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Abstract 18 

The molecular clock and its phylogenetic applications to genomic data have changed how we study and 19 

understand one of the major human pathogens, Mycobacterium tuberculosis (MTB), the causal agent of 20 

tuberculosis. Genome sequences of MTB strains sampled at different times are increasingly used to 21 

infer when a particular outbreak begun, when a drug resistant clone appeared and expanded, or when a 22 

strain was introduced into a specific region. Despite the growing importance of the molecular clock in 23 

tuberculosis research, there is a lack of consensus as to whether MTB displays a clocklike behavior and 24 

about its rate of evolution. Here we performed a systematic study of the molecular clock of MTB on a 25 

large genomic data set (6,285 strains), covering different epidemiological settings and most of the 26 

known global diversity. We found that sampling times below 15-20 years were often insufficient to 27 

calibrate the clock of MTB. For data sets where such calibration was possible we obtained a clock rate 28 

between 1x10-8 and 5x10-7 nucleotide changes per-site-per-year (0.04 - 2.2 SNPs per-genome-per-29 

year), with substantial differences between clades. These estimates were not strongly dependent on the 30 

time of the calibration points as they changed only marginally when we used epidemiological isolates 31 

(sampled in the last 40 years) or ancient DNA samples (about 1,000 years old) to calibrate the tree. 32 

Additionally, the uncertainty and the discrepancies in the results of different methods were sometimes 33 

large, highlighting the importance of using different methods, and of considering carefully their 34 

assumptions and limitations. 35 
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Introduction 40 

In 1962, Zuckerland and Pauling used the number of amino-acid differences among hemoglobin 41 

sequences to infer the divergence time between human and gorilla, in what was the first application of 42 

the molecular clock (Zuckerland and Pauling 1962). Although many at the time found it “crazy” 43 

(Morgan 1998), soon the molecular clock was incorporated in Kimura’s neutral theory of molecular 44 

evolution (Kimura 1968), and found its place in the foundations of evolutionary biology. Thanks to the 45 

improvements of sequencing technologies and statistical techniques, it is now possible to use sequences 46 

sampled at different times to calibrate the molecular clock and study the temporal dimension of 47 

evolutionary processes in so called measurably evolving populations (Drummond et al. 2003). These 48 

advancements have been most relevant for ancient DNA (aDNA), and to study the evolutionary 49 

dynamics of pathogen populations, including one of the deadliest human pathogens: Mycobacterium 50 

tuberculosis (WHO 2018). 51 

In 1994, Kapur and colleagues pioneered molecular clock analyses in MTB: they assumed a clock rate 52 

derived from other bacteria and used genetic polymorphisms to infer the age of divergence of different 53 

MTB strains (Kapur et al. 1994). Since then, phylogenetic analyses with a molecular clock have been 54 

used to estimate the timing of the introduction of MTB clades to particular geographic regions, the 55 

divergence time of the MTB lineages, and the age of the most recent common ancestor (MRCA) of the 56 

MTB complex (Comas et al. 2013, Bos et al. 2014, Merker et al. 2015, Kay et al. 2015, Brynildsrud et 57 

al. 2018, Liu et al. 2018, Rutaihwa et al. 2019). Clock models, together with phylodynamic models in a 58 

Bayesian setting have been used to characterize tuberculosis epidemics by determining the time at 59 

which outbreaks began and ended (Eldholm et al. 2015, Lee et al. 2015, Folkvardsen et al. 2017, 60 

Bainomugisa et al. 2018, Kühnert et al. 2018), establishing the time of origin and spread of drug 61 

resistant clades (Cohen et al. 2015, Eldholm et al. 2015, Eldholm et al. 2016, Brynildsrud et al. 2018), 62 
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and correlating population dynamics with historical events (Pepperell et al. 2013, Merker et al. 2015, 63 

Eldholm et al. 2016, Liu et al. 2018, Merker et al. 2018). One example of the potential of molecular 64 

clock analyses is the study of Eldholm and colleagues (Eldholm et al. 2016), where the collapse of the 65 

Soviet Union and of its health system was linked to the increased emergence of drug resistant strains in 66 

former Soviet countries, thus providing insights into the evolutionary processes promoting drug 67 

resistance. 68 

A key aspect about estimating evolutionary rates and timescales in microbial pathogens is assessing 69 

their clocklike structure. All molecular clock analyses require some form of calibration. In many 70 

organisms this consists in constraining internal nodes of phylogenetic trees to known divergence times 71 

(for example, assuming codivergence with the host, or the fossil record), but in rapidly evolving 72 

pathogens and studies involving aDNA, it is also possible to use sampling times for calibrations (Seo et 73 

al. 2002). In the latter approach, the ages of tips of the tree, rather than those of internal nodes are 74 

constrained to their collection times. Clearly, the sampling time should capture a sufficient number of 75 

nucleotides changes to estimate the evolutionary rate, which will depend on the evolutionary rate of the 76 

organism and the extent of rate variation among lineages. Some popular methods to assess such 77 

clocklike structure are the root-to-tip regression and the date randomization test (DRT). 78 

While many of the studies inferring evolutionary rates for MTB reported support for a molecular clock 79 

(Eldholm et al. 2015, Kay et al. 2015, Eldholm et al. 2016, Folkvardsen et al. 2017, Brynildsrud et al. 80 

2018, Kühnert et al. 2018, Merker et al. 2018, Rutaihwa et al. 2019), some found a lack of clocklike 81 

structure (Comas et al. 2013, Bainomugisa 2018, Kühnert et al. 2018), and others assumed a molecular 82 

clock without testing whether the data had a temporal structure (Pepperell et al. 2013, Cohen et al. 83 

2015, Merker et al. 2015, Lee et al. 2015, Liu et al. 2018). In all studies where the calibration was 84 

based on the sampling time (tip-dating), the clock rate estimates spanned roughly an order of 85 

magnitude around 10-7 nucleotide changes per site per year. This was in contrast with the results of 86 
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Comas et al. 2013, where the clock was calibrated assuming co-divergence between MTB lineages and 87 

human mitochondrial haplotypes (i.e. internal node calibrations), and was estimated to be around 10-9 88 

nucleotide changes per site years. Some lineage 2 (L2) data sets (Eldholm et al. 2016) were found to 89 

have a faster clock rate compared to lineage 4 (L4) data sets (Pepperell et al. 2013,  Eldholm et al. 90 

2015, Folkvardsen et al. 2017, Brynildsrud et al. 2018 ), while others showed lower clock rates, 91 

comparable with L4 (Merker et al. 2018, Rutaihwa et al. 2019 ). Studies based on aDNA produced 92 

slightly lower clock rate estimates (Bos et al. 2014, Kay et al. 2015,  Sabin et al. unpublished 93 

https://www.biorxiv.org/content/10.1101/588277v1) compared to studies based on modern strains, thus 94 

suggesting support for the phenomenon of time dependency of clock rates in MTB (Ho et al. 2011). All 95 

these results indicate that different MTB lineages and populations might have different clock rates, and 96 

that the age of the calibration points could influence the results of the analyses. Comparing the results 97 

of different studies has however a main limitation: the observed differences could be due to different 98 

rates of molecular evolution among MTB populations, to methodological discrepancies among studies, 99 

or a combination of both.  100 

Here, we assembled a large genomic data set including sequences from all major lineages of MTB 101 

