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Abstract 

Whole-genome sequencing (WGS) is becoming an increasingly important tool for detecting genomic 

variation.  Blood derived DNA is the current standard for WGS for research or clinical purposes.  We 

compared the level of microbial contamination, sequencing coverage, as well as yield and concordance of 

single-nucleotide polymorphism (SNP) and copy number variant (CNV) calls in WGS from paired blood 

and saliva samples from 5 pediatric heart disease patients.  We found that although saliva samples 

contained a higher proportion of sequence reads that map to the human oral microbiome, these reads were 

readily excluded by mapping the reads to the human reference genome.  Sequencing coverage was low 

only in 1 of 5 saliva samples. Over 95% SNPs (including rare SNPs) but <80% CNVs called in blood 

genomes were detected in paired saliva genomes. These findings suggest that most good quality saliva 

samples can serve as an alternative to blood samples for detection of sequence variants from WGS in 

cardiovascular disease patients. 
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INTRODUCTION 

As the cost of sequencing continues to decrease, whole genome sequencing (WGS) is being 

increasingly used for both research and clinical applications to study the role of genetic variation in 

human disease. The use of blood derived DNA is the current standard for WGS.  Published studies report 

that saliva-derived DNA can be used for array genotyping (Bahlo et al. 2010) and whole-exome 

sequencing (Kidd et al. 2014) as long as the quantity of human DNA in each sample is sufficient.  Wall et 

al. (Wall et al. 2014) reported finding no differences in sequencing quality or variant call error rate 

between blood and saliva samples for both whole exome sequencing (WES) and WGS.  However, there 

have been very few studies comparing WGS results from paired blood and saliva-derived DNA. 

To determine whether saliva-derived DNA can serve as an adequate substitute for blood-derived 

DNA, we compared WGS data from blood- and saliva-derived DNA from pediatric patients recruited into 

the Heart Centre Biobank Registry, a biorepository for childhood onset heart disease (Fung et al. 2013; 

Papaz et al. 2012).  Specifically, we compared the proportion of sequencing reads that map to non-human 

sources in blood versus saliva, the sequencing coverage between blood and saliva samples, and the 

concordance of single nucleotide variant (SNV) and copy number variant (CNV) calls between blood and 

saliva samples.   

 

METHODS 

Study Samples 

Study participants were derived from the Heart Centre Biobank Registry, a multi-center biorepository that 

has been prospectively enrolling pediatric and adult patients with (or at risk for) heart disease from six 

institutions across the province of Ontario, Canada since 2007 (Fung et al. 2013). We accessed paired 

blood and saliva samples from five unrelated individuals participating in the Biobank.  Two (sample pairs 

1 and 2) were probands diagnosed with tetralogy of Fallot (TOF), a type of congenital heart disease, and 
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three (sample pairs 3, 4 and 5) were probands diagnosed with hypertrophic cardiomyopathy (HCM).  All 

participants and/or their parents or legal guardians provided written, informed consent and the study was 

approved by the Institutional Research Ethics Boards at each participating site. 

DNA Quality 

2-5 ml blood was collected in EDTA tubes and 2-4 ml saliva was collected using Oragene saliva kits. 

DNA was extracted from blood or saliva through Chemagic Star robotic system using a magnetic bead 

methodology at the SickKids Centre for Applied Genomics. Quality control checks were performed using 

Agarose Gel Electrophoresis and Nanodrop 2000 Spectrophotometer to verify DNA integrity. DNA 

quantification was measured using Qubit 3.0 Fluorometer to confirm DNA concentration. DNA samples 

were deemed to have met QC thresholds if they had a single clear band on the agarose gel, a minimum 

DNA concentration of 20 ng/µl, and a 260/280 absorbance ratio greater than 1.3.  A total of 1 mcg of 

DNA (final volume 30 µl) at a minimum concentration of 20 ng/µl was used for WGS. 

