) mosquitoes 3-6 days post emergence were distributed in pairs into 6 cups of 50 241 

mosquitoes each. In the first SMFA, mosquitoes were 3,4 and 5 days old, in the second SMFA they 242 

were 4,5 and 6 days old and in the third SMFA mosquitoes were 3 (2 pairs of cups) and 4 days old. 243 

One cup of each pair was offered blood with infectious gametocytes and allowed to feed for 20 minutes. 244 

The temperature of the membrane feeders was then reduced to below 30oC for 30 minutes to allow all 245 
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mature gametocytes to complete gametogenesis [34]. The remaining cups of mosquitoes were then 246 

allowed to feed on the same blood, to produce control mosquitoes with zero infection rates, and thus 247 

obtain a comparable control sample differing only in the complete absence of parasite infection.   248 

 249 

Near infrared spectra collection and data analysis 250 

After feeding, the blood-fed mosquitoes in each pot were maintained for 14 days under insectary 251 

conditions and examined for oocyst and sporozoite development on day 7 and 14 days post infection 252 

respectively. Mosquitoes were killed using chloroform vapour before collecting near infrared 253 

absorbance spectra from each individual mosquito without any further processing, using  a Labspec 4i 254 

NIR spectrometer with an internal 18.6 W light source (ASD Inc, Longmont, CO) and ASD software RS3 255 

per established protocols [10], but using a 3.2 mm-diameter bifurcated fibre-optic probe which 256 

contained a single 600 micron collection fibre surrounded by six 600 micron illumination fibres. The 257 

probe was placed 2.4 mm from a spectralon plate onto which the mosquitoes were placed for scanning.  258 

Spectra between 500–2400 nm were analysed through leave-one-out cross validations (LOOCV) using 259 

partial least square (PLS) regression in GRAMS Plus/IQ software (Thermo Galactic, Salem, NH).  After 260 

scanning, each mosquito carcass was stored individually at -80 °C in ATL lysis buffer (QIAGEN) until 261 

DNA extraction, to perform qPCR to determine the infection status of the mosquito. 262 

 263 

DNA extraction and quantitative real-time polymerase chain reaction (qPCR) 264 

DNA was extracted using Qiagen DNeasy Blood & Tissue® DNA extraction kits from mosquito 265 

abdomens (for mosquitoes analyzed 7 days post infectious feed) and whole mosquitoes (for 266 

mosquitoes killed 14 days post infectious feed) and eluted in 50 µl of water. A 20 µl aliquot of the 50 µl 267 

of extracted DNA for each mosquito was transferred to individual wells of DNAstable® 96 well plates 268 

(Sigma-Aldrich) and allowed to air dry at room temperature. The plates were shipped to KEMRI 269 

Wellcome Trust (Killifi, Kenya) for qPCR analysis. Samples were reconstituted in 20 µl of DNAse-free 270 

water and P. falciparum genome numbers present were quantified by qPCR. Quantification reactions 271 

were performed in 15 μL volumes, containing 1.2 μl of 10 mM forward and reverse primers (377F: 5' 272 

ACTCCAGAAGAAGAAGAGCAAGC-3'; 377R: 5'-TTCATCAGTAAAAAAAGAATCGTCATC- 3'; 7.5 μL 273 

of SYBR® Green PCR Master Mix, 1.1 μL of DNAse-free water and 4 μL of sample DNA, using an 274 

Applied Biosystems 7500 Real-Time PCR System. The cycling profile comprised an initial denaturation 275 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted February 1, 2019. ; https://doi.org/10.1101/533802doi: bioRxiv preprint 

https://doi.org/10.1101/533802
http://creativecommons.org/licenses/by-nc-nd/4.0/


11 

 

of 95 °C for 900 s (holding stage) and then 40 amplification cycles of denaturation 95°C for 30s 276 

(seconds), annealing 55°C for 20s and extension 68°C for 30s. At the end of amplification, melt curves 277 

were produced with 15s denaturation at 95°C, followed by 60s at 60°C, 30 s at 95°C and 15 s at 60°C. 278 

Parasite load was estimated for each sample by comparison with the standard curve drawn from the 279 