(6,285 strains in total, belonging to six human adapted lineages, L1-L6, and one lineage predominantly 102 

infecting cattle, M. bovis). We then applied the same set of methodologies to the whole data set, to 103 

individual lineages and sub-lineages, and to selected local outbreaks, thus ensuring the comparability of 104 

the results among different clades and epidemiological settings. 105 

With this systematic approach, we addressed the following questions: 106 

1) Is there a molecular clock in MTB and how do we detect it? 107 

2) What is the clock rate of MTB, and what is its variation among lineages, sub-lineages and individual 108 

outbreaks? 109 
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3) Are clock rate estimates dependent on the age of the calibration points in MTB? 110 

 111 

Results and Discussion 112 

Is there a molecular clock in MTB? 113 

Finding evidence of temporal structure is the first step when performing molecular clock analyses 114 

(Rieux and Balloux 2016). If there is not enough genetic variation between samples collected at 115 

different times, these cannot be used to calibrate the molecular clock, i.e. the population is not 116 

measurably evolving. To test the temporal structure of MTB data sets we identified 6,285 strains with a 117 

good quality genome sequence, and for which the date of isolation was known (Methods, Sup. Table 118 

S1). 119 

We used root to tip regression to evaluate the temporal structure of the whole MTB complex and of the 120 

individual lineages (L1-L6 and M. bovis) (Rambaut et al. 2016). The root to tip regression is a 121 

regression of the root-to-tip distances as a function of sampling times of phylogenetic trees with branch 122 

lengths in units of nucleotide changes per site, where the slope corresponds to the rate. Under a perfect 123 

clock-like behavior, the distance between the root of the phylogenetic tree and the tips is a linear 124 

function of the tip’s sampling year: recently sampled strains are further away from the root than older 125 

ones, such that the R2 is the degree of clocklike behavior (Korber et al. 2000). We obtained very low 126 

values of R2 for all lineages (maximum 0.1 for M. bovis), indicating a lack of strong clock-like behavior 127 

(Sup. Fig. S2). Additionally, we found a weak negative slope for L1, L5 and L6, normally interpreted 128 

as evidence for a lack of temporal structure, or overdispersion in the lineage-specific clock rates 129 

(Rambaut et al. 2016, Sup. Fig. S2, Sup. Table S3). Negative slope of the regression line can be caused 130 

by an incorrect placement of the root (Tong et al.2018). To address this potential problem, we repeated 131 
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these analyses rooting the trees with an outgroup, we found a negative slope for L1 and L6 and a 132 

positive slope for L5, although with an extremely low value of R2 (< 0.01). These results indicate that 133 

the negative slope of L1 and L6 and the low R2 values of the three data sets are not due to an incorrect 134 

placement of the root (Sup. Fig. S4). 135 

Since root to tip regression can be used only for exploratory analyses and not for formal hypothesis 136 

testing (Rambaut et al. 2016), we performed a date randomization test (DRT). The DRT consists in 137 

repeatedly reshuffling the date of sampling among taxa and then comparing the clock rate estimates 138 

among the observed and reshuffled data sets (Rieux and Balloux 2016). If the estimation obtained from 139 

the observed data does not overlap with the estimations obtained from the randomized data sets, we can 140 

conclude that the observed data has a stronger temporal signal than expected by chance, such that there 141 

is statistically significant clocklike structure (Rieux and Balloux 2016). Usually the DRT is 142 

implemented in a Bayesian phylogenetic setting, however, considering the size and the number of data 143 

sets included in this study, an excessive amount of computation would be required. To overcome this 144 

problem, we estimated the clock rate with the least-squared dating method implemented in LSD (To et 145 

al. 2015). The advantage of this method is that it is orders of magnitude faster than fully Bayesian 146 

approaches, and can therefore be used on data sets with thousands of taxa and with more 147 

randomizations compared to the10-20 typically used in a Bayesian setting (Duchene et al. 2018). A 148 

limitation of least squares dating is that it typically assumes a single tree topology and vector of branch 149 

lengths, and a strict clock (i.e. all branches have the same clock rate). However, a simulation study 150 

showed that maximum likelihood trees produced similar estimates compared to the true topology, and 151 

that it is robust to uncorrelated variation of the clock rate among branches in the phylogeny (To et al. 152 

2015, Duchene et al. 2016 a, Duchene et al. 2018). 153 

For each data set, we reshuffled the year of sampling among tips 100 times and estimated the clock rate 154 

of observed and randomized data sets with LSD. All eight data sets except L5 and L6 passed the DRT 155 
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(Methods, Sup. Fig. S2, Sup. Table S3). L5 and L6 are the two lineages with the lowest sample size, 156 

117 and 33 strains, respectively. Moreover most strains were sampled in a short temporal period 157 

compared to the other lineages (Sup. Figs. S5-S10). It is likely that with additional strains sampled 158 

across a larger time period, L5 and L6 will also show evidence for a molecular clock.  159 

We complemented the analysis described above with a Bayesian phylogenetic analysis in Beast2 160 

(Bouckaert et al.  2014). Since this is computationally expensive, we reduced the large data sets 161 

(MTBC, L1, L2, L4 and M. bovis) to 300 randomly selected strains. For each data set we selected the 162 

best fitting nucleotide substitution model identified with jModelTest 2 (Darriba et al. 2012). For this 163 

first analysis, we assumed a coalescent constant population size prior, used a relaxed clock model, and 164 

a 1/x prior for the clock rate, constrained between 10-10 and 10-5 nucleotide changes per site per year. 165 

This interval spans the range of clock rates proposed for M. tuberculosis and for most other bacteria 166 

(Duchene et al 2016 b, Eldholm et al. 2016). We observed that for all data sets the posterior was much 167 

more precise (with a narrow distribution) than the prior, thus indicating that the data was informative 168 

(Drummond et al. 2006). Again, the only exceptions were L5 and L6, where the posterior distribution 169 

was flat, ranging between 10-10 and 10-7 nucleotide changes per site per year, confirming the lack 170 

temporal structure of these two data sets (Sup. Fig. S2).  171 

We repeated these analyses on 23 sub-lineages and 7 outbreaks and local populations to test whether 172 

we could detect a temporal structure also in smaller, less diverse data sets. With this sub-sampling 173 

scheme, we could compare the results among different clades, among outbreaks with different 174 

epidemiological characteristics, and among local outbreaks and global data-sets (see Methods). We 175 

found that 11 sub-lineages and 5 local populations passed the DRT (Sup. Table S3, Sup. Figs. S5-S8 176 

and S11-S13). 177 
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All the data sets that failed the DRT had less than 350 genomes, or were composed of strains sampled 178 

in a temporal range of 20 years or less. Additionally, only two of the ten data sets sampled across less 179 

than 15 years, and three of the twelve data sets with less than 100 strains passed the DRT (Fig. 1; Sup. 180 

Table S2), indicating that large sample sizes and wide temporal sampling windows appear to be 181 

necessary to obtain reliable estimates of evolutionary rates and timescales in MTB. Conversely, the 182 

number of polymorphic positions and the genetic diversity measured with Watterson’s estimator did not 183 

correlate with the outcome of the DRT (Sup. Fig S14).  184 

Among the three methods generally used to study the temporal structure of a data set, the root to tip 185 

regression resulted in a negative slope, and therefore failed to detect the temporal structure of some of 186 

the data sets that passed the DRT (i.e. L1, L4.1.2 and L1.1.1). Nevertheless, root to tip regression can 187 

be useful to identify data sets where the temporal signal comes from a single strain, or a few strains 188 

