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Testing models of mRNA localization reveals robustness regulated by
reducing transport between cells

J. U. Harrison, R. M. Parton, I. Davis and R. E. Baker

Abstract

Robust control of gene expression in both space and time is of central importance in the regulation of cellular processes,
and for multicellular development. However, the mechanisms by which robustness is achieved are generally not identified
or well understood. For example, mRNA localization by molecular-motor-driven transport is crucial for cell polarization in
numerous contexts, but the regulatory mechanisms that enable this process to take place in the face of noise or significant
perturbations are not fully understood. Here we use a combined experimental-theoretical approach to characterize the robust-
ness of gurken/TGF-alpha mRNA localization in Drosophila egg chambers, where the oocyte and 15 surrounding nurse cells
are connected in a stereotypic network via intracellular bridges known as ring canals. We construct a mathematical model
that encodes simplified descriptions of the range of steps involved in mRNA localization, including production and trans-
port between and within cells until the final destination in the oocyte. Using Bayesian inference, we calibrate this model
using quantitative single molecule fluorescence in situ hybridization data. By analyzing both the steady state and dynamic
behaviours of the model, we provide estimates for the rates of different steps of the localization process, as well as the extent
of directional bias in transport through the ring canals. The model predicts that mRNA synthesis and transport must be tightly
balanced to maintain robustness, a prediction which we tested experimentally using an over-expression mutant. Surprisingly,
the over-expression mutant fails to display the anticipated degree of overaccumulation of mRNA in the oocyte predicted by
the model. Through careful model-based analysis of quantitative data from the over-expression mutant we show evidence of
saturation of transport of mRNA through ring canals. We conclude that this saturation engenders robustness of the localization
process, in the face of significant variation in the levels of mRNA synthesis.

Statement of significance1

For development to function correctly and reliably across a2

population, gene expression must be controlled robustly in3

a repeatable manner. How this robustness is achieved is not4

well understood. We use modelling to better study the local-5

ization of polarity determining transcripts (RNA) in fruit6

fly development. By calibrating our model with quantitative7

imaging data we are able to make experimentally testable8

predictions. Comparison of these predictions with data from9

a genetic mutant reveals evidence that saturation of RNA10

transport contributes to the robustness of RNA localization.11

1 Introduction12

Biological systems are constantly subjected to noise from13

both internal and external sources, and also to random muta-14

tions. It is crucial that key driving mechanisms are able to15

buffer against such insults, thereby enabling organisms to16

display phenotypes that are robust to perturbation. Local-17

ization of mRNA is a fundamental, and crucially important,18

mechanism that enables the polarization of cells such as19

oocytes and early embryos [1–3]. For example, the axes of 1

Drosophila are established through the regulation of gradi- 2

ents in bicoid, gurken, oskar and nanos mRNA [4]. In fact, 3

Drosophila and other species rely heavily on the asymmetric 4

localization of mRNAs to coordinate early development pro- 5

cesses both spatially and temporally. Further, mRNA local- 6

ization has been observed in a variety of species and cell 7

types, including Drosophila and Xenopus oocytes, neurons, 8

chicken fibroblasts, yeast and bacteria [5–9], demonstrating 9

that the process is ubiquitous and not limited to large cells. 10

However, despite the widespread nature of mRNA localiza- 11

tion, there is still much that we do not understand, in partic- 12

ular what ensures robustness. To this end, here we combine 13

mathematical modelling with quantitative experimental data 14

to investigate the regulatory mechanisms controlling mRNA 15

localization, capturing, in particular, the roles of transport 16

and production. 17

We concentrate on early development of the model 18

organism Drosophila, where maternal mRNA prepatterns 19

the oocyte [1–3]. Maternal mRNA is produced in the 15 20

nurse cells neighbouring the oocyte [10]; it is then packaged 21

into complexes with various proteins [11] and transported 22
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2 1 INTRODUCTION

through intracellular bridges, known as ring canals, into the1

oocyte [12]. Ring canals are formed by incomplete cell divi-2

sions [13], and result in the 15 nurse cells and the oocyte3

being connected in a characteristic pattern [14]. A schematic4

of the early Drosophila egg chamber is shown in Figure 1,5

together with a microscopy image showing the ring canals6

(highlighted with an actin (phalloidin Alexa488) marker),7

and a diagram illustrating the characteristic connections8

between nurse cells.9

(a)

(b) (c)

14 μm

Phalloidin Alexa488 (actin)
grk smFISH

Figure 1: Stage 6 Drosophila egg chamber. (a) A microscopy
image of a fixed egg chamber labelled in green with
pahlloidin-alexa488 (actin) and in magenta with grk smFISH
probes (stellaris, Cal Fluor 590). Localization of gurken
RNA is observed at the posterior of the oocyte. Ring canals
providing connections between nurse cells and to the oocyte
can be seen highlighted by the actin marker. (b) Schematic
of the early egg chamber. (c) Diagram of the connections
between nurse cells and the ooctye via ring canals. The
oocyte (red) is labeled 1 and the nurse cells are labeled 2
to 16.