Sequencing, Read Alignment, and Variant Calling 

WGS was performed using Illumina HiSeq X to a target average coverage depth of 30x.  Sequencing read 

alignment was done using Isaac Aligner to human genome build hg19.  Single nucleotide variant (SNV), 

i.e. single-nucleotide polymorphism (SNP), and small insertion-deletion (indel) calling was performed 

using Isaac Variant Caller with default parameters. To interpret variant pathogenicity, we implemented an 

automated variant prioritization pipeline based on the 2015 American College of Medical Genetics and 

Genomics (ACMG) variant interpretation criteria (Richards et al. 2015).  SNVs identified as pathogenic 

or likely pathogenic by the pipeline were manually confirmed for pathogenicity.  Copy number variants 

(CNVs) were called using Control-FREEC (Boeva et al. 2012) for Sample Pairs 1 and 2 or Canvas 

(Roller et al. 2016) for Sample Pairs 3, 4, and 5. 

Downsampling 
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In order to account for possible bias resulting from differing numbers of reads between blood and saliva 

samples, each sample was randomly reduced to 730 million reads using samtools (version 1.4.1) (Li et al. 

2009).  All subsequent analyses on each pair of blood and saliva sequencing datasets were performed in 

complete datasets and in downsampled datasets. 

Gene Sets and Regions 

We compiled a list of 854 cardiovascular disease-associated (CVD) genes which included genes 

represented in commercially available cardiovascular disease gene panels and previously published genes 

known to be associated with congenital heart disease, cardiomyopathy, and other cardiovascular diseases 

(Andersen et al. 2014).  The genomic regions covered by the canonical transcripts for CVD genes, as well 

as for all genes, were obtained from the Consensus CDS (CCDS) database (Farrell et al. 2014; Harte et al. 

2012; Pruitt et al. 2009) (see Supplemental Table S1 for genomic positions of all CCDS transcripts and 

Supplemental Table S2 for genomic positions of CVD gene transcripts).  For any CVD genes lacking 

transcripts in the CCDS database, we used the transcript start and end positions from Ensembl GRCh37 

release 93 (Zerbino et al. 2018). 

Statistical Analysis 

Microbial contamination analysis: To find the extent of microbial contamination, we extracted the set of 

reads from each sample marked as unmapped to the hg19 reference genome using samtools (version 

1.4.1) (Li et al. 2009).  Then, using FastQ Screen (version 0.11.4) (Wingett and Andrews 2018) running 

BWA (version 0.7.15) (Li and Durbin 2009), we re-mapped the unmapped reads to the human reference 

genome hg19 and the microbial sequences from the Human Oral Microbiome Database (HOMD) (Chen 

et al. 2010) and compared the proportion of previously unmapped reads that remapped to the human 

genome versus the microbiome.   

Coverage comparison: We analyzed genome-wide sequencing coverage for each WGS dataset using the 

genomecov command from the bedtools toolset (version 2.25.0) (Quinlan and Hall 2010) on the aligned 
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reads.  We also used the coverage command from the bedtools toolset to find sequencing coverage within 

the regions covered by all canonical CCDS transcripts and the canonical CCDS transcripts for the 854 

CVD genes.  All three analyses provided a coverage profile with the number of nucleotides covered at all 

sequencing depths for comparison between paired samples. We used the cumulative sum for each 

coverage profile to determine the number of positions covered at or greater than target depth and 

generated the curves for the cumulative coverage data using the statistical software R (version 3.5.1) (R 

Core Team 2018).  We calculated the proportion of the genome covered at a minimum 20x coverage.  

Then, we used a paired t-test on the percentage of the whole genome, CCDS transcripts, and CVD gene 

transcripts covered at 20x or greater in order to find whether coverage in blood was significantly different 

from coverage in saliva. 