(see below). Comparing prior and posterior distributions of the clock rates was also useful to detect the 189 

presence of temporal structure, although this was not always in agreement with the results of the DRT: 190 

some of the data sets that did not pass the DRT (e.g. L2.2.1_nc2, Trewby 2016) had a posterior 191 

distribution of the clock rate more distinct from the prior than some of the data set that passed the DRT 192 

(e.g. L1.1.1, L1.2.1 and L1.2.2) (Sup. Figs. S5 and S7-S8, Sup. Table S3). A possible reason for this 193 

could be that LSD and Beast have different statistical power with different data sets. Additionally, in 194 

some cases the deviation of the posterior distribution of the clock rate from the prior could be an 195 

artifact caused by tree prior misspecification, and not the result of genuine temporal structure (Möller et 196 

al. 2018). 197 

 198 

 199 

 200 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 17, 2019. ; https://doi.org/10.1101/532390doi: bioRxiv preprint 

https://doi.org/10.1101/532390
http://creativecommons.org/licenses/by/4.0/


 
 

10 
 

Sensitivity of the clock rate estimates to the model assumptions  201 

In Bayesian analyses, different models and priors are based on different assumptions about the 202 

evolutionary processes, and can thus influence the results (Bromham et al. 2018). Often different sets 203 

of assumptions are tested in a Bayesian framework by comparing their marginal posterior probability 204 

with the Bayes factor, and the most likely model is then chosen to estimate the parameters of interest 205 

(Bromham et al. 2018). Given the size and number of the data sets considered in this study, it is not 206 

possible to assess the relative fit of many competing models for all data sets. However, model 207 

misspecification can result in biased estimates. It is therefore important to investigate the robustness of 208 

the results to different models and priors.  209 

We repeated the Bayesian analysis using a uniform prior instead of the 1/x prior on the clock rate. We 210 

ran a Beast analysis sampling from the priors and found that the uniform prior was biased towards high 211 

clock rates and put most weight on rates between 10-6 and  10-5 nucleotide changes per site per year 212 

(Sup. Fig. S15). For all data sets, we compared the posterior distribution of the clock rate obtained with 213 

the two different priors (Sup. Figs. S16-S18, Sup. Table S3).  214 

Some data sets showed hardly any difference (e.g. MTBC, L1, L2, L3, L4 etc.), indicating that the data 215 

was informative and that the data set had a strong temporal structure. However, this did not always 216 

correlate with the results of the DRT. For example, the subset of 300 strains of L2 and the data set 217 

Trewby 2016 did not pass the DRT but showed a distinct posterior distribution that was not sensitive to 218 

the prior choice. Other data sets, including three that passed the DRT by a small margin (L1.1.1, L1.2.1 219 

and L1.2.2), were more sensitive to the prior choice and resulted in two distinct posterior distributions, 220 

indicating a weaker temporal structure (Sup. Fig. S8).  221 

An additional assumption of the phylogenetic model that can influence the results of molecular clock 222 

analyses is the tree prior (also known as demographic model). We tested the sensitivity to the tree prior 223 
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by repeating the analysis with an exponential population growth (or shrinkage) prior instead of the 224 

constant population size. For this analysis, we used the 1/x prior on the clock rate and we considered 225 

only the data sets that passed the DRT (21 data sets). The constant population model is a specific case 226 

of the exponential growth model (when the growth rate is equal to zero). Therefore, if the 95% Highest 227 

Posterior Density interval (HPD) of the growth rate does not include zero, we can conclude that the 228 

data reject a demographic model with constant population size. We found that 14 data sets rejected the 229 

constant population size model, and that all of them had positive growth rates (Sup. Table S3). The 230 

three data sets that were found to be sensitive to the prior on the clock rate were also sensitive to the 231 

tree prior, confirming their low temporal structure and information content, while the results for all 232 

other data sets were only moderately influenced by the tree prior (Sup. Figs. 19-20, Sup. Table S3).    233 

Overall, we found that, except for three data sets (L1.1.1, L1.2.1 and L1.2.2), the clock rate estimates 234 

were robust to different priors of the clock rate and to different demographic models. To compare the 235 

clock rates of different data sets, we report the analysis with the 1/x prior on the clock rate because the 236 

uniform prior can bias the estimates upward. For data sets that showed evidence against the constant 237 

population size model (95% HPD of the growth rate not including zero), we report the results of the 238 

analysis with the exponential population growth, and for the others, we report the results of the analysis 239 

with constant population size.  240 

 241 

What is the clock rate of MTB, and what is its variation among lineages, sub-242 

lineages and outbreaks? 243 

We found that the point estimates of all data sets where we detected temporal structure range between 244 

2.86x10-8 (L3 Beast) and 4.82x10-7 (Eldholm 2016 Beast) nucleotide changes per site per year. While 245 

some data sets had a low range of the 95% confidence interval (CI), reaching the hard limit imposed by 246 
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LSD of 10-10, most of the CI and 95% highest posterior density intervals (HPD) are included between 247 

10-8 and 5x10-7 (Fig. 2 and Sup. Table S3). This range encompasses previous estimates obtained with 248 

epidemiological samples and aDNA and is among the lowest in bacteria, thus supporting our 249 

conclusion from above: tip-dating with MTB requires samples collected over a long period of time 250 

because of the slow clock rate. 251 

There was one notable exceptions to the pattern described above: the data sets L4_nc which showed a 252 

much higher clock rate estimate compared to all other data sets included in this study (~10-6; Sup. Table 253 

S3). However, this is most likely an artifact: 1) L4_nc is the smallest among all considered data sets, 254 

with 32 strains. 2) Most strains are identical or nearly so, collected in the same year, and form a 255 

monophyletic clade (Sup. Figs. S9 and S21). It is known that data sets with a high degree of temporal 256 

and phylogenetic clustering can pass the DRT also when they do not have temporal structure (Duchene 257 

et al. 2015). 3) The root to tip regression suggests that the temporal signal comes from one single strain 258 

in L4_nc (Sup. Fig. S7). We therefore excluded the L4_nc data set from further analyses. 259 

Our results suggest that different lineages of MTB have different clock rates, for example most L1 data 260 

sets had point estimates higher than most L4 data sets, although the CI and HPD were often 261 

overlapping. The point estimates indicate that the clock rate of L1 is more than double the clock rate of 262 

L4: two average L1 strains are expected to differ by 12 SNPs after ten years of divergence, while two 263 

average L4 strains will differ by 5 SNPs after the same period of time. This was supported by the 264 

results of both LSD, where the 95% CI of L1 and L4 did not overlap, and Beast, where the 95% HPD 265 

overlapped partially, but the two posterior distributions showed distinct peaks (Fig. 2, Sup Table S3, 266 

Sup. Fig. S22). A practical implication of these results pertains to the widespread use of SNP distances 267 

to identify ongoing transmission in MTB epidemiological studies. Usually, recent transmission is 268 

postulated when two or more strains differ by a number of SNPs below a certain threshold (Hatherell et 269 

al. 2016). However this approach will result in systematically lower levels of transmission for clades 270 
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with faster rates of molecular evolution. For example, a recent study reported low transmission rates of 271 