In this work, we develop a coarse-grained ordinary dif-10

ferential equation (ODE) model of gurken (gurken) transport11

through the Drosophila egg chamber, including all 15 nurse12

cells and the developing oocyte, with terms representing both13

the production and transport of mRNA 1. Using Bayesian 1

inference methods, we fit this simple model to quantitative 2

imaging data obtained using smFISH (single molecule flu- 3

orescence in situ hybridization) [15, 16]. Combining quan- 4

titative modelling approaches with experimental data in this 5

way allows us to explore underlying biological mechanisms 6

through the generation of testable model predictions with 7

appropriate quantification of uncertainties. In particular, it 8

enables estimation of the mRNA production and transport 9

rates in the model, and predicts that there is a tight reg- 10

ulatory balance between production and transport for the 11

localization of gurken in the Drosophila egg chamber. 12

In the process of fitting the model to microscopy imag- 13

ing data, we examine the formation of higher-order RNA- 14

protein complexes in the oocyte. In the nurse cells, mRNA 15

is assembled into complexes containing both mRNA and 16

various proteins, and these RNA complexes are then trans- 17

ported into the ooctye. An important aspect of the trans- 18

port process is that the RNA complexes are remodelled (so 19

that more mRNA transcripts are contained in each complex) 20

upon transit through the ring canals that connect the nurse 21

cells to the oocyte [12, 17], leading to larger complexes in 22

the oocyte [18]. We use quantitative data analysis to provide 23

an estimate of the extent of this assembly of higher-order 24

complexes for gurken. 25

In addition, we explore the question of whether trans- 26

port of RNA complexes occurs unidirectionally or bidirec- 27

tionally through ring canals in the Drosophila egg chamber. 28

Some evidence that transport through ring canals is unidi- 29

rectional has previously been provided [17]. However, since 30

ring canals are small relative to the nurse cells, the passage 31

of complexes through them is relatively difficult to observe 32

in vivo. Our study offers further evidence in support of 33

the hypothesis that transport through ring canals is strongly 34

biased towards the oocyte, and provides quantification of this 35

process within a model-based framework. 36

Finally, we use the coarse-grained ODE model to 37

make testable predictions about the behaviour of an over- 38

expression mutant with increased production of mRNA. We 39

demonstrate strong agreement between the model predic- 40

tions and observed data for nurse cells close to the oocyte, 41

but find discrepancies for nurse cells far from the oocyte. 42

Surprisingly, we find the numbers of complexes localized 43

in the oocyte of the over-expression mutant are very simi- 44

lar to wild type, whereas the model predicts numbers should 45

increase significantly. To probe the reasons for this dis- 46

parity, we consider a suite of extended models incorporat- 47

ing inhomogeneous production, density dependent transport 48

and crowding-induced blocking of transport through ring 49

canals. We show, via statistical techniques that allow quan- 50

titative model comparison, that the crowding-induced block- 51

ing mechanism is best supported by the data, and that a 52

1In referring to production, we include mRNA transcription, export
through the nuclear pore complex, and assembly of RNA-protein com-
plexes.
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2.2 Single molecule FISH 3