Variant comparison: We used the isec command from bcftools (version 1.4.1) (Li et al. 2017) to find the 

intersections of all SNPs called in each blood and saliva sample pair.  We annotated SNPs unique to 

either blood or saliva with snpEff (version 4.3) (Cingolani et al. 2012) to computationally predict variant 

effects.  We repeated this for SNPs falling within canonical CCDS transcripts and within the canonical 

CCDS transcripts for the 854 CVD genes.  Finally, we repeated each of the previous comparisons for rare 

SNPs, i.e. those were absent or occurred at a minor allele frequency (MAF) of less than 1% in the 

Genome Aggregation Database (gnomAD) (Lek et al. 2016).  All SNVs, CNVs, and rare SNVs were 

compared for concordance between paired blood and saliva samples. Where clinical genetic test results 

had identified a pathogenic variant, we compared the detection rate of these known variants in blood 

versus saliva samples.  In addition, we compared the proportion of variants that were concordant between 

paired blood and saliva and the types of variants, i.e. variants in exonic, intronic, intergenic, pseudogene 

regions, or causing gene fusions between blood and saliva.  In order to find the concordance between 

CNVs called in each blood and saliva sample pair, we used the intersect command from bedtools (version 

2.25.0) (Quinlan and Hall 2010) in order to find which CNVs in each sample had >50% overlap with at 

least one other CNV called in its counterpart. 
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RESULTS 

Since the launch of the Heart Centre Biobank Registry in 2007, 7,408 participants were recruited. 531 

blood and 502 saliva samples from recruited participants had DNA quality assessed prior to WGS for 

different research projects.  Average DNA quality metrics for the blood and saliva samples are shown in 

Table 1.  Overall, DNA from 46% saliva samples failed QC and were not sequenced compared to only 

6% QC failure for DNA from blood samples.  The DNA quality metrics for the 5 paired blood and saliva 

samples showed comparable DNA quality between blood and saliva.  

Table 1. DNA quality metrics for blood and saliva derived DNA 
  Pooled samples Paired samples 

  Blood 
DNA 

Saliva 
DNA 

Blood 
DNA 

Saliva 
DNA 

Number of Samples 531 502 5 5 

Fluorometric DNA Concentration (ng/µL) 180 153 314 214 

260/280 Absorbance Ratio 1.84 1.8 1.84 1.74 

260/230 Absorbance Ratio 1.96 1.32 1.36 1.28 

Samples Failing Mandatory Criteria 32 (6%) 231 (46%) 0 (0%) 0 (0%) 

Samples Failing DNA Concentration cut-off 
(< 20 ng/µL) 

0 0 0 0 

Samples Failing 260/280 Absorbance Ratio 
(≤ 1.3) 

0 0 0 0 

Samples Failing Agarose Gel 32 231 0 0 

 

Microbial contamination analysis 

An average of 95.5% of all WGS reads from blood samples and 82.6% of reads from saliva samples 

initially mapped to the hg19 human reference genome.  Of the unmapped reads, 2.6% from blood and 

2.5% from saliva samples re-mapped to the hg19 human reference using FastQ Screen and BWA, 0.09% 

and 10.7% from blood and saliva respectively mapped to the human oral microbiome, and 1.05% and 

1.03% of reads from blood and saliva respectively mapped to both hg19 and the human oral microbiome. 
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Therefore, read mapping to the hg19 human reference genome was effective in excluding most of the 

reads from the human oral microbiome.  The proportion of final mapped and unmapped reads in each 

sample are summarized in Figure 1.  Although a higher proportion of reads from saliva samples mapped 

exclusively to the human oral microbiome compared to blood samples, this difference was not statistically 

significant (p = 0.13). Of note, saliva sample 5 had the highest proportion of reads mapping to the human 

oral microbiome compared to the other samples. After excluding it, the final proportion of reads mapping 

to hg19 increased to 98.2% in blood and 93.8% in saliva. 

Figure 1. Proportion of reads mapping to each reference genome for each blood and saliva pair 

 

Coverage analysis 

The reported mappable mean depth of coverage was more than 30x for 4 of the 5 paired blood and saliva 

samples (Table 2). Sample 5 had a lower mean depth of 22.6x. This was seen despite the DNA quality 

metrics being acceptable in sample 5, which had a DNA concentration of 280 ng/µL, and a 260/280 

absorbance ratio of 1.88. Excluding pair 5, the proportion of the genome with at least 20x coverage for all 

reads ranged from 93% - 96% for blood genomes and from 85% - 94% for saliva genomes (p=0.07). The 

proportion of the genome with at least 20x coverage for 730M randomly downsampled reads ranged from 
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91% - 94% for blood genomes and from 84% - 94% for saliva genomes (p=0.19). The proportion of 

CCDS transcript regions with mean coverage of at least 20x was 94.7% for blood and 92.5% for saliva 

(p=0.12). The proportion of samples with mean coverage of at least 20x within the subset of transcripts 

for the 854 CVD genes was 96.9% for blood and 94.6% for saliva (p=0.08). Therefore, saliva samples 

had overall adequate depth of coverage which was not significantly different from coverage in blood. 