DNA standards using Applied Biosystems 7500 software v2.0.6. Samples which amplified after 38 280 

cycles, or which showed a shift in melt curve or two melt curve peaks were excluded. 281 

 282 

DNA extracted from uninfected mosquitoes (abdomens and cephalothorax) were used as negative 283 

controls, in addition to negative controls with no DNA. Standard curves were generated for each qPCR 284 

run using a 5-point 10-fold serial dilution of DNA extracted from asexual NF54 cultures synchronized to 285 

ring stage, starting with 100,000 parasites/l (100,000 parasites; 10,000 parasites; 1,000 parasites; 100 286 

parasites and 10 parasites), run in duplicate.  287 

 288 

Analysis using PLS leave-one-out cross-validations (LOOCV) 289 

The P. falciparum detection model was trained and tested according to previously published 290 

methods[10] using partial least square(PLS)  regression to develop a calibration based on a training 291 

data set, which was then used to predict the infection status of samples contained in a test dataset and 292 

therewith validate the prediction accuracy of the calibration. 293 

 294 

Leave-one-out cross validation (LOOCV) was used to determine if NIR spectra of uninfected 295 

mosquitoes were distinct from P. falciparum-infected mosquitoes, and to give information on the 296 

prediction accuracy of the model to distinguish between infected and uninfected mosquitoes. LOOCCV 297 

is a k-fold cross validation, with k equal to n, the number of spectra in a training dataset. That means 298 

that n separate times, the function approximator is trained on all the spectra except for one spectrum 299 

and a prediction is made for that spectrum. Multiple LOOCV based on the training dataset were used to 300 

develop a calibration file which was then used to test the predictive ability of the model on a spectra 301 

collected from a test dataset (Figure 1). 302 

The results from the qPCR were used to identify which individual mosquitoes, that had been fed an 303 

infectious blood meal, had confirmed oocyst and sporozoite infections. This information was then 304 

specified to each spectrum and these were randomly assigned to either the training dataset or the test 305 
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dataset whilst ensuring the same proportion of different mosquito ages was found in the training and 306 

test datasets. All uninfected mosquitoes were from the group that had been fed blood without viable 307 

gametocytes. A total of 69 sporozoite-infected and 69 uninfected mosquitoes that had been kept for 14 308 

days post SMFA were used to perform multiple LOOCV and generate a calibration file. The same was 309 

done using spectra from 121 oocyst-infected mosquitoes and 110 uninfected mosquitoes kept for 7 310 

days post SMFA.  311 

Two separate LOOCV were run to investigate the prediction accuracy of oocyst-infected vs. uninfected, 312 

and sporozoite-infected and uninfected mosquitoes respectively. The models were run on Grams IQ 313 

software (Thermo Galactic, Salem, NH) and a total of 12 latent factors were selected by visualizing the 314 

prediction residual error sum of squares (PRESS) curve, and choosing the minimum number of factors 315 

needed to reduce the prediction error of the model without overfitting it.  Actual vs Predicted plots were 316 

drawn by plotting the actual constituent values (coded as 1= uninfected and 2= infected) on the x axis, 317 

and model predicted values on the y axis. Prediction values were generated according to previously 318 

published methods [10], values below 1.5 were considered to be predicted as uninfected and values 319 

equal to or above 1.5 predicted as infected 320 

The mosquito spectra that had not been included in the training dataset used for developing the 321 

calibration were randomly assigned to the test dataset to validate the performance accuracy of the 322 

model serving as an independent set of samples. The calibrations generated for detecting P. falciparum 323 

sporozoite and oocyst infection were validated using 69 sporozoite-infected and 22 uninfected, and, 53 324 

oocyst-infected and 56 uninfected, respectively (Figure 1). This was done by generating a calibration 325 

with 12 latent factors based on the training dataset which was then loaded into IQPredict software and 326 

used to obtain PLS scores of the independent samples based on the predicted probability of infection, 327 

with 1= predicted as uninfected, 2=predicted as infected and cut-off value of 1.5.  328 