model incorporating blocking is capable of producing distri-1

butions of RNA complexes similar to those observed experi-2

mentally. In strong support of this model-based prediction,3

we observe accumulation of complexes at ring canals in4

smFISH microscopy data for the over-expression mutant,5

consistent with this crowding-induced blocking mechanism.6

Despite their increasing use across the biologi-7

cal sciences, mathematical and computational modelling8

approaches have not to-date been widely adopted in the study9

of mRNA localization. Trong et al. [19] have demonstrated10

how localization of mRNA can be achieved in a Drosophila11

oocyte using a partial differential equation (PDE) description12

of mRNA dynamics and a stochastic model of cytoskele-13

ton dynamics. Ciocanel et al. [20] used a PDE model of14

RNA localization in Xenopus oocytes to quantify aspects15

of the transport process using FRAP (fluoresence recov-16

ery after photobleaching) data, and others have considered17

models of RNA transport to examine the behaviour of indi-18

vidual molecular motors [21, 22], or the cytoskeleton struc-19

ture [23]. However, these works have focused on dynam-20

ics within a single cell, the oocyte, as has other work in21

model systems such as mating budding yeast and the neu-22

ronal growth cone [24, 25]. Recent work by Alsous et al. [26]23

has quantified collective growth and size control dynam-24

ics in Drosophila nurse cells. Similarly, our work considers25

dynamic behaviours in multiple cells. However, our focus is26

to examine the regulation and robustness of mRNA local-27

ization by considering a coarse-grained ODE model of the28

entire Drosophila egg chamber, and using it to interro-29

gate quantitative experimental data. Further, our work high-30

lights that by combining an incredibly simple mathematical31

model with quantitative experimental data one can draw rel-32

evant conclusions and make testable predictions about key33

biological processes that would not, otherwise, have been34

possible.35

2 Methods and materials36

2.1 Fly strains and tissue preparation37

Stocks were raised on standard cornmeal-agar medium38

at 25◦C. The wild type was Oregon R (OrR). Over39

expression of gurken RNA was obtained by crossing40

UASp grk3A (based upon genomic sequence DS02110,41

which includes the full 3’ and 5’ UTRs [27]) to mater-42

nal tubulin driver TubulinGal4-VP16. Tagging of gurken43

RNA for live imaging was achieved using the MS2-44

MCP(FP) system: gurken-(MS2)12 [28], P[nos-NLS-MCP-45

mCherry] [29]; P[w+nanos-5’-NLS-MCP-Dendra2 K10-3’]46

(Rippei Hayashi). GFP protein trap lines: Moesin::GFP [30];47

Tau-GFP 65/167 (D. St Johnston, University of Cambridge).48

Oocytes were isolated for live imaging as described in Parton49

et al. [31], and for fixation and single molecule fluorescence50

in situ hybridization (smFISH), as described in Davidson51

et al. [32].52

2.2 Single molecule FISH 1

smFISH detection of gurken RNA was performed as 2

described in Davidson et al. [32]. Stellaris Olignoucleotide 3

probes 20nt in length complementary to the gurken tran- 4

script (CG17610; 48 probes) conjugated to CAL Fluor Red 5

590 were obtained from Biosearch technologies. Labelled 6

oocytes were mounted on slides in 70% Vectashield (Vector 7

laboratories). 8

2.3 Fixed-cell imaging 9

Confocal imaging of fixed Drosophila oocytes was per- 10

formed using an inverted Olympus FV3000 six laser line 11

spectral confocal system fitted with high sensitivity gallium 12

arsenide phosphide (GaAsP detectors) and using a 60x SI 13

1.3 NA lens. For smFISH detection of gurken transcripts, 14

settings were optimized with a pinhole of 1.2 airy units 15

and increasing laser power over the depth of the sample 16

(between 30-50µm from the cover slip) to compensate for 17

signal attenuation. 18

2.4 Image analysis 19

Basic image handling and processing was carried out in FIJI 20

(ImageJ V1.51d; fiji.sc, [33]). Image data was archived in 21

OMERO (V5.3.5) [34]; image conversions were carried out 22

using the BioFormats plugin in FIJI [35]. RNA particles in 23

the nurse cells and oocyte are identified and located using the 24

FISH QUANT software [36]. We combine use of this soft- 25

ware with manual segmentation of the nurse cells and oocyte 26

performed in three dimensions using a GUI (graphical user 27

interface) designed for the annotation of training and evalu- 28

ation data for machine learning via software available from 29

QBrain [37]. This enables quantification of the total num- 30

bers of complexes observed in each cell. Identification of 31

cells within the egg chamber is performed by counting the 32

number of ring canals connecting each cell, and which cells 33

these connect. Data is processed from n = 16 egg cham- 34

bers between stage 5 and stage 8 of oogenesis. Since the 35

RNA complexes are sparse in the nurse cells, using counts 36

of particles is a valid method of quantifying the total RNA 37

expression [38]. 38

2.5 Identification of developmental time via an 39

exponential growth model 40

To identify a precise time variable for each egg chamber, 41

we apply an exponential growth model to measurements 42

of the area of the median section. Effectively this allows 43

us to use log(A), where A is the area of the median sec- 44

tion, as a rescaled variable for the timescale of develop- 45

ment, by fitting the following model by linear regression: 46

log(A) = log(A0) + τt, where the intercept t0 = log(A0) 47
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4 3 RESULTS

corresponds to the start of gurken mRNA production, and τ1

gives a rescaling of time. To fit this model, we use data from2

Shimada et al. [39] relating the developmental stage to the3

area of egg chambers and take the time point corresponding4

to the midpoint of each stage as an estimate of its age (Fig-5

ure S1). This approach is supported by the results of Jia et al.6

[40], who use logA in a similar way to assist with automatic7

stage identification for Drosophila egg chambers.8

2.6 Implementation of Monte Carlo methods9

We use the open source software package Stan mc −10

stan.org (version 2.17.0) [41] to perform MCMC (Markov11

chain Monte Carlo) sampling from the posterior distribution.12

Stan uses Hamiltonian Monte Carlo techniques to navigate13

the geometry of the posterior distribution efficiently [42],14

along with automatic differentiation to compute gradients.15

We run four chains in parallel for 2000 iterations with a16

burn in of 1000 iterations. Traceplots illustrating conver-17

gence of each of the chains are shown in Figure S2. Code18

to reproduce the analysis described in this work is available19

at https://github.com/shug3502/rstan analysis.20

2.7 Model comparison21

We perform model comparison via leave-one-out cross val-22

idation [43–45]. From the family of models under consid-23

eration, we make testable predictions for the behaviour of24

a genetic over-expression mutant and compare these with25

experimental data. We compute pseudo-BMA+ (Bayesian26

Model Averaging) weights [46] for each model, where the27

largest weight will give the model closest in Kullback-28

Leibler divergence to the data generating model. However,29

these weights can potentially be misleading in the case where30

the true model is not contained in the set of models con-31

sidered, as is the case here. In this M-open case, stacking32

weights [46] offer a more conservative choice of models. We33

present pseudo-BMA+ and stacking weights, since both are34

informative. For further details see Supplementary Material35

Section K.36

3 Results37

3.1 A coarse-grained model for gurken mRNA localization38

To investigate the mechanisms governing robustness of39

mRNA localization, we developed a minimal, compartment-40

based ODE model of gurken localization in a Drosophila egg41

chamber. We view each cell as a separate compartment and42

assume that RNA complexes are produced in each of the43

nurse cells [10]. We assume that there is transport of RNA44

complexes between cells that are connected by ring canals45

(Figure 1), and that there is negligible degradation (there is46

evidence that the majority of maternal mRNAs are stable 1

during oogenesis over the timescales of interest [47, 48]). 2

The model can be written as 3

dy
dt

= a v + bB(ν)y, (1)