Figure 2 displays the cumulative coverage for the 5 paired samples across the whole genome, in CCDS 

transcripts, and in CVD gene regions.  

Table 2. Sequencing coverage in 5 sample pairs 
 Sample Pair 1 Sample Pair 2 Sample Pair 3 Sample Pair 4 Sample Pair 5 

 Blood Saliva Blood Saliva Blood Saliva Blood Saliva Blood Saliva 

Mappable 
mean depth 

36.5x 33.2x 34.2x 33.0x 37.5x 34.3x 37.0x 31.5x 36.8x 22.6x 

Proportion of 
whole genome 
with 
at least 20x 
coverage for 
all reads 

96.0% 94.6% 95.3% 94.3% 93.7% 85.6% 93.7% 89.3% 93.6% 63.8% 

Proportion of 
whole genome 
with at least 
20x coverage 
for 730M 
downsampled 
reads 

94.5% 94.5% 94.3% 94.3% 90.8% 85.6% 91.1% 83.9% 91.0% 49.8% 
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Figure 2. Average sequencing depth curves, displaying the cumulative proportion of the genome covered 
at a minimum of 20x sequencing depth in 5 paired blood and saliva samples.  The vertical lines indicate 
20x sequencing depth, while the horizontal lines indicate the fraction of the genome at 20x sequencing 
depth or greater.  (a) and (b) show the averaged genome-wide coverage curves for all reads and 
downsampled reads, respectively.  (c) and (d) show the averaged coverage curves for CCDS transcripts 
for all reads and downsampled reads, respectively.  (e) and (f) show the averaged coverage curves for 
CVD gene transcripts for all reads and downsampled reads, respectively. 

 

 

Variant yield between blood and saliva 

SNP concordance: In light of a lower proportion of reads from saliva mapping to the human reference 

genome, we compared if variant yield was also lower in saliva than in blood. The average SNP yield in 

blood was 3.71M and in saliva was only 1% lower at 3.68M (Supplemental Table S3). Also, the 

proportion of SNPs called in blood that were also detected in the paired saliva sample was >95% in all 
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saliva samples for genome-wide calls, for SNPs in all CCDS transcripts, and for SNPs in CVD genes 

(Table 3, Figure 3). Of the discordant SNPs, i.e. SNPs unique to either blood or saliva, only 0.6% were 

exonic; the remainder included 27% intronic, 65% intergenic, and 6.5% within a pseudogene 

(Supplemental Table S3). There was no difference in the types of discordant SNPs between blood and 

saliva samples.    

Proportion of rare SNPs in blood (MAF<1%) that were also detected in saliva genomes was 

lower (but over 90% in all samples) at 90.4±3% genome-wide,  93.2±2% in all CCDS transcripts, and 

93±2% in CVD genes. Further, rare pathogenic variants and variant/s of uncertain significance (VUS) 

identified on previous clinical genetic testing in the 3 hypertrophic cardiomyopathy samples were 

detected in both blood and saliva whole genome pairs from these 3 patients. These included a 

heterozygous pathogenic missense variant in MYH7 (NM_000257.4:c.G1208A:p.R403Q) in Sample Pair 

3, a heterozygous missense VUS in MYBPC3 (NM_000256.3:c.T3548G:p.F1183C) in Sample Pair 4, and 

a heterozygous pathogenic missense variant in MYH7 (NM_000257.4:c.C2722G:p.L908V) in Sample 

Pair 5.  The comparisons for all SNPs over the entire genome, in CCDS transcripts, and CVD gene 

transcripts as well as rare SNPs in the aforementioned regions, are described in Supplemental Tables S4 

- S9. 