L1 compared to L2 and L4 in Vietnam (Holt et al. 2018), which could partially be explained by a faster 272 

clock rate of L1, opposed to reduced ongoing transmission.  273 

When considering the results of Beast, also L2 had a higher clock rate compared to L4, and all data sets 274 

included in the sub-lineage L2.2.1 showed a faster clock rate compared to the complete L2 data set 275 

(Fig. 2). The sub-lineage L2.2.1 includes the so called “modern Beijing” family, which was shown to 276 

be epidemiologically associated with increased transmission, virulence and drug resistance (Glynn et 277 

al. 2006, Hanekom et al. 2010, de Steenwinkel et al. 2012, Ribeiro et al. 2014, Holt et al. 2018, Wiens 278 

et al. 2018), and to have a higher mutation rate compared to L4 strains (Ford et al. 2013). However, the 279 

LSD estimates for L2.2.1 and for its sub-lineages, despite showing the same trend of Beast, support a 280 

lower clock rate compared to Beast, and have large confidence intervals, overlapping with the results of 281 

L2 and L4 (Fig. 2).  282 

Further evidence of among-lineage variation is provided by the results of the Bayesian analyses, where 283 

for most data sets we obtained coefficients of variation (COV) with a median of 0.2 – 0.3, and not 284 

abutting zero (Sup. Table S3), thus rejecting the strict clock (Drummond et al. 2006).  285 

Taken together, these results indicate that there is a moderate variability among the current rate of 286 

molecular evolution of different MTB lineages, which could be caused by different mutation rates as it 287 

was reported for L2 and L4 (Ford et al. 2013), and support the idea that the inference of transmission in 288 

MTB should move from the use of SNP distances to methods that incorporate information about the 289 

molecular clock (Stimson et al. 2019).  290 

In our analysis we included two outbreaks caused by strains belonging to the same sub-lineage (L4.1.2; 291 

Eldholm et al. 2015, Lee et al. 2015). This gives us the opportunity to compare the molecular clock of 292 

clades with a similar genetic background in different epidemiological settings. The Eldholm 2015 data 293 
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set is a sample of an outbreak in Argentina, in which resistance to multiple antibiotics evolved several 294 

times independently (Eldholm et al. 2015). The Lee 2015 data set represents an outbreak of drug 295 

susceptible strains in Inuit villages in Québec (Canada). The clock rates of these two data sets were 296 

highly similar (95% CI and HPD ranging between 5.07x10-8 and 8.88x10-8 for all analyses; Fig. 2, Sup. 297 

Table S3) thus suggesting that, at least in this case, different epidemiological characteristics, including 298 

the evolution of antibiotic resistance, do not have a large impact on the rate of molecular evolution of 299 

MTB.  300 

 301 

A faster clock for the ancestor of M. bovis? 302 

We showed that current clock rates are moderately different among different data sets. A different 303 

question is whether the clock rate was constant during the evolutionary history of the MTB complex. 304 

When looking at the phylogenetic tree of the MTB complex, rooted with the genome sequence of M. 305 

canettii, one notices that strains belonging to different lineages, despite being all sampled in the last 40 306 

years, have different distances from the root (Fig. 3). For example, since their divergence from the 307 

MRCA of the MTB complex, the two M. africanum lineages (L5 and  L6) and especially M. bovis, 308 

accumulated more nucleotide changes than the lineages belonging to MTB sensu stricto (L1-L4; Fig. 309 

3). Additionally, all methods (root to tip regression, LSD and Beast) if used without an outgroup, 310 

placed the root on the branch between M. bovis and all other lineages, while rooting the tree with the 311 

outgroup M. canettii placed the root on the branch connecting MTB sensu stricto with M. africanum 312 

(L5 and L6) and M.bovis. The different root placement affects the clock rate estimation only 313 

moderately (4.16x10-8 LSD analysis without outgroup, 5.59x10-8 LSD analysis with outgroup, Sup. 314 

Table S3), but it is a further indication of the variation of the rate of molecular evolution during the 315 

evolutionary history of the MTB complex. The observation that all M. bovis strains, despite having a 316 
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clock rate similar to all other data sets, have a larger distance from the root of the MTB complex tree 317 

compared to other lineages is intriguing, and could be explained by a faster rate of molecular evolution 318 

of the ancestors of M. bovis (Figs. 2-3). It is believed that M. bovis switched host (from human to 319 

cattle) (Brosh et a. 2002, Mostowy et al. 2002, Brites et al. 2018), and it is possible that during the 320 

adaptation to the new host several genes were under positive selection, thus leading to an increase in 321 

the accumulation of substitutions in the M. bovis genome. Another possibility is that the ancestor of M. 322 

bovis experienced a period of reduced population size, a bottleneck, and as a consequence, slightly 323 

deleterious mutations were fixed by genetic drift, resulting in a faster clock rate compared to larger 324 

populations where selection is more efficient in purging deleterious mutations (Ohta 1987, Bromham 325 

and Penny 2003).     326 

 327 

Time dependency of the clock rate 328 

It has been suggested that in MTB, as in other organisms, the clock rate estimation is dependent on the 329 

age of the calibration points (Ho et al. 2005, Ho et al. 2011, Comas et al. 2013, Duchene et al. 2014, 330 

Duchene et al. 2016 b), and that using recent population-based samples could result in an 331 

overestimation of the clock rate, because these samples include deleterious mutations that have not yet 332 

been purged by purifying selection. However, the validity of the time dependency hypothesis has been 333 

contested in general (Emerson and Hickerson 2015), and for MTB in particular (Pepperell et al. 2013). 334 

Here we used an approach similar to Rieux et al. (2014) and tested whether the time dependency 335 

hypothesis was supported by our data. We repeated the analyses presented above, only this time we 336 

included the aDNA genome sequences of three MTB strains obtained from Precolumbian human 337 

remains from Peru (Bos et al. 2014). If the clock rate estimates depend on the age of the calibration 338 

points, adding ancient genomes should result in lower clock rates. We performed this analysis with 339 
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LSD, using the complete data set (6,285 strains), and with Beast, using the sub-sample of 300 randomly 340 

selected strains described above, and an additional independent random sub-sample of 500 strains 341 

(Methods).  342 

With LSD, adding the aDNA samples resulted in a slightly faster clock rate, conversely all the analyses 343 

performed with Beast resulted in marginally slower clock rates when the aDNA samples were included 344 

(Table 1). These results indicate that the effect of the age of the calibration points on the clock rate is 345 

modest, and they are corroborated by the observation that MTB mutation rates in vitro and in vivo, 346 

estimated with fluctuation assays and resequencing of strains infecting macaques, are remarkably 347 

similar to the clock rates obtained in our study (~ 3x10-8 - 4x10-7; Ford et al. 2011).  348 

The aDNA samples considered in this study are not optimal to test the time dependency hypothesis 349 

because they belong to the M. pinnipedii clade of the MTB complex (Bos et al. 2014). The modern 350 

strains of this lineage are rarely sampled, because they are infecting seals and sea lions rather than 351 

humans. The only additional aDNA samples available for MTB are L4 samples isolated from 18th 352 

century Hungarian mummies (Kay et al. 2013), however these samples are a mix of strains with 353 

different genotypes, and cannot be easily integrated with the data and pipelines used in this study.  354 