 329 

Analysis of prediction accuracy 330 

Sensitivity was calculated to estimate of the model’s ability to detect the presence of infection and 331 

specificity as the model’s ability to detect the absence of infection. Accuracy was calculated as the 332 
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overall prediction ability of the model (Table 3). Sensitivity, specificity, accuracy and respective exact 333 

Clopper-Pearson confidence intervals were calculated using MedCalc for Windows, version 18.0 334 

(MedCalc Software, Ostend, Belgium). Cohen’s kappa was calculated in STATA/IC Version 13.as a 335 

measure of inter-rate agreement between qPCR (reference test) and NIRS. The PLS scores of the 336 

predicted independent samples were analyzed using generalized linear mixed-effects model in 337 

STATA/IC Version 13.1. The response variable investigated was the PLS score generated from the 338 

PLS calibration models. The effects of infection presence and infection intensity (number of parasite 339 

genomes) on the PLS prediction value were investigated. Given that the age of a mosquito may affect 340 

NIRS spectra and therewith the PLS score, mosquito age was included as a random effect in the 341 

model. Regression coefficients for each factor, confidence intervals and p-values were reported. Model 342 

selection was done based on the Akaike information criterion (i.e. the lower the AIC value, the better 343 

the model).  344 

 345 

DATA AVAILABILITY 346 

All the data necessary to interpret and replicate the finding on this paper have been made publicly 347 

available on the data repository Harvard dataverse (https://doi.org/10.7910/DVN/YD34OX). This 348 

includes details on the mean number of parasite genomes of each individual sample; NIR spectra of all 349 

the specimens (spc files) with specification to whether they had been included in the training dataset or 350 

test dataset for occyst or sporozoite calibration; calibration file (cal file) for oocyst and sporozoite 351 

prediction; GRAMS IQ training files (tdfx file) for oocyst and sporozoite prediction; as well as the 352 

prediction outputs from IQ Predict for each sample in the test datasets (xls file). 353 

ACKNOWLEDGEMENTS 354 

The authors acknowledge the Swiss National Foundation of Science for the funding provided to MFM 355 

through the Marie-Heim Voegtlin fellowship scheme (PMPDP3-164444) and AXA RF fellowship (14-356 

AXA-PDOC-130) and an EMBO LT fellowship (43-2014) for funding to FB. The authors also wish to 357 

thank the Elizabeth Peat and Dorothy Armstrong for the production of mosquitoes at the University of 358 

Glasgow and Laura Ciuffreda (supported by EU-FP7 MCSA-ITN Lapaso (607350)) for the ring stage 359 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted February 1, 2019. ; https://doi.org/10.1101/533802doi: bioRxiv preprint 

https://doi.org/10.7910/DVN/YD34OX
https://doi.org/10.1101/533802
http://creativecommons.org/licenses/by-nc-nd/4.0/


14 

 

synchronized parasite culture. The authors also thank the Initiative to Develop African Leaders Program 360 

(IDeAL) for funding Michelle Muthui and Martin Wagah. 361 

 362 

AUTHORS CONTRIBUTIONS 363 

MFM designed the experiment, cultured the parasites, assisted with the SMFAs, scanned the 364 

mosquitoes, analysed the data and drafted the manuscript. MK provided the DNA standards, provided 365 

training and commented on the final draft of the manuscript. MM optimized the qPCR method and 366 

trained MW. MW performed qPCRs. HF provided mentorship to MFM, was involved in the experimental 367 

design and commented on the final manuscript draft. FD provided mentorship to MFM, contributed to 368 

the experimental design and data analysis. FB and LRC contributed to the experimental design, setup 369 

the parasite culture, led the SMFAs, provided training to MFM in asexual and sexual culture of 370 