CNV concordance: Overall there was considerable variability in CNV calling rates across both blood and 

saliva samples. The average number of CNV calls were 14% lower in saliva compared to blood. The 

proportion of CNVs in blood that were also detected in saliva genomes was lower at 76% genome-wide, 

77% in all CCDS transcripts, and 78% in CVD genes (Figure 3).  The comparisons for all CNVs in each 

sample across the entire genome, in CCDS transcripts, and CVD gene transcripts including shared and 

unique CNVs are described in Supplemental Table S10.  CNV detection was lowest in Sample 5 (<60%) 

compared to the other 4 sample pairs. 
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Table 3. Variant yield in saliva relative to blood genomes 
  Sample 

Pair 1 
Sample 
Pair 2 

Sample 
Pair 3 

Sample 
Pair 4 

Sample 
Pair 5 

Average SEM* 

All SNPs        

Genome-wide 
SNPs 

96.80% 96.3% 98.4% 98.2% 96.6% 97.3% 0.4% 

SNPs in CCDS 
transcripts 

97.40% 97.0% 98.8% 98.6% 97.2% 97.8% 0.4% 

SNPs in CVD 
gene transcripts 

97.40% 97.0% 98.8% 98.6% 97.1% 97.8% 0.4% 

Rare SNPs               

Genome-wide 
SNPs 

89.90% 86.3% 90.1% 93.0% 92.5% 90.4% 1.2% 

SNPs in CCDS 
transcripts 

93.20% 90.4% 93.0% 94.9% 94.3% 93.2% 0.8% 

SNPs in CVD 
gene transcripts 

93.00% 89.2% 92.9% 95.1% 95.0% 93.0% 1.1% 

CNVs               

Genome-wide 
CNVs 

88.70% 86.1% 77.5% 71.6% 58.9% 76.6% 5.4% 

CNVs in CCDS 
transcripts 

95.30% 91.6% 70.6% 78.4% 52.1% 77.6% 7.8% 

CNVs in CVD 
gene transcripts 

95.80% 83.3% 86.7% 68.4% 57.1% 78.3% 6.9% 

 
*SEM, standard error of mean 
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Figure 3. Variant detection in saliva genomes relative to blood genomes (n = 5). The bar graph shows 
average proportion of variants (SNPs, CNVs) called in blood genomes that were also detected in a paired 
saliva sample. Rare SNPs were defined as SNPs with a minor allele frequency < 1% in the general 
population. 
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DISCUSSION 

The advances in genomics research has increased the need for collaboration and sample sharing 

amongst researchers. Population biorepositories often acquire samples from participants remotely. Saliva 

can be stored for long periods of time and shipped at room temperature which makes sample preservation 

during shipping easier compared to blood. However, there has been little evidence regarding the 

suitability of saliva samples for WGS. The study by Wall et al. (2014) found “no difference in the 

sequencing quality or error rate of blood and saliva samples”, but they did not perform a systematic 

comparison of the coverage, microbial contamination, or variant concordance in paired blood and saliva 

samples. Our results showed that a higher proportion of saliva samples (almost 50%) may not meet the 

stringent QC criteria required for WGS. However for samples that do meet stringent QC criteria, the 

quality of WGS data from saliva samples is comparable to blood samples in majority of the samples (80% 

in our study). Our study, using a direct comparison of WGS quality in DNA derived from paired blood 

and saliva samples, revealed good coverage, low microbial contamination and a high degree of 

concordance for variant calls, especially sequence variants between blood and saliva samples.  

When comparing for specific differences between paired samples, we found higher microbial 

contamination in saliva-derived DNA, as shown by a higher proportion of short-read mapping to the 

sequences from HOMD, although this was not statistically different.  However, since these reads typically 

do not map to the human reference genome and remain unmapped during read alignment, they are not 

included in downstream analyses and therefore are unlikely to have a major effect on variant calling. 

There remains a concern that reads mapping to the microbiome in saliva samples compete with the 

mapping of reads to the human genome thereby reducing the resolution of human relevant sequence data. 