Additional aDNA samples from older periods and belonging to other lineages are necessary to better 355 

investigate the time dependency hypothesis in MTB. Recently, Sabin and colleagues (Sabin et al. 356 

unpublished: https://www.biorxiv.org/content/10.1101/588277v1) reported the sequencing of a high 357 

quality MTB genome from the 17th century, this data will contribute to the investigation of the time 358 

dependency hypothesis in MTB. 359 

 360 

 361 
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Dating MTB phylogenies 362 

In most cases, the goal of molecular clock studies is not to estimate the clock rates, but rather the age of 363 

the phylogenetic tree and of its nodes. Conceptually, this means extrapolating the age of past events 364 

from the temporal information contained in the sample set. If we exclude the few aDNA samples that 365 

are available (Bos et al. 2014, Kay et al. 2015), all MTB data sets have been sampled in the last 40 366 

years. It is therefore evident that the age estimates of recent shallow nodes will be more accurate than 367 

medium and deep nodes. In part, this is reflected in the larger CI and HPD of the age of ancient nodes 368 

compared to more recent ones. Extrapolating the age of trees that are thousands of years old with 369 

contemporary samples is particularly challenging, because the observed data captures only a small 370 

fraction of the sample’s evolutionary history, and these are the cases where aDNA samples are most 371 

valuable.  372 

Nevertheless, the age of the MRCA of the MTB complex and of its lineages is highly relevant to 373 

understand the emergence and evolution of this pathogen and a debated topic (Wirth et al. 2008, Comas 374 

et al. 2013, Bos et al. 2014). The LSD analyses on the tree rooted with M. canettii estimated the MRCA 375 

of the MTB complex to be between 2,828 and 5,758 years old (Sup. Table S3). These results are highly 376 

similar to the ones of Bos and colleagues (2,951 – 5,339) which were obtained with Bayesian 377 

phylogenetics and a much smaller sample size (Bos et al. 2014). These estimates should be taken with 378 

caution because of the intrinsic uncertainty in estimating the age of a tree that is several thousands of 379 

years old, calibrating the molecular clock with the sampling time of modern strains and only 3 aDNA 380 

samples. A more approachable question is the age of the MRCA of the individual MTB lineages. Here 381 

we can consider the results of four different analyses: the LSD and Beast analyses on the individual 382 

lineages (L1-L4, and M. bovis), and the LSD and Beast analyses on the complete MTB complex 383 

(including the aDNA samples), from which the age of the MRCA of the lineages can be extracted (L1-384 
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L6, and M. bovis). When we combined all these results, merging the CI and HPD, we obtained an 385 

estimate of the age of the MTB lineages which accounts for the uncertainty intrinsic in each analysis, 386 

but also for the differences among inference methods and models, thus providing a more conservative 387 

hypothesis. In all our analyses, the point estimates of the age of all lineages resulted to be at most 2,500 388 

years old, and the combined CI and HPD extended to a maximum of 11,000 years ago for L2 (95% CI 389 

of the LSD analysis; Fig. 4, Sup. Table S23). The large CI of L2 was maybe due to among-lineage 390 

variation of the clock rate in L2, as discussed above. While L5, L6 and M. bovis have younger MRCAs 391 

and narrower confidence intervals, we should note that for these lineages the sampling is much less 392 

complete compared to L1-L4, and it is possible that further sampling will add more basal strains to the 393 

tree, thus resulting in older MRCAs. For the other lineages, where the sampling is more representative 394 

of the global diversity, the confidence intervals of the age of the MRCAs extend over several thousands 395 

of years, and the point estimates of the four analyses spread over 1,000 – 2,000 years. This shows that 396 

we should be very careful when interpreting the results of tip dating in MTB, especially if our goal is to 397 

estimate the age of ancient nodes such as the MRCAs of MTB lineages. Conservative researchers 398 

might want to use different methods; several model and prior combinations should be formally tested in 399 

Beast, and the final results can be combined in one range providing an estimation of the uncertainty of 400 

the clock rate and of the age of some specific node of the tree. 401 

Altogether our results highlight the uncertainty of calibrating MTB trees with tip-dating, they 402 

nevertheless support the results of Bos et al. 2014 that found the MRCA of the MTB complex to be 403 

relatively recent, and not compatible with the out of-Africa-hypothesis (Wirth et al. 2008, Comas et al. 404 

2013) in which the MTB lineage differentiated in concomitance with the dispersal of Homo sapiens out 405 

of Africa, about 70,000 years ago. Dating analyses based on DNA samples can only reconstruct the 406 

evolutionary history of the data set as far back as the MRCA of the sample. It is possible that in the 407 

future new lineages will be sampled, and the MTB phylogeny will be updated moving the MRCA 408 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 17, 2019. ; https://doi.org/10.1101/532390doi: bioRxiv preprint 

https://doi.org/10.1101/532390
http://creativecommons.org/licenses/by/4.0/


 
 

19 
 

further in the past. Additionally, it is also possible that extinct lineages were circulating and causing 409 

diseases much earlier that the MRCA of the strains that are circulating now. This hypothesis is 410 

supported by the detection of molecular markers specific for MTB in archeological samples (reviewed 411 

in Brites and Gagneux 2015), the oldest of them in a bison’s bone about 17,500 years old (Rothschild et 412 

al. 2001). Several such studies directly challenge the results of tip-dating presented here because they 413 

reported molecular markers specific to MTB lineages in archeological samples that predate the 414 

appearance of those lineages as estimated by tip dating (Taylor et al. 2007, Hershkovitz et al. 2008,  415 

Nicklisch et al. 2012). However, there is a controversy regarding the specificity of some of the used 416 

markers, and the potential contamination of some of the samples by environmental mycobacteria 417 

(Wilbur et al. 2009, Donoghue et al. 2009). 418 

Whole genome sequences from additional aDNA samples are needed to reconcile these two diverging 419 

lines of evidence. Ideally they should belong to different lineages, span different periods, and include 420 

samples older than the currently available aDNA from Peruvian human remains. 421 

 422 

Methods 423 

Bioinformatic pipeline 424 

We identified 21,734 MTB genome sequences from the sequence read archive (Sup. Table S24). All 425 

genome sequences were processed similarly to what was described in Menardo et al. (2018). 426 

We removed Illumina adaptors and trimmed low quality reads with Trimmomatic v 0.33 427 

(SLIDINGWINDOW:5:20) (Bolger et al. 2014). We excluded all reads shorter than 20 bp and merged 428 

overlapping paired-end reads with SeqPrep (overlap size = 15) (https://github.com/jstjohn/SeqPrep). 429 
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We mapped the resulting reads to the reconstructed ancestral sequence of the MTBC (Comas et al. 430 

2013) using the mem algorithm implemented in BWA v 0.7.13 (Li and Durbin 2009). Duplicated reads 431 

were marked by the MarkDuplicates module of Picard v 2.9.1 432 

(https://github.com/broadinstitute/picard). We performed local realignment around Indel with the 433 

RealignerTargetCreator and IndelRealigner modules of GATK v 3.4.0 (McKennaet al. 2010). We used 434 