Plasmodium falciparum NF54 as well as contributed to the final manuscript. All authors read and 371 

commented on drafts of the manuscript and approved the final version. 372 

 373 

COMPETING INTERESTS STATEMENT  374 

The authors declare no competing interests. Mention of trade names or commercial products in this 375 

publication is solely for the purpose of providing specific information and does not imply 376 

recommendation or endorsement by the U.S. Department of Agriculture. USDA is an equal opportunity 377 

provider and employer. 378 

 379 

REFERENCES 380 

1. WHO. Global technical strategy for malaria 2016–2030. Geneva: 2015. 381 

2. RBM. Lessons Learned from fifteen years of responding to malaria globally: A prototype for sustainable 382 

development. New York: Roll Back Malaria Partnership, 2016. 383 

3. WHO. World Malaria Report 2018. Geneva, Switzerland: 2018. 384 

4. Bhatt S, Weiss DJ, Cameron E, Bisanzio D, Mappin B, Dalrymple U, et al. The effect of malaria control on 385 

Plasmodium falciparum in Africa between 2000 and 2015. Nature. 2015;526(7572):207-11. Epub 2015/09/17. 386 

doi: nature15535 [pii] 387 

10.1038/nature15535 [doi]. PubMed PMID: 26375008. 388 

5. MacDonald G. Epidemiological basis of malaria control. Bull WHO. 1956;15:613-26. 389 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted February 1, 2019. ; https://doi.org/10.1101/533802doi: bioRxiv preprint 

https://doi.org/10.1101/533802
http://creativecommons.org/licenses/by-nc-nd/4.0/


15 

 

6. Burkot TR, Zavala F, Gwadz RW, Collins FH, Nussenzweig RS, Roberts DR. Identification of malaria-390 

infected mosquitoes by a two-site enzyme-linked immunosorbent assay. Am J Trop Med Hyg. 1984;33(2):227-31. 391 

Epub 1984/03/01. PubMed PMID: 6370003. 392 

7. Stoffels JA, Docters van Leeuwen WM, Post RJ. Detection of Plasmodium sporozoites in mosquitoes by 393 

polymerase chain reaction and oligonucleotide rDNA probe, without dissection of the salivary glands. Med Vet 394 

Entomol. 1995;9(4):433-7. Epub 1995/10/01. PubMed PMID: 8541598. 395 

8. Sandeu MM, Moussiliou A, Moiroux N, Padonou GG, Massougbodji A, Corbel V, et al. Optimized Pan-396 

species and speciation duplex real-time PCR assays for Plasmodium parasites detection in malaria vectors. PLoS 397 

One. 2012;7(12):e52719. Epub 2013/01/04. doi: 10.1371/journal.pone.0052719. PubMed PMID: 23285168; 398 

PubMed Central PMCID: PMCPMC3532469. 399 

9. Tusting LS, Bousema T, Smith DL, Drakeley C. Measuring changes in Plasmodium falciparum 400 

transmission: precision, accuracy and costs of metrics. Adv Parasitol. 2014;84:151-208. Epub 2014/02/01. doi: 401 

10.1016/b978-0-12-800099-1.00003-x. PubMed PMID: 24480314; PubMed Central PMCID: PMCPMC4847140. 402 

10. Mayagaya VS, Michel K, Benedict MQ, Killeen GF, Wirtz RA, Ferguson HM, et al. Non-destructive 403 

determination of age and species of Anopheles gambiae s.l. using near-infrared spectroscopy. Am J Trop Med 404 

Hyg. 2009;81(4):622-30. PubMed PMID: 19815877. 405 

11. Sikulu M, Killeen GF, Hugo LE, Ryan PA, Dowell KM, Wirtz RA, et al. Near-infrared spectroscopy as a 406 

complementary age grading and species identification tool for African malaria vectors. Parasit Vectors. 407 

2010;3:49. Epub 2010/06/08. doi: 1756-3305-3-49 [pii] 408 

10.1186/1756-3305-3-49 [doi]. PubMed PMID: 20525305; PubMed Central PMCID: PMC2902455. 409 

12. Sikulu-Lord MT, Maia MF, Milali MP, Henry M, Mkandawile G, Kho EA, et al. Rapid and Non-destructive 410 

Detection and Identification of Two Strains of Wolbachia in Aedes aegypti by Near-Infrared Spectroscopy. PLoS 411 

Negl Trop Dis. 2016;10(6):e0004759. doi: 10.1371/journal.pntd.0004759. PubMed PMID: 27362709; PubMed 412 