where the i th entry of the vector y is the number of RNA 4

complexes in cell i (indexed as in Figure 1). RNA com- 5

plexes are produced at constant rate a > 0 in units of 6

[particles hr−1], and the vector v ∈ R16 lists the cells that 7

produce mRNA; for the Drosophila egg chamber, where 8

mRNA is produced in all cells except the ooctye, v = 9

(0, 1, . . . , 1)ᵀ since the oocyte is transcriptionally silent for 10

most of oogenesis [49]. Transport of complexes between 11

cells takes place at constant rate b > 0 in units of
[
hr−1

]
. The 12

matrix B describes the network of connected nurse cells (so 13

that entry (i, j) is non-zero only when cells i and j are con- 14

nected by a ring canal). Transport bias (towards the oocyte) 15

is represented by parameter ν so that complexes in a given 16

nurse cell move towards the oocyte at relative rate 1− ν and 17

away from it at relative rate ν (Figure 4).The precise form 18

of B is provided in Supplementary Material Section A. Note 19

that a similar approach has been employed by Alsous et al. 20

[26] to show that differences in cell sizes in the Drosophila 21

egg chamber result from the characteristic cell network gen- 22

erated through incomplete divisions, and the resulting ring 23

canal connections. As an initial condition, we assume there 24

are no RNA complexes in any of the cells at time t0 (where 25

t0 is determined from the linear model described in Section 26

2.5). The system of ODEs is solved numerically using the 27

fourth order Runge-Kutta scheme implementation contained 28

in the Boost C++ library [50]. 29

Typical behaviour of the model is shown in Figure 2. 30

Much of the biologically relevant behaviour occurs in the 31

quasi-steady-state regime where we have linear growth in the 32

number of RNA complexes in the oocyte, and a characteristic 33

distribution of RNA complexes across the nurse cells. Typi- 34

cal dynamic behaviour for each nurse cell is shown in Figure 35

S3. 36

3.2 Bayesian inference framework 37

We connect the model directly to quantitative experimental 38

data so that it can provide relevant predictions and insight. 39

We use a Bayesian inference framework to take account of 40

both measurement and process uncertainty, incorporating the 41

mechanistic model stated in Equation (1), a model of the 42

measurement process, and prior knowledge of parameters. 43

The biological process model (Equation (1)) can be 44

related to the observed data via a measurement model. The 45

measurement model accounts for any errors in processing 46

the data, in addition to raw experimental error. However, 47

we first note that RNA complexes consist of multiple indi- 48

vidual mRNA transcripts, and recall that upon entry to the 49
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3.3 Quantification of higher-order assembly of gurken RNA complexes in the oocyte 5
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Figure 2: Predictions from the ODE model (1). (a) Dynamic
behaviour of the number of complexes in the oocyte; the
remaining nurse cells are shown in Figure S3. (b) The dis-
tribution of complexes across the cells in the egg chamber
at t = 32 hrs demonstrates the accumulation of mRNA
in the oocyte. The numbering for the Cell ID on the x
axis corresponds to that given in Figure 1. Parameters are
a = 10 particles hr−1, b = 0.20 hr−1 and ν = 0.10.

oocyte there is some higher-order assembly of these com-1

plexes [12, 17, 18]. Since we have quantitative data on the2

number of RNA complexes in each cell, rather than the num-3

ber of individual transcripts, we account for this higher-order4

assembly of complexes in the oocyte in the measurement5

model. We assume that in the oocyte we observe φ y1 com-6

plexes, where φ ∈ (0, 1] is a scaling parameter. We can7

interpret φ as a ratio between the number of transcripts per8

complex in the nurse cells as compared to the oocyte.9

We use a negative binomial distribution for the measure-10

ment model, so that measured RNA complex counts, z, are11

given by12

z ∼ NB(Φy, σ), (2)

where Φ is a diagonal matrix with entries [φ, 1, 1, . . . , 1], σ13

is a parameter controlling the magnitude of the measurement14

error, and y is the solution of the biological process model15

(Equation (1)), giving the numbers of RNA complexes in16

each cell. Details on the parameterization for the negative17

binomial distribution are given in Supplementary Material18

Section E. We take the product of the likelihoods over each19

of the observed cells (including nurse cells and oocyte),20

with each biological sample corresponding to a unique time21

point, to give the full likelihood. Full details on the choice of22

prior distributions for parameters are given in Supplemen- 1

tary Material Section F. The parameters to be inferred are a, 2

b, ν, φ and σ. 3

3.3 Quantification of higher-order assembly of gurken 4

RNA complexes in the oocyte 5

Considering directly the total integrated intensity of RNA 6

complexes in the oocyte compared to those in the nurse cells 7

allows us to directly estimate the relative numbers of mRNA 8

transcripts in an RNA complex in the oocyte compared to 9

the nurse cells. We calculate the total integrated intensity 10

for 448 foci in n = 13 example datasets for egg chambers 11

from stage 5 to stage 8, including both the nurse cells and 12

oocyte. By subtracting the background intensity, and divid- 13

ing by the mean nurse cell intensity, we can obtain an esti- 14

mate for φ, as shown in Figure 3: the median estimate gives 15

φ = 0.345± 0.048. Fitting a mixture of Gaussians model to 16

the intensity data reveals how transcripts are packed within 17

RNA complexes via multimodal distributions of intensities 18

(Supplementary Figure S5). 19
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Figure 3: Assembly of higher order gurken complexes in
the oocyte and quantification of the size of the assemblies
in terms of equivalent complexes in the nurse cells. Typical
complexes in background (BGD), nurse cells (NC) and the
oocyte (OO) are identified from the circled regions indicated.
By measuring total integrated intensity of these complexes in
n = 13 egg chambers, we obtain distributions in each region,
normalized by subtracting the average background value and
scaling to a single nurse cell complex. We find that com-
plexes in the oocyte are equivalent to a median of 2.5 times
a single complex in the nurse cells.
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6 3 RESULTS