Pysam v 0.9.0 (https://github.com/pysam-developers/pysam) to exclude reads with alignment score 435 

lower than (0.93*read_length)-(read_length*4*0.07)): this corresponds to more than 7 miss-matches 436 

per 100 bp. We called SNPs with Samtools v 1.2  mpileup (Li 2008) and VarScan v 2.4.1 (Koboldt et 437 

al. 2012) using the following thresholds: minimum mapping quality of 20; minimum base quality at a 438 

position of 20; minimum read depth at a position of 7X; minimum percentage of reads supporting the 439 

call 90%; no more than 90%, or less than 10% of reads supporting a call in the same orientation (strand 440 

bias filter). SNPs in previously defined repetitive regions were excluded (Comas et al. 2013). We 441 

excluded all strains with average coverage < 15 X. Additionally, we excluded genomes with more than 442 

50% of the SNPs excluded due to the strand bias filter, and genomes with more than 50% of SNPs with 443 

a percentage of reads supporting the call included between 10% and 90%. We filtered out genomes 444 

with phylogenetic SNPs belonging to different lineages or sub-lineages (only for L4) of MTB, as this is 445 

an indication that a mix of strains could have been sequenced. To do this, we used the diagnostic SNPs 446 

obtained from Steiner et al. 2014 and Stucki et al. 2016 for L4 sub-lineages.  We excluded all strains 447 

for which we could not find the date of isolation 1) in the SRA meta-information, 2) in the associated 448 

publications, 3) from the authors of the original study after inquiry. We divided all remaining strains by 449 

lineage (L1 -L6 and M. bovis), and excluded strains with a number of called SNPs deviating more than 450 

three standard deviations from the mean of the respective lineage. We built SNPs alignments for all 451 

lineages including only variable positions with less than 10% of missing data. Finally, we excluded all 452 

genomes with more than 10% of missing data in the alignment of the respective lineage. After all 453 
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filtering steps, we were able to retrieve 6,285 strains with high quality genome sequences and an 454 

associated date of sampling (Sup. Table S1). 455 

 456 

Dataset subdivision 457 

To perform a systematic analysis of the molecular clock in MTB we considered different data sets: 458 

1) the complete data set (6,285 strains) 459 

2) the different lineages of MTB (L1, L2, L3, L4, L5, L6, M. bovis) 460 

3) the sub-lineages of  L1 (L1.1.1, L1.1.1.1, L1.1.2, L1.1.3, L1.2.1 and L1.2.2) and L2 (L2.1, L2.2.1, 461 

L2.2.2 and L2.2.1.1) as defined by Coll et al. 2014; the sub-lineages of L4 (L4.1.1, L4.1.2, L4.1.3, 462 

L4.4, L4.5, L4.6.1 and L4.10) as defined by Stucki et al . 2016. Additionally, we identified two L4 463 

clades that were not classified by the diagnostic SNPs of Stucki et al. 2016 (L4_nc and L4.1_nc, 464 

respectively, included into L4.6.2 and L4.1.2 as defined by Coll et al. 2014), and three sub-clades of 465 

L2.2.1 that were not previously designated as sub-lineages (L2.2.1_nc1, L2.2.1_nc2 and L2.2.1_nc3) 466 

(Supplementary Figs. S11-S13). 467 

4) Selected data sets representing outbreaks or local populations that have been used for molecular 468 

clock analyses in other studies 469 

 Lee et al. 2015 - Mj clade outbreak among a Inuit population in Canada (L4) 470 

 Eldholm et al. 2015 -  Multi-drug resistant outbreak in Argentina (L4) 471 

 Eldholm et al.  2016 – Afghan family outbreak in Oslo (L2) 472 

 Trewby et al. 2016 – M. bovis in Northern Ireland 473 

 Crispell et al. 2017 – M. bovis in New Zealand 474 
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 Folkvardsen et al. 2017 -  C2/1112-15 outbreak in Denmark (L4) 475 

 Bainomugisa et al. 2018 – Multi-drug resistant outbreak on Daru island in PNG (L2) 476 

 477 

LSD analysis 478 

For all data sets, we assembled SNPs alignments including variable positions with less than 10% of 479 

missing data. We inferred phylogenetic trees with raxml 8.2.11 using a GTR model (-m GTRCAT -V 480 

options). Since the alignments contained only variable positions, we rescaled the branch lengths of the 481 

trees  rescaled_branch_length = ((branch_length * alignment_lengths) / (alignment_length + 482 

invariant_sites)), Duchene and colleagues (Duchene et al. 2018) showed that this method produced 483 

similar results compared to ascertainment bias correction. We then used the R package ape (Paradis et 484 

al. 2018) to perform root to tip regression after rooting the trees in the position that minimizes the sum 485 

of the squared residuals from the regression line. Root to tip regression is only recommended for 486 

exploratory analyses of the temporal structure of a dataset and it should not be used for hypothesis 487 

testing (Rambaut et al. 2016). A more rigorous approach is the date randomization test (DRT)(Ramsden 488 

et al. 2008), in which the sampling dates are reshuffled randomly among the taxa and the estimated 489 

molecular clock rates estimated from the observed data is compared with the estimates obtained with 490 

the reshuffled data sets. This test can show that the observed data has more temporal information that 491 

data with random sampling times. For each dataset, we used the least square method implemented in 492 

LSD v0.3-beta (To et al. 2015) to estimate the molecular clock in the observed data and in 100 493 

randomized replicates. To do this, we used the QPD algorithm allowing it to estimate the position of the 494 

root (option -r a) and calculating the confidence interval (options -f 100 and -s). We defined three 495 

different significance levels for the DRT: 1) the simple test is passed when the clock rate estimate for 496 

the observed data does not overlap with the range of estimates obtained from the randomized sets. 2) 497 
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The intermediate test is passed when the clock rate estimate for the observed data does not overlap with 498 

the confidence intervals of the estimates obtained from the randomized sets. 3) The stringent test is 499 

passed when the confidence interval of the clock rate estimate for the observed data does not overlap 500 

with the confidence intervals of the estimates obtained from the randomized sets.          501 

 502 

Bayesian phylogenetic analysis 503 

Bayesian molecular clock analyses are computationally demanding and problematic to run on large 504 

data sets. Therefore we reduced the thirteen largest data sets (MTBC, L1, L1.1.1, L1.1.1.1, L2, L2.2.1, 505 

L2.2.1.1, L2.2.1_nc1, L2.2.1_nc3, L4, L4.1.2, L4.10 and M.  bovis) to 300 randomly selected strains. 506 

For each data set we used the  Bayesian information criterion implemented in jModelTest 2.1.10 507 

v20160303 (Darriba et al. 2012) to identify the best fitting nucleotide substitution model among 11 508 

possible schemes including unequal nucleotide frequencies (total models = 22, options  -s 11 and -f ).  509 

We performed Bayesian inference with Beast2 (Bouckaert et al. 2014). We corrected the xml file to 510 

specify the number of invariant sites as indicated here: https://groups.google.com/forum/#!topic/beast-511 

users/QfBHMOqImFE, and used the tip sampling year as calibration.  512 

We ran four Beast analyses with different settings: we used a relaxed lognormal clock model 513 