Central PMCID: PMC4928868. 413 

13. Sikulu-Lord MT, Milali MP, Henry M, Wirtz RA, Hugo LE, Dowell FE, et al. Near-Infrared Spectroscopy, a 414 

Rapid Method for Predicting the Age of Male and Female Wild-Type and Wolbachia Infected Aedes aegypti. PLoS 415 

Negl Trop Dis. 2016;10(10):e0005040. doi: 10.1371/journal.pntd.0005040. PubMed PMID: 27768689; PubMed 416 

Central PMCID: PMC5074478. 417 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted February 1, 2019. ; https://doi.org/10.1101/533802doi: bioRxiv preprint 

https://doi.org/10.1101/533802
http://creativecommons.org/licenses/by-nc-nd/4.0/


16 

 

14. Caputo B, Dani FR, Horne GL, Petrarca V, Turillazzi S, Coluzzi M, et al. Identification and composition of 418 

cuticular hydrocarbons of the major Afrotropical malaria vector Anopheles gambiae s.s. (Diptera: Culicidae): 419 

analysis of sexual dimorphism and age-related changes. J Mass Spectrom. 2005;40(12):1595-604. PubMed PMID: 420 

16320293. 421 

15. Sikulu MT, Monkman J, Dave KA, Hastie ML, Dale PE, Kitching RL, et al. Proteomic changes occurring in 422 

the malaria mosquitoes Anopheles gambiae and Anopheles stephensi during aging. Journal of proteomics. 423 

2015;126:234-44. Epub 2015/06/24. doi: 10.1016/j.jprot.2015.06.008. PubMed PMID: 26100052. 424 

16. Carlson DA, Service MW. Differentiation between species of the Anopheles gambiae Giles complex 425 

(Diptera: Culicidae) by analysis of cuticular hydrocarbons. Ann Trop Med Parasitol. 1979;73(6):589-92. Epub 426 

1979/12/01. PubMed PMID: 539859. 427 

17. Carlson DA, Service MW. Identification of mosquitoes of Anopheles gambiae species complex A and B 428 

by analysis of cuticular components. Science. 1980;207(4435):1089-91. Epub 1980/03/07. PubMed PMID: 429 

7355276. 430 

18. Baldridge GD, Baldridge AS, Witthuhn BA, Higgins L, Markowski TW, Fallon AM. Proteomic profiling of a 431 

robust Wolbachia infection in an Aedes albopictus mosquito cell line. Molecular microbiology. 2014;94(3):537-432 

56. Epub 2014/08/27. doi: 10.1111/mmi.12768. PubMed PMID: 25155417; PubMed Central PMCID: 433 

PMCPMC4213348. 434 

19. Suarez E, Nguyen HP, Ortiz IP, Lee KJ, Kim SB, Krzywinski J, et al. Matrix-assisted laser 435 

desorption/ionization-mass spectrometry of cuticular lipid profiles can differentiate sex, age, and mating status 436 

of Anopheles gambiae mosquitoes. Analytica chimica acta. 2011;706(1):157-63. Epub 2011/10/15. doi: 437 

10.1016/j.aca.2011.08.033. PubMed PMID: 21995923. 438 

20. Serrano-Pinto V, Acosta-Perez M, Luviano-Bazan D, Hurtado-Sil G, Batista CV, Martinez-Barnetche J, et 439 

al. Differential expression of proteins in the midgut of Anopheles albimanus infected with Plasmodium berghei. 440 

Insect Biochem Mol Biol. 2010;40(10):752-8. Epub 2010/08/10. doi: 10.1016/j.ibmb.2010.07.011. PubMed PMID: 441 

20692341. 442 

21. Chotiwan N, Andre BG, Sanchez-Vargas I, Islam MN, Grabowski JM, Hopf-Jannasch A, et al. Dynamic 443 

remodeling of lipids coincides with dengue virus replication in the midgut of Aedes aegypti mosquitoes. PLoS 444 

pathogens. 2018;14(2):e1006853. Epub 2018/02/16. doi: 10.1371/journal.ppat.1006853. PubMed PMID: 445 

29447265; PubMed Central PMCID: PMCPMC5814098. 446 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted February 1, 2019. ; https://doi.org/10.1101/533802doi: bioRxiv preprint 

https://doi.org/10.1101/533802
http://creativecommons.org/licenses/by-nc-nd/4.0/


17 

 