We can now use this independent estimate of φ to spec-1

ify a strong prior for φ when fitting the full Bayesian model.2

We obtain posterior estimates for the assembly parameter,3

φ, with 0.40 as a median value, and [0.31, 0.49] as a 95%4

credible interval. This gives an estimate of between two and5

four nurse cell RNA complexes assembled into one equiva-6

lent oocyte RNA complex. The posterior distribution for φ is7

shown in pairwise plots of all the model parameters in Figure8

S6.9

3.4 Biased transport through ring canals revealed by10

model comparison at quasi-steady state11

We now consider the question of whether transport of RNA12

complexes through ring canals in Drosophila is unidirec-13

tional (towards the oocyte) or bidirectional (both towards and14

away from the oocyte). In addition, if transport is bidirec-15

tional, how biased is it towards the ooctye? Within the math-16

ematical model (Section 3.1), the network structure (encoded17

in the matrix B) and the bias parameter, ν, impose a distribu-18

tion of RNA complexes across the nurse cells. By inferring a19

posterior distribution for ν, through comparison of the model20

with quantitative data, we can estimate the extent to which21

transport through the ring canals is biased.22

To simplify the model and ensuing Bayesian analysis,23

we consider the model behaviour in the large time, quasi-24

steady-state limit (which corresponds to the time scale on25

which observations are made). In this limit, we have y ≈26

15ak2t, where k2 is the quasi-steady-state distribution that27

can be uniquely calculated for a given matrix B (see Sup-28

plementary Material Section H). Normalizing both the vec-29

tor k2 (so that the normalized RNA complex count in the30

oocyte is unity), and the equivalent distribution measured31

from smFISH data, enables comparison of the distribution32

of complexes across the egg chamber under the assumption33

of a Gaussian measurement error model, N(0, ξ2). We note34

that a different measurement error model is required here35

compared to Section 3.2, since the normalized mRNA distri-36

bution takes positive real values rather than integer counts.37

Priors are described in detail in Supplementary Material38

Section F.39

In Figure 4, we show the marginal posterior distribu-40

tion for the transport bias parameter, ν. The median of the41

marginal posterior distribution for ν is 0.02, with a 95%42

credible interval of [0.00, 0.05]. The posterior predictive dis-43

tribution (Figure 4(c)) contains the observed data points44

within the 95% credible region for the complex distribu-45

tion in each cell. Together these results strongly support the46

hypothesis that transport of complexes is significantly biased47

towards the oocyte.48

3.5 Estimates of production and transport rates show 1

production and transport are in tightly regulated 2

balance 3

We obtain estimates for the rates of production, a, and 4

transport, b, of RNA complexes by applying the modelling 5

approach outlined in Equation (1) and Section 3.2. We con- 6

sider the full dynamic behaviour of the model, together with 7

the smFISH dataset of n = 16 egg chambers (see Section 2) 8

and infer all model parameters (a, b, ν, φ and σ). 9

Upon sampling from the posterior for the full model, we 10

find that the production rate, a, takes a median value of 10.0 11

and lies within a 95% credible interval of [7.7, 14.1] (in units 12

of [particles hr−1]). The transport rate, b, has a median value 13

of 0.22 and lies within a 95% credible interval of [0.16, 0.31] 14

(in units of [hr−1]). The marginal posterior distributions for 15

the rate parameters a and b are shown in Figure 5, and the 16

posterior distribution for all the model parameters is shown 17

pairwise in Figure S6. 18

Using these parameter estimates, we can compare the rel- 19

ative contributions of the production and transport terms in 20

Equation (1) to the rate of change in the number of RNA 21

complexes. We have 10.0 ≈ a ≈ b〈ỹ〉 ≈ 21.4, where a 22

is the complex production rate, b is the transport rate and 23

〈ỹ〉 = 97 is the median number of gurken RNA complexes 24

at time t considered across all cells of the egg chamber. This 25

result indicates that the RNA complex production rate is of 26

the same order of magnitude as the rate of complex trans- 27

port, and therefore suggests that production and transport 28

are tightly balanced. We provide further evidence to sup- 29

port this hypothesis by evaluating the sensitivity of the model 30

described in Section 3.1 to changes in the rate parameters a 31

and b (see Supplementary Material Section J). 32

3.6 Perturbing mRNA production yields results 33

inconsistent with model predictions 34

To further validate our results, we explored whether the 35

model can predict the response of the system to a perturba- 36

tion in the RNA complex production rate by considering an 37

over-expression mutant with multiple copies of the gurken 38

gene. We make the assumption that the mutant has RNA 39

complex production rate γa, where a is the production rate 40

in wild type, and γ > 1 is a scale factor, but that all other 41

model parameters are unchanged. 42

The model specified in Equation (1) predicts that the 43

total number of RNA complexes in an egg chamber should 44

increase at rate 15a in wild type, and 15γa in the over- 45

expression mutant. Comparing this prediction with experi- 46

mental data, we estimate a median value for γ of 2.23, with 47

a 95% credible interval of [1.38, 3.06] (Supplementary Mate- 48

rial Section L). We take the value γ = 2.23 for the remainder 49

of this work. 50
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3.6 Perturbing mRNA production yields results inconsistent with model predictions 7

c)

a) b)