(Drummond et al. 2006), the best fitting nucleotide substitution model according to the results of 514 

jModelTest, and two different coalescent priors: constant population size and exponential population 515 

growth (or shrinkage). We chose a 1/x prior for the population size [0- 109], two different priors for the 516 

mean of the lognormal distribution of the clock rate (1/x and uniform) [10-10 – 10-5], a normal(0,1) prior 517 

for the standard deviation of the lognormal distribution of the clock rate [0 – infinity]. For the 518 

exponential growth rate prior, we used the standard Laplace distribution [-infinity – infinity].  For all 519 

data sets, we ran at least two runs, we used Tracer 1.7.1 (Rambaut et al. 2018) to identify and exclude 520 
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the burn-in, to evaluate convergence among runs and to calculate the estimated sample size (ESS). We 521 

stopped the runs when at least two chains reached convergence, and the ESS of the posterior and of all 522 

parameters were larger than 200. 523 

 524 

Analyses with the complete MTB complex and aDNA 525 

We analyzed the complete data set of 6,285 genomes with the same methods described above. The only 526 

difference was that for the LSD analysis, we rooted the input tree using Mycobacterium canetti 527 

(SAMN00102920, SRR011186) as outgroup. We did this because we noticed that without outgroup, all 528 

methods placed the root on the branch separating M. bovis from all other lineages, and not on the 529 

branch separating MTB sensu stricto from the other lineages. 530 

To test the time dependency hypothesis, we repeated the LSD and Beast analyses on the MTB complex, 531 

adding the aDNA genome sequences of three MTB strains obtained from Precolumbian Peruvian 532 

human remains (Bos et al. 2014). These are the most ancient aDNA samples available for MTB. For 533 

LSD, we assigned as sampling year the confidence interval of the radiocarbon dating reported in the 534 

original publication. For Beast, we assigned uniform priors spanning the confidence interval but we 535 

failed to reach convergence, therefore we used the mean of the maximum and minimum years in the 536 

confidence interval (SAMN02727818: 1126 [1028-1224], SAMN02727820: 1117 [1023 - 1211] , 537 

SAMN02727821: 1211 [1141 – 1280]). We ran three different analyses with Beast: we used the sub-538 

sample of 300 strains with two different priors on the clock rate (1/x and uniform), and an independent 539 

sub-sample of 500 strain, for this last data set (500 strains) we assumed a HKY model and used a 540 

uniform prior on the clock rate (Sup. Table S3).   541 
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To summarize the results of the Beast analysis with the aDNA samples and retrieve the age of the 542 

MRCA of the individual lineages, we considered the analysis performed on the subset of 500 strains: 543 

we randomly sampled 5,000 trees from the posterior (after excluding the burn-in), and calculated the 544 

Maximum clade credibility tree with the software Treeannotator v2.5.0.  545 

 546 
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Table1 859 

Results of LSD and Beast for the MTB complex with and without aDNA samples. With Beast we 860 

performed three different analyses, two using a sub-sample of 300 strains and different priors on the 861 

clock rate (1/x and uniform), and one using a sub-sample of 500 strains (Methods, Sup. Table S3)) 862 

Dataset Clock rate 

MTBC 6,285 + M. canettii  (LSD) 5.59E-08 (4.12E-08, 6.17E-08) 

MTBC 6,285 + M. canettii + aDNA 

(LSD) 6.93E-08 (5.48E-08, 8.42E-08) 

MTBC 300 (Beast 1/x) 8.2254E-08 (4.964E-08, 1.141E-07) 

MTBC 300 +aDNA (Beast 1/x) 7.3978E-08 (4.648E-08, 1.019E-07) 

MTBC 300 (Beast unif) 8.26E-08 (4.82E-08, 1.14E-07) 

MTBC 300 +aDNA (Beast unif) 7.1794E-08 (4.157E-08, 9.851E-08) 

MTBC 500 (Beast unif) 6.08E-08 (4.21E-08, 8.07E-08) 

MTBC 500 +aDNA (Beast unif) 5.20E-08 (3.41E-08,  7.12E-08) 

 863 

 864 

 865 

 866 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 17, 2019. ; https://doi.org/10.1101/532390doi: bioRxiv preprint 

https://doi.org/10.1101/532390
http://creativecommons.org/licenses/by/4.0/


 
 

37 
 

 867 

 868 

Figure 1. Results of the DRT for all data sets ordered by size and temporal range. Data sets with fewer 869 

strains sampled in a shorter period of time tended to fail the DRT. 870 

 871 
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 873 

Figure 2. Estimated clock rates of all lineages, sub-lineages and local data sets that passed the DRT. 874 

Solid lines represent the 95% confidence interval estimated with LSD, dashed lines represent the 95% 875 

highest posterior density (HPD) estimated by Beast (the larger dot is the median of the posterior 876 

distribution). We show here the results of the Beast analysis with the 1/x prior on the clock rate. For 877 

data sets that rejected the constant population size, we show the result obtained with the exponential 878 

population growth prior, for the other data sets we show the results obtained with the constant 879 

population size prior. Data sets marked with * have been reduced to 300 randomly picked strains for 880 

the Beast analysis.  881 
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 882 

 883 

 884 

Figure 3. a) The Maximum Likelihood tree of the 6,285 strains considered in this study rooted with the 885 

genome sequence of M. canetti. b) Phylogenetic distance from the root (expected nucleotide changes 886 

per site) of MTB strains by lineage 887 
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Figure 4.  The inferred age of the MTB lineages.  900 

LSD : results of the LSD analysis performed on the individual lineages. Beast: results of the Beast 901 

analysis performed on the individual lineages (median values). LSD MTBC + aDNA: results of the 902 

LSD analysis performed on the complete data set of 6.285 strains + 3 aDNA samples, the age of the 903 

MRCA of the individual lineages was identified on the calibrated tree. Beast MTBC + aDNA: results of 904 

the Beast analysis performed on the random subsample of 500 strains + 3 aDNA samples, the age of the  905 

MRCA of the individual lineages was identified on the calibrated tree (median values). The confidence 906 

intervals were obtained merging the 95% CI and HPD of all analyses. The shaded area represents the 907 

age of the MRCA of the MTB complex obtained with the LSD analyses (with and without aDNA, the 908 

two 95% CI were merged). For L5 and L6 we report only the age inferred on the complete MTB 909 

complex tree, because when analyzed individually these two data sets showed a lack of temporal 910 

structure (they failed the DRT). 911 
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Supplementary Tables and Figures 921 

Supplementary Table S1 922 

File: Supplementary_tableS1.tsv 923 

 List of strains used in this study with sampling year and accession numbers 924 
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Supplementary Figure S2 945 

 946 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 17, 2019. ; https://doi.org/10.1101/532390doi: bioRxiv preprint 

https://doi.org/10.1101/532390
http://creativecommons.org/licenses/by/4.0/


 
 

44 
 

Supplementary Figure S2 947 

 948 

For each data set we report the results of the root to tip regression, the results of the Date 949 

Randomization Test (DRT) with LSD, and the comparison of the prior and posterior distribution of the 950 

clock rate. The simple DRT is passed when the clock rate estimate for the observed data does not 951 

overlap with the range of estimates obtained from the randomized sets. The intermediate DRT is passed 952 

when the clock rate estimate for the observed data does not overlap with the confidence intervals of the 953 

estimates obtained from the randomized sets. The stringent DRT is passed when the confidence interval 954 

of the clock rate estimate for the observed data does not overlap with the confidence intervals of the 955 

estimates obtained from the randomized sets. Large data sets (MTBC, L1, L2, L4 and M. bovis) were 956 

randomly sub-sampled to 300 strains for the Beast analysis.   957 

 958 

Supplementary Table S3 959 

File: Supplementary_tableS3.xlsx 960 

Results of Beast and LSD for all data sets 961 

 962 

 963 

 964 
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Supplementary Figure S4 970 