22. Esperança PM, Blagborough AM, Da DF, Dowell FE, Churcher TS. Detection of Plasmodium berghei 447 

infected Anopheles stephensi using near-infrared spectroscopy. Parasites & vectors. 2018;11(1):377. doi: 448 

10.1186/s13071-018-2960-z. 449 

23. Fernandes JN, Dos Santos LMB, Chouin-Carneiro T, Pavan MG, Garcia GA, David MR, et al. Rapid, 450 

noninvasive detection of Zika virus in Aedes aegypti mosquitoes by near-infrared spectroscopy. Science 451 

advances. 2018;4(5):eaat0496. Epub 2018/05/29. doi: 10.1126/sciadv.aat0496. PubMed PMID: 29806030; 452 

PubMed Central PMCID: PMCPMC5966221. 453 

24. Vignali M, Speake C, Duffy PE. Malaria sporozoite proteome leaves a trail. Genome Biol. 2009;10(4):216. 454 

Epub 2009/05/14. doi: 10.1186/gb-2009-10-4-216. PubMed PMID: 19435488; PubMed Central PMCID: 455 

PMCPMC2688921. 456 

25. Marie A, Holzmuller P, Tchioffo MT, Rossignol M, Demettre E, Seveno M, et al. Anopheles gambiae 457 

salivary protein expression modulated by wild Plasmodium falciparum infection: highlighting of new antigenic 458 

peptides as candidates of An. gambiae bites. Parasites & vectors. 2014;7:599. Epub 2014/12/21. doi: 459 

10.1186/s13071-014-0599-y. PubMed PMID: 25526764; PubMed Central PMCID: PMCPMC4287575. 460 

26. Ranford-Cartwright LC, McGeechan S, Inch D, Smart G, Richterová L, Mwangi JM. Characterisation of 461 

Species and Diversity of Anopheles gambiae Keele Colony. PLoS ONE. 2016;11(12):e0168999  462 

27. Churcher TS, Sinden RE, Edwards NJ, Poulton ID, Rampling TW, Brock PM, et al. Probability of 463 

Transmission of Malaria from Mosquito to Human Is Regulated by Mosquito Parasite Density in Naive and 464 

Vaccinated Hosts. PLoS Pathog. 2017;13(1):e1006108. Epub 2017/01/13. doi: 10.1371/journal.ppat.1006108. 465 

PubMed PMID: 28081253; PubMed Central PMCID: PMCPMC5230737. 466 

28. Sinden RE. The cell biology of malaria infection of mosquito: advances and opportunities. Cellular 467 

microbiology. 2015;17(4):451-66. Epub 2015/01/06. doi: 10.1111/cmi.12413. PubMed PMID: 25557077; 468 

PubMed Central PMCID: PMCPMC4409862. 469 

29. Robson KJ, Frevert U, Reckmann I, Cowan G, Beier J, Scragg IG, et al. Thrombospondin-related adhesive 470 

protein (TRAP) of Plasmodium falciparum: expression during sporozoite ontogeny and binding to human 471 

hepatocytes. The EMBO journal. 1995;14(16):3883-94. Epub 1995/08/15. PubMed PMID: 7664729; PubMed 472 

Central PMCID: PMCPMC394467. 473 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted February 1, 2019. ; https://doi.org/10.1101/533802doi: bioRxiv preprint 

https://doi.org/10.1101/533802
http://creativecommons.org/licenses/by-nc-nd/4.0/


18 

 

30. Beier JC. Frequent blood-feeding and restrictive sugar-feeding behavior enhance the malaria vector 474 

potential of Anopheles gambiae s.l. and An. funestus (Diptera:Culicidae) in western Kenya. J Med Entomol. 475 

1996;33(4):613-8. Epub 1996/07/01. PubMed PMID: 8699456. 476 

31. Zhao YO, Kurscheid S, Zhang Y, Liu L, Zhang L, Loeliger K, et al. Enhanced survival of Plasmodium-477 

infected mosquitoes during starvation. PLoS One. 2012;7(7):e40556. Epub 2012/07/19. doi: 478 