Figure 4: Results of MCMC sampling for the coarse grained model at steady state to determine the bias in transport through
ring canals, as described in Section 3.4. In a), we display a schematic diagram of biased transport between two compartments,
with transport from cell 2 to cell 1 at rate 1 − ν, and transport from cell 1 to cell 2 at rate ν. In b), we display a density plot
of the marginal posterior distribution for the transport bias parameter ν, compared to the prior for the same parameter which
is uniform over [0.0, 0.5]. This shows evidence of strong bias in transport through ring canals. In c), we show the posterior
predictive distribution with the raw data shown as red points. The shaded region shows a 95% credible interval of the distri-
bution of predictions from the model. Here the distribution of mRNA across cells in the egg chamber is normalized such that
the amount of mRNA in the oocyte is 1. The model provides a good fit to the data, since most of the data points lie within the
grey envelope of the 95% credible interval.
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Figure 5: Results of MCMC sampling for the model described in Section 3.2 and sensitivity to model parameters. In a), we
display the posterior marginal distribution for the rate parameters a and b. In b), we show the posterior predictive distribution,
which gives the predictions from the model with parameters fitted to the data. Each panel gives the prediction for each cell
(numbered 1 for the oocyte through 2 to 16 for the nurse cells as in Figure 1) as a solid line, with measured experimental
particle counts shown as points. A 95% credible interval for the predictions is shown as a shaded region. The blue points are
observed data used to train the model, whilst the red points are observed data used to test the model (note that these red points
are egg chambers for which only the oocyte and neighbouring nurse cells have been segmented). The subplots are arranged to
highlight distance from the oocyte within the network of connections between nurse cells shown in Figure 1c).

We now use the model to predict the distribution of RNA1

complexes in each of the cells of the egg chamber by sam-2

pling from the posterior predictive distribution generated3

in Section 3.5 using wild type data only. In doing so, the4

implicit assumption is that, in the over-expression mutant,5

the only process significantly affected is the RNA complex6

production rate. For the oocyte and neighbouring nurse cells,7

the model predictions are consistent with the observed data 1

(Figure 6). However, for the nurse cells furthest away from 2

the oocyte (such as 8, 12, 14, 15, 16 which are at least three 3

‘steps’ away from the oocyte) the observed experimental 4

data contains nurse cells with much greater accumulation of 5

RNA complexes than predicted by the model (Figure 6). We 6
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3.9 Model comparison reveals blocking of ring canals as the most plausible mechanism 9

highlight further the phenotypic differences in the distribu-1

tion of mRNA across cells based on distance from the oocyte2

in Figure S9.3

Crucially, the lack of agreement between predictions and4

observed data clearly indicates that the model does not cap-5

ture key mechanistic details of the mRNA localization pro-6

cess that are relevant to the over-expression mutant. The aim7

of the ensuing analysis is to tease apart the nature of these8

missing mechanistic details.9

3.7 Localization of RNA in the oocyte of the10

over-expression mutant reveals robustness11

Quasi-steady-state analysis of the ODE model in Equa-12

tion (1) predicts that RNA complex numbers in the oocyte,13

y1, grow linearly at a rate proportional to 15a (Supplemen-14

tary Material Section H). Therefore, in addition, the model15

predicts that in the over-expression mutant, which has an16

increased production rate of γa, the number of RNA com-17

plexes localized to the oocyte at a given developmental time18

should increase by a factor of γ compared to wild type.19

However, rather than this predicted increase, we observe the20

number of RNA complexes in the over-expression mutant21

oocytes to be similar to that in wild type (Figure 7). This22

results demonstrates an incredible robustness of the system23

in the sense that the same amount of gurken RNA is local-24

ized to the oocyte, despite large changes to the production25

rate. A key question is now what mechanism gives rise to26

the observed robustness?27

3.8 Biological mechanisms to explain the over-expression28

data can be represented as alternative models29

We propose several plausible biological mechanisms to30

explain the behaviour of the localization process in the over-31

expression mutant, as listed below, and evaluate their ability32

to recapitulate data from the over-expression mutant.33

Inhomogeneous production. Previously we assumed equal34

production rates of RNA complexes across all nurse cells.35

However, the over-expression of gurken in nurse cells is36

driven by the GAL4-UAS system, which can result in patchy37

expression across cells. We now relax the assumption of38

equal production rates, and estimate the production rates of39

individual nurse cells by quantifying the number of nascent40

gurken transcripts (Supplementary Material N).41

Blocking or queuing at ring canals. With increased levels42

of gurken in the over-expression mutant, the environment43

inside the nurse cells is more crowded. We hypothesize that44

the transport of RNA complexes through ring canals could be45

blocked or restricted due to crowding. Blocking in this way46

restricts transport both towards, and away from, the oocyte.47

We can represent this hypothesis in the model by changing48

Production Blocking
Density

dependent
transport

Pseudo
BMA+
weights

Stacking
weights

M0 0 0 0 0.04 0.00
M1 0 1 0 0.94 0.40
M2 0 0 1 0.00 0.08
M3 1 0 0 0.01 0.23
M4 1 0 1 0.00 0.00
M5 1 1 0 0.00 0.29
M6 0 1 1 0.00 0.00
M7 1 1 1 0.00 0.00