 971 

972 
 973 

 974 

Root to tip regression analysis of L1, L5 and L6. The difference compared to Supplementary Fig. S2 is 975 

that the root was not placed in the position that minimizes the sum of the squared residuals from the 976 

regression line, but was obtained from the complete MTBC tree as shown in Fig. 3a, and it is therefore 977 

defined by the outgroup of each of these lineages. 978 

 979 
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Supplementary Figure S5 990 
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Supplementary Figure S6 992 
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Supplementary Figure S7 994 
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Supplementary Figure S8 996 
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Supplementary Figures S5-S8 998 

For each data set we report the results of the root to tip regression, the results of the Date 999 

Randomization Test (DRT) with LSD, and the comparison of the prior and posterior distribution of the 1000 

clock rate. The simple DRT is passed when the clock rate estimate for the observed data does not 1001 

overlap with the range of estimates obtained from the randomized sets. The intermediate DRT is passed 1002 

when the clock rate estimate for the observed data does not overlap with the confidence intervals of the 1003 

estimates obtained from the randomized sets. The stringent DRT is passed when the confidence interval 1004 

of the clock rate estimate for the observed data does not overlap with the confidence intervals of the 1005 

estimates obtained from the randomized sets. Large data sets (L1.1.1, L1.1.1.1, L2.2.1, L2.2.1.1, 1006 

L2.2.1_nc1, L2.2.1_nc3,  L4.10, L4.1.2) were randomly sub-sampled to 300 strains for the Beast 1007 

analysis.   1008 
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Supplementary Figure S9 1019 
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Supplementary Figure S10 1021 

 1022 

Supplementary Figures S9 - S10 1023 

Distribution of the sampling years for all data sets 1024 
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Supplementary Figure S11 1029 

 1030 

 1031 

Sub-lineages of L1 that were included in the analysis. Clades colored in gray did not pass the DRT, 1032 

clades colored in black passed the DRT. *: simple DRT passed, ** intermediate DRT passed, ***: 1033 

stringent DRT passed. 1034 
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Supplementary Figure S12 1039 

 1040 

 1041 

Sub-lineages and outbreaks of L2 that were included in the analysis. Clades colored in gray did not 1042 

pass the DRT, clades colored in black passed the DRT. *: simple DRT passed, ** intermediate DRT 1043 

passed, ***: stringent DRT passed. Dotted lines represent local two outbreaks from previous studies. 1044 
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Supplementary Figure S13 1049 

 1050 

 1051 

Sub-lineages and outbreaks of L4 that were included in the analysis. Clades colored in gray did not 1052 

pass the DRT, clades colored in black passed the DRT. *: simple DRT passed, ** intermediate DRT 1053 

passed, ***: stringent DRT passed. Dotted lines represent three outbreaks from previous studies. 1054 
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Supplementary Figure S14  1059 
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Supplementary Figure S14  1061 

Results of the DRT for all data sets ordered by genetic diversity (Watterson’s estimator and number of 1062 

polymorphic positions) and temporal range. Data sets with fewer strains sampled in a shorter period of 1063 

time tended to fail the DRT irrespectively of the genetic diversity of the data set. 1064 

 1065 

Supplementary Figure S15 1066 

 1067 

 1068 

Comparison of different priors on the clock rate (1/x prior and uniform prior). The uniform prior place 1069 

most weight on high clock rates, while the 1/x prior distributes the weight through all order of 1070 

magnitude.  1071 

 1072 
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Supplementary Figure S16 1074 
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Supplementary Figure S17 1076 
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Supplementary Figure S18 1078 

 1079 

 1080 

Supplementary Figures S16-S18 1081 

Posterior distribution of the clock rate, obtained with two different priors (1/x and uniform  1082 

[10-10 – 10-5]). The prior distributions for the two analyses are shown in Sup. Fig. S15.  1083 

 1084 

 1085 

 1086 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 17, 2019. ; https://doi.org/10.1101/532390doi: bioRxiv preprint 

https://doi.org/10.1101/532390
http://creativecommons.org/licenses/by/4.0/


 
 

61 
 

Supplementary Figure S19 1087 
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Supplementary Figure S20 1089 

 1090 

Supplementary Figures S19-S20 1091 

Comparison of the posterior distribution of the clock rate obtained with a constant population size and 1092 

an exponential population growth prior. 1093 
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Supplementary Figure S21 1102 

 1103 

Phylogenetic tree of data set L4_nc with tips colored according to the year of sampling 1104 
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Supplementary Figure S22 1115 

 1116 

Posterior distribution of the clock rate for L1 and L4. These are the results of the analysis with the 1/x 1117 

prior on the clock rate and the exponential population growth (or shrinkage) prior.  1118 
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Supplementary Table S23 1125 

The age of the MTB complex and of its lineages resulted from different analyses 1126 

Lineage LSD1 Beast2 LSD + aDNA3 Beast + aDNA4 

MTBC 
-2287 

[-3742, -1849] NA 
-1449 

[-2414, -812] NA 

L1 
1245 

[510, 1470] 
1178 

[-113, 1827] 327 
-230 

[-1354, 489] 

L2 
-358 

[-9035, 587] 
1133 

[179, 1559] 575 
114 

[-809, 732] 

L3 
1006 

[-949, 1385] 
-632 

[-4665, 683] 983 
638 

[-55, 1111] 

L4 
-410 

[-1906, 91] 
428 

[-192, 860] 582 
200 

[-676, 779] 

L5 NA NA 1131 
877 

[29, 1250] 

L6 NA NA 633 
181 

[-766, 809] 

M. bovis 
692 

[297, 849] 
959 

[344, 1431] 551 
936 

[374, 1286] 
 1127 
1 Age of the most recent common ancestor (negative values = BC, positive values = AD), point estimate 1128 

and 95% CI. These estimates refer to the individual analyses performed on each data set. 1129 
2 Age of the most recent common ancestor (negative values = BC, positive values = AD), median value 1130 

and 95% HPD. These estimates refer to the individual analyses performed on each data set. Since Beast 1131 

placed the root in the “wrong” position we have no estimates for the MTB complex. The results for L3 1132 

refer to the analysis with constant population size, all other data sets rejected the constant population 1133 

size model, therefore we report the results of the exponential population growth analysis.  1134 
3 Age of the most recent common ancestor (negative values = BC, positive values = AD), point estimate 1135 

and 95% CI. These estimates refer to a single analysis performed on the complete data set of 6,285 1136 

strains + 3 aDNA samples; LSD outputs confidence intervals only for the MRCA of the tree and not for 1137 

the nodes.  1138 
4 Age of the most recent common ancestor (negative values = BC, positive values = AD), median value 1139 

and 95% HPD. These estimates refer to a single analysis performed on the random subset of MTBC 1140 

composed of 500 strains + 3 aDNA samples; since Beast placed the root in the “wrong” position we 1141 

have no estimates for the MTB complex. Nevertheless we could retrieve the age of the MRCA of the 1142 

individual lineages. 1143 
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Supplementary Table S24 1145 

File: Supplementary_tableS24.tsv 1146 

List of all accession numbers, before filtering 1147 

 1148 
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