10.1371/journal.pone.0040556. PubMed PMID: 22808193; PubMed Central PMCID: PMCPMC3393683. 479 

32. Marie A, Boissiere A, Tsapi MT, Poinsignon A, Awono-Ambene PH, Morlais I, et al. Evaluation of a real-480 

time quantitative PCR to measure the wild Plasmodium falciparum infectivity rate in salivary glands of Anopheles 481 

gambiae. Malaria journal. 2013;12:224. Epub 2013/07/04. doi: 10.1186/1475-2875-12-224. PubMed PMID: 482 

23819831; PubMed Central PMCID: PMCPMC3707787. 483 

33. Carter R, Ranford-Cartwright L, Alano P. The culture and preparation of gametocytes of Plasmodium 484 

falciparum for immunochemical, molecular and mosquito infectivity studies. In: Hyde JE, editor. Methods in 485 

Molecular Biology. 21: Protocols in Molecular Parasitology. Totowa, NJ: Humana Press Inc., ; 1993. p. 67-88. 486 

34. Sinden RE, Croll NA. Cytology and kinetics of microgametogenesis and fertilization in Plasmodium yoelii 487 

nigeriensis. Parasitology. 1975;70(1):53-65. Epub 1975/02/01. PubMed PMID: 1118188. 488 

 489 

 490 

 491 

 492 

 493 

 494 

 495 

 496 

 497 

 498 

 499 

 500 

 501 

 502 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted February 1, 2019. ; https://doi.org/10.1101/533802doi: bioRxiv preprint 

https://doi.org/10.1101/533802
http://creativecommons.org/licenses/by-nc-nd/4.0/


19 

 

FIGURES AND LEGENDS 503 

 504 

 505 

 506 

Figure 1 – Study flow chart showing number of spectra collected, infection status and random 507 

assignment of spectra to either training or test dataset. 508 

 509 
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 523 

a. NIRS PLS calibration – oocyst infections  b. PLS model validation – oocysts infection 524 

  525 

  526 

 527 

 528 

 529 

 530 

 531 

 532 

 533 

Training dataset  

(self-prediction accuracy) 

 Test dataset  

(samples of unknown infection status) 

  Actual    Actual 

  Infected Uninfected    Infected Uninfected 

Predicted 
Infected 112 11  

Predicted 
Infected 51 11 

Uninfected 9 95  Uninfected 2 42 

  95% CI    95% CI 

Sensitivity 92.6% 86.4% - 96.5%  Sensitivity 96.2% 87.0% - 99.5% 

Specificity 89.6% 82.2% - 94.7%  Specificity 79.3% 65.9% - 89.2% 

Accuracy 91.2% 86.7% - 94.5%  Accuracy 87.6% 79.9% - 93.3% 

 534 

 535 

Figure 2 – Actual versus predicted plots of oocyst infected mosquitoes investigating NIRS as diagnostic 536 

method. Sensitivity, specificity, accuracy and respective 95% confidence intervals of self-prediction of 537 

P. falciparum-infection in training dataset (left) and prediction of samples of unknown status in test 538 

dataset (right) (PLS scores: 1= uninfected, 2= infected and 1.5 as cut-off value).  539 

 540 

 541 

 542 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted February 1, 2019. ; https://doi.org/10.1101/533802doi: bioRxiv preprint 

https://doi.org/10.1101/533802
http://creativecommons.org/licenses/by-nc-nd/4.0/


21 

 

0
1

.5

U
n
if
e

c
te

d
In

fe
c
te

d

P
re

d
ic

te
d
 P

L
S

 s
c
o
re

0 Uninfected Infected

Actual 

Validation - prediction of test dataset

0
1

.5

U
n

in
fe

c
te

d

In
fe

c
te

d

P
re

d
ic

te
d
 P

L
S

 s
c
o
re

0 3Uninfected Infected

Actual 

Calibration - self prediction of training dataset

a. NIRS PLS calibration – oocyst infections  b. PLS model validation – oocysts infection 543 

 544 

  545 

 546 

 547 

 548 

 549 

 550 

 551 

 552 

 553 

Training dataset  

(self-prediction accuracy) 