Table 1: A description of the collection of models M =
{M0,M1, . . . ,M7}, together with the weights generated
using model comparison (see Section 2.7 for details).

appropriate entries in the matrix B to zero: manual exami- 1

nation of the data was used to predict which ring canals are 2

blocked. 3

Density dependent transport. The final hypothesis we con-
sider is that increases in gurken in the over-expression
mutant lead to saturation of the transport mechanism. This
hypothesis is motivated by observations of a build up of RNA
at nuclear pore complexes in the over-expression mutant,
suggesting that nuclear export or the ability to form compe-
tent mRNA particles for transport may be saturated. Instead
of assuming that transport rate between cells is linearly pro-
portional to the number of RNA complexes, we assume a
saturating transport rate of the form

f(y) =
y

1 + βy
,

where β is a parameter describing the density dependence. 4

We represent the hypotheses detailed above as a col- 5

lection of models, M = {M0,M1, . . . ,M7}, that together 6

represent all possible combinations of the additional mech- 7

anisms (see Table 1 for details). Models including the 8

crowding-induced blocking at ring canals and inhomoge- 9

neous production mechanisms can be forward simulated 10

using parameters from the posterior distribution based on 11

wild type data, as in Figure 6. Models including density 12

dependent transport must be fitted to the wild type data to 13

estimate the parameter β. 14

3.9 Model comparison reveals blocking of ring canals as 15

the most plausible mechanism 16

We use model comparison approaches (Section 2.7) to eval- 17

uate the ability of the different models to explain the bio- 18

logical observations. Table 1 indicates strong support for 19

the blocking of ring canals as a mechanism to explain the 20

observed over-expression data: Model M1 has a pseudo- 21

BMA+ weight close to 1, indicating that of the models 22
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Figure 6: Posterior predictive distribution for the over-expression mutant based on the ODE model (1) fitted to wild type data.
Model predictions (gray envelope) show good agreement with observed data (red points) for cells close to the oocyte. Cells
further from the oocyte, such as cell 16, show discrepancy between model predictions and the observed data, indicating there
are biological mechanisms not captured by the model. The observed data for the over-expression mutant is shown as red dots,
with the gray envelope showing a 95% credible interval of predictions from the model via the posterior predictive distribution.
The subplots are arranged to highlight distance from the oocyte within the network of connections between nurse cells shown
in Figure 1c).
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Figure 7: The number of mRNA complexes in the oocyte
increases linearly over time for both the wild type (blue)
and the over-expression mutant (red). Strikingly, the rate of
increase of mRNA in the oocyte (shown by the gradient of
the red and blue lines) is approximately equal in each case,
whereas we would have expected this to be γ times greater
for the over-expression mutant. The tight regulation of the
localization process biologically ensures the right amount of
RNA reaches the oocyte at the right time, even under bio-
logical perturbation. Here this is due to blocking of ring
canals. The points show observed data on number of RNA
complexes, and the lines show linear models fit to these data.

considered this is the most plausible model. The more con-1

servative stacking weights approach also weights several2

other models relatively highly, however these are predom-3

inantly models that involve blocking as well as additional4

mechanisms. These results suggest that none of the mod-5

els considered perfectly describe the data generating pro-6

cess (to be expected since the model is an incredibly sim-7

plified description of a very complex biological process).8

However, predictions of RNA complex distributions for the9

over-expression mutant made using M1 (which incorpo-10

rates only the blocking of ring canals) are substantially11

improved compared to the predictions of the basic model.12

Taken together, our results reveal crowding-driven block-13

ing of ring canals as the most plausible explanation for our14

experimental observations.15

3.10 Reexamining microscopy data provides evidence of16

queuing at ring canals17

A natural question to ask is then whether it is possible18

to validate this prediction experimentally? By re-examining19

microscopy data from the over-expression mutant, we20

demonstrate evidence for the crowding-related blocking of21

ring canals in smFISH data: we observe clusters of RNA22

complexes around ring canals (Figure 8). Similar observa- 1

tions of a build up of RNA complexes near ring canals have 2

also been reported upon injection of gurken mRNA in nurse 3

cells [12]. Together, these results suggest that, while the 4

transport of RNA complexes within nurse cells may be rela- 5

tively fast, the efficiency of the transport process as a whole 6

can suffer when transit through ring canals is blocked by 7

crowding. Based on assessment of the mRNA counts across 8

cells (Supplementary Figure S12), we find 64% (n = 14) 9

of the over-expression mutant egg chambers show evidence 10

of blocking behaviour. The mechanism leading to crowding- 11

induced blocking in over-expression mutants may be present 12

also in wild type, but such events occur rarely in wild type 13

due to lower accumulation of RNA complexes within a nurse 14

cell. 15

Phalloidin Alexa488 (actin)
grk smFISH

(a)

14 μm

a)

b)

(b)

Figure 8: Blocking of ring canals may result in significant
accumulation of mRNA in nurse cells far from the oocyte. a)
A clustered distribution of mRNA complexes queuing near
the ring canal (arrow). b) A comparison between simula-
tions from the model with all ring canals transporting RNA
equally, and a situation where the ring canal between cells
8 and 16 is blocked. The schematic inset in a) shows the
position of the blocked ring canal within the tissue.