This can be addressed by increasing the target coverage depth with higher resolution sequencing. Our 

findings suggest that this may not be routinely required for all saliva samples since the WGS quality was 

comparable to blood in the majority of saliva samples. In particular, rare clinically relevant variants 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted January 28, 2019. ; https://doi.org/10.1101/532564doi: bioRxiv preprint 

https://doi.org/10.1101/532564


15 

 

identified on clinical genetic testing were detectable on WGS of saliva and blood samples from the same 

patients. 

We further found that in 4 of the 5 pairs (80%), the proportion of the genome covered at 20x or 

greater was similar between blood and saliva genomes, with only 2% higher coverage in blood versus 

saliva at 20x both across the genome as well as within all CCDS transcripts and CCDS transcripts for 854 

CVD genes.  Of note, Saliva Sample 5 had a higher proportion of reads that mapped exclusively to the 

human oral microbiome which caused the average read coverage to drop to 22.6x, which is below the 

average target depth of 30x. The DNA quality from saliva sample 5 was comparable to blood based on 

agarose gel results, DNA concentration, and 260/280 absorbance ratios. But it is possible that sample 5  

was improperly collected with more oral microbiome contamination at the time of collection. In a similar 

series of comparisons involving whole exome sequencing, Zhu et al. (2015) found that sequences from 

blood had a 3.3% higher proportion with minimum 20x coverage in blood compared to saliva but this was 

not significantly different. With randomly downsampling each genomic sequence in order to ensure an 

equal number of reads between paired samples, there remained a non-significant difference in coverage 

between blood and saliva genomes, and this difference was lower than the difference reported in exome 

comparisons by Zhu et al. (2015).  

Reassuringly, despite the differences in coverage and microbial contamination in one of the 5 

saliva samples, WGS from saliva samples was able to detect 95% of all SNPs detected in a paired blood 

sample for SNPs genome-wide, within CCDS transcripts, and within CVD gene transcripts.  When 

comparing rare SNPs (MAF < 1%), the proportion of common variants seen in saliva dropped to 90% for 

all rare SNPs, and 93% for SNPs in CCDS transcripts and in CVD genes with a higher number of 

discordant SNPs unique to blood or unique to saliva. This limitation needs to be kept in mind when using 

saliva samples for WGS. Nevertheless, it was reassuring that rare causal SNPs and VUS identified on 

clinical testing could still be detected by WGS in both blood and saliva samples. There were no 

systematic difference between functional categories of SNP calls between blood and saliva genomes. 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted January 28, 2019. ; https://doi.org/10.1101/532564doi: bioRxiv preprint 

https://doi.org/10.1101/532564


16 

 

CNV yield was more variable across blood and saliva samples with lower proportion of shared 

CNVs between blood and saliva – 76% for all CNVs, 77% for CNVs in CCDS transcripts, and 78% for 

CNVs in CVD genes. The lower CNV yield in saliva samples may be the result of the reduced coverage 

in the saliva sample since both Control-FREEC and Canvas utilize read depth in order to call CNVs 

(Boeva et al. 2012; Roller et al. 2016).  As a result, a reduction in read depth may have a larger effect on 

CNV calling in a given dataset.  On the other hand, the lack of a best practices pipeline for CNV calling 

(Trost et al. 2018) may also be a contributing factor to the observed inconsistency in CNV calls.  

In summary, saliva DNA that met stringent QC checks provided good quality WGS data with 

comparable detection of common and rare SNPs despite evidence of oral microbiome sequence in some 

saliva samples but CNV yield in saliva was lower. The utility of saliva samples can be improved by 

ensuring proper technique for saliva collection, selecting saliva DNA that meets stringent QC criteria, and 

verifying that target sequencing depth has been met and that at least 90% of reads map to the human 

genome in WGS data from saliva samples as a minimum threshold for use in downstream analysis. Use of 

microbiome kit and/or higher depth of sequencing may help WGS yield in samples not meeting QC 

metrics; however this was not explored in our study. Our findings therefore suggest that good quality 

DNA from saliva samples can serve as an adequate alternative for WGS when blood samples are not 

available. 
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Data Access 

All patients have consented to data sharing, and WGS data files are in the process of being submitted to 

the European Genome-Phenome Archive (EGA). 
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