 Test dataset  

(samples of unknown infection status)  

  Actual    Actual 

  Infected Uninfected    Infected Uninfected 

Predicted 
Infected 60 1  

Predicted 
Infected 64 0 

Uninfected 9 68  Uninfected 5 22 

  95% CI    95% CI 

Sensitivity 87.0% 76.7% - 93.9%  Sensitivity 92.8% 83.9% - 97.6% 

Specificity 98.6% 92.2% - 100%  Specificity 100% 84.6% - 100% 

Accuracy 92.8% 87.1% - 96.5%  Accuracy 94.5% 87.6 – 98.2% 

 554 

Figure 3 – Actual versus predicted plots of sporozoite infected mosquitoes investigating NIRS as 555 

diagnostic method. Sensitivity, specificity, accuracy and respective 95% confidence intervals of self-556 

prediction of P. falciparum-infection in training dataset (left) and prediction of samples of unknown 557 

status in test dataset (right) (PLS scores: 1= uninfected, 2= infected and 1.5 as cut-off value).  558 

 559 

 560 

 561 
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a. Oocyst infections 563 

 564 

b. Sporozoite infections 565 

 566 

 567 

Figure 4 – Intensity of P. falciparum oocyst (a) and sporozoite (b) infection, quantified as the number of 568 

parasite genomes per l of DNA extract, in A. gambiae mosquitoes and prediction value score based 569 

on the predicted probability of infection, with 1= predicted as not infected and 2=predicted as infected 570 

(cut-off value of 1.5) 571 
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 572 

TABLES AND CAPTIONS 573 

 574 

Table 1 – Description of the gametocytemia used for each of the three standard membrane feeding 575 

assays (SMFA), number of days kept post blood feeding, number of mosquitoes processed by 576 

quantitative PCR (qPCR), % prevalence, and the intensity of infection described as the median and 577 

interquartile range (IQR) of the number of parasite genomes present in infected mosquitoes, excluding 578 

mosquitoes with no infection. 579 

SMFA Estimated 

gametocytemia 

Day post-  

infectious 

blood meal 

No. 

mosquitoes 

tested  

(n=634) 

Positive  

(N=423) 

% 

prevalence 

of infection 

Intensity of infection: 

median number of 

parasite genomes and 

IQR. 

1 1% 7 175 105 60.0% 680 (283-1625) 

14 n.d. n.d. n.d. n.d. 

2 0.1% 7 104 73 70.2% 456 (67-2052) 

14 99 47 47% 516 (211 – 6081) 

3 0.1% 7 114 85 74.6% 2995 (3210-8881) 

14 142 113 80% 10114 (2540 – 29145) 

 580 

 581 

 582 

 583 

 584 

 585 

 586 

 587 

 588 

 589 

 590 

 591 
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 592 

Table 2 - Generalised linear mixed-effects models investigating the effect of infection presence 593 

(infected or uninfected) and infection load (number of parasite genomes/l of DNA extract quantified 594 

using qPCR) on the PLS score of the predicted samples including mosquito age as a random effect. 595 

 Coefficient

s 

Robust 

standard error 

z 95% Confidence 

intervals 

P value 

Oocyst infections      

      

Infection presence  0.67 0.13 5.11 0.41 to 0.93 <0.001 

Infection load  -0.000003 -0.000002 -1.26 -0.0000074 to 0.0000015 0.21 

      

Mosquito age  

(random effect) 

.018 .005 - 0.01 to 0.03 - 

      

Sporozoite infections      

      

Infection presence  0.75 0.12 6.03 0.51 to 1.00 <0.001 

Infection load  0.0000019 0.0000003 5.82 0.0000013 to   0.0000025 <0.001 

      

Mosquito age  

(random effect) 

0.007 0.008 - 0.0032 to 0.087 - 

 596 

 597 

Table 3- Sensitivity, specificity and accuracy  as measures of the performance of a binary classification 598 

test   TP – True positives; TN – True negative; FP – False positive; and FN – False negatives 599 

Sensitivity Specificity Accuracy 

𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

𝑇𝑁

𝑇𝑁+𝐹𝑃
 

𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 

 600 
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