4 Discussion 16

Combining simple mechanistic mathematical models and 17

Bayesian inference approaches together with experimen- 18

tal evidence, we have investigated the dynamics of mRNA 19
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12 4 DISCUSSION

localization in Drosophila egg chambers, and made quanti-1

tative predictions of the dynamics of the localization process.2

Estimates of the production and transport rates of gurken3

mRNA indicate that these processes are tightly balanced4

in mRNA localization. To confer robustness on the sys-5

tem, large perturbations must be buffered by the localization6

mechanism to ensure that the ‘correct’ amount of RNA is7

localized at the right time in development. We have shown,8

using a simple model, that crowding-driven blocking of ring9

canals is sufficient to regulate the localization of mRNA in10

the oocyte.11

In addition, our results suggest that transport of RNA12

complexes through ring canals is strongly biased. The char-13

acteristic network of connections between the nurse cells14

specifies a given network structure that we represent via the15

matrix B in Equation (1). By inferring the bias parameter, ν,16

we have shown that the observed distribution of RNA com-17

plexes across the egg chamber is consistent with strongly18

biased transport of RNA complexes towards the oocyte. This19

strong bias at a macroscopic cellular scale is nonetheless20

consistent with weak bias in transport at a microscopic scale21

on the microtubule network [51], since averaging over many22

movements of many particles moving with weakly biased23

random motion can result in strong bias for the ensemble24

average.25

We have also provided measurements and estimates for26

the assembly of higher order RNA complexes in the oocyte27

following remodelling upon transit through the ring canals28

between the oocyte and the nurse cells. Measurements of29

RNA content for bicoid, oskar and nanos RNA complexes30

have been performed previously [18, 52], although largely31

for later stages of development, and we note that the esti-32

mates given here are consistent with similar measurements33

on the distribution of multimeric RNA complexes of oskar34

upon entry to the oocyte at stage 10b [18]. This process35

of remodelling of RNA complexes upon transit into the36

oocyte may play a role within wider changes in how RNA37

is packaged in the oocyte compared to the nurse cells.38

We attempted to validate the mathematical model (Equa-39

tion (1)) by making predictions about behaviour of an over-40

expression mutant. The predictions of this simple model41

revealed a discrepancy in the accumulation of mRNA in42

the nurse cells furthest from the oocyte compared with the43

observed experimental data: in some cases, far more mRNA44

is observed in these cells than predicted by the model. In45

addition, the observed rate of localization of mRNA in the46

oocyte is similar in the over-expression mutant as compared47

to wild type, contrary to predictions from the simple model.48

We resolved this discrepancy by using model comparison49

approaches to compare the ability of a range of biological50

mechanisms to replicate the observed data. Our results sug-51

gest crowding-induced blocking of ring canals as a plausible52

explanation for the discrepancy between model prediction53

and experimental observations, and more generally that the54

transport process becomes overloaded in the over-expression55

mutant. We therefore argue that the crowding-induced block- 1

ing of ring canals is effectively a regulatory mechanism 2

that helps ensure the robustness of gurken localization in 3

Drosophila oocytes. Precise control of gene expression dur- 4

ing development can be facilitated by indirect methods [53]; 5

blocking of ring canals is an example of such indirect 6

regulation. 7

We have considered generalizations of the simple model 8

(Equation (1)) to incorporate inhomogeneous variance 9

across cells in our observations or a decay term with decay 10

of RNA at rate δ. Details are described in Supplementary 11

Material Sections P and Q. Our conclusions about the block- 12

ing mechanism hold also for these more general descrip- 13

tions. The simple model is favoured by model comparison 14

when compared to these models, which do not generalize as 15

well to predictions for the over-expression data. Alternative 16

hypotheses to account for the discrepency between model 17

predictions and observations, based on different degradation 18

rates for the different phenotypes, may have some merit, but 19

they are hard to assess within the framework of prediction 20

conditioned on wild type data used to compare the other 21

candidate models (see Supplementary Material Section P). 22

23

To further assess the crowding-induced blocking mech- 24

anism, we suggest directly measuring transit through ring 25

canals in the wild type and over-expression mutant condi- 26

tions. However, this task is nontrivial and would require 27

extended time lapse imaging to track movements of com- 28

plexes through representative subsets of all ring canals. 29

30

Finally, we highlight that the conclusions drawn as a 31

result of this combined modelling-experiment study were 32

made possible through use of Bayesian inference approaches 33

that allowed us to interrogate and interpret quantitative 34

data, making full use of the information contained therein. 35

It is important to note also that our conclusions were 36

reached through the use of an incredibly simple, analytically 37

tractable, coarse-grained model, that allowed us to abstract 38

many of the intricate details, and focus on salient mecha- 39

nisms. We hope that our work serves as an exemplar for 40

future studies in this area. 41
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