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Abstract

Fine-scale rates of meiotic recombination vary by several orders of magnitude across the

genome, and are known to differ between species and even between populations. Studying the

differences in recombination maps across populations has been stymied by the confounding

effect of differences in demographic history. To address this problem, we developed a method

that infers fine-scale recombination rates while taking demography into account and applied

our method to infer population-specific recombination maps for each of 26 diverse human pop-

ulations. These maps recapitulate many aspects of the history of these populations including

signatures of the trans-Atlantic slave trade and the Iberian colonization of the Americas. We

also investigated modulators of the local recombination rate, finding an unexpected role for

Polycomb-group proteins and the tri-methylation of H3K27 in elevating recombination rates.

Further differences in the recombination landscape across the genome and between popula-

tions are driven by variation in the gene that encodes the DNA-binding protein PRDM9, and

we quantify the weak effect of meiotic drive acting to remove its binding sites.
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Meiotic recombination is a fundamental genetic process and a critical evolutionary force which

generates haplotypic diversity in sexually reproducing species. In many species, including humans,

a zinc finger-containing protein, PRDM9, directs recombination, resulting in hotspots of recombi-

nation at its binding sites (1). Yet, PRDM9 binds ubiquitously throughout the genome, including

at promoters, and only a subset of these correspond to recombination hotspots, suggesting that

PRDM9 binding may be necessary but not sufficient (2). PRDM9 is capable of trimethylating

H3K4 and H3K36 (3), and in species that lack a functional copy of PRDM9, recombination is con-

centrated at promoters (4), indicating that chromatin structure plays a role in recombination (5).

PRDM9-directed recombination has fundamental consequences: recombination hotspots act as

breakpoints for chromosomal inheritance, shaping patterns of linked selection (6), and an excess

of sites where PRDM9 binds one chromosome but not its homolog can lead to male sterility (7,8).

Such asymmetric binding sites are common in inter-species hybrids, providing a mechanism for

the long-known phenomenon of PRDM9 acting as a speciation gene (9). Furthermore, asymmetric

binding followed by the introduction of a double-strand break and subsequent homology-directed

repair results in meiotic drive against the PRDM9-binding allele, which is equivalent to genic

selection at the population level (10). Over evolutionary timescales, this meiotic drive erodes the

binding sites of PRDM9, generating strong positive selection on PRDM9 mutants with new binding

sites (11,12), explaining why PRDM9 is one of the fastest evolving genes (13). These evolutionary

dynamics have been studied theoretically (10,14) and between species (12), but previous empirical

investigations have been primarily qualitative rather than quantitative.

We developed a new method, called pyrho, to infer fine-scale recombination rates while tak-

ing population demography into account and applied it to 26 diverse human populations from

phase 3 of the 1000 Genomes Project (1KG) (15). We then used the resulting accurate, high-

resolution maps to investigate the determinants, impacts, and dynamics of recombination rate vari-

ation. Software implementing our method and the inferred recombination maps are available at

https://github.com/popgenmethods/pyrho.

Our method uses polymorphism data from unrelated individuals to infer fine-scale recombi-

nation maps and can be applied to either phased or unphased data. We make use of a composite

likelihood approach (16–18) that has been shown to have favorable statistical properties (19), but

unlike previous methods we avoid computationally expensive Markov chain Monte Carlo (MCMC)

by using a penalized likelihood framework and gradient-based optimization. Our approach is be-

tween 10 and 450 times faster than LDhat (17), a popular MCMC-based method, while improving
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accuracy (Section S1 of Supplementary Material, Figure 1A, Figure S2, and Table S1). We also

make use of our recent work on computing two-locus likelihoods (20): this allows us to scale to

hundreds of individuals whereas LDhat can accommodate at most 100 diploid individuals, and,

importantly, enables us to account for non-equilibrium demographic histories. Failing to account

for past fluctuations in population size has been shown to significantly impact the accuracy of

inferred fine-scale recombination rates (20–22). The details of our method are presented in Sec-

tion S1 of Supplementary Material.

Using samples of unrelated individuals, we are able to produce more accurate, higher res-

olution maps from tens to hundreds of individuals than admixture-based (23, 24) or trio-based

methods (25), which require data from thousands or tens of thousands of individuals, making our

method applicable to a broader set of populations, including unadmixed populations and popu-

lations with few sequenced individuals. To explore variation in fine-scale recombination rates

across human populations, we inferred population size histories for each of the 26 populations in

1KG (15) using smc++ (26) (Figure 2A) and used these size histories to infer population-specific

fine-scale recombination maps. Our maps provide a significantly better fit of the observed r2, a

commonly used measure of linkage disequilibrium, especially at finer scales (mean square error

between empirical and theoretical quantiles: p < 1 × 10−5 for each population considered–CEU,

CHB, and YRI–for all comparisons between our maps and those inferred in (15, 23, 25, 27); two-

sided permutation test; Section S1.2.3 of Supplementary Material, and Figures 1B and S3). This

improvement is particularly pronounced in non-European populations, such as Yoruba (YRI), and

could be due to unrealistic assumptions of equilibrium demography made by other methods, a

mismatch between the populations used to compute the other maps (e.g., the recombination maps

from DECODE (25) are inferred using Icelanders), or to previous methods having hyperparameters

tuned to European-like demographies.

Our inferred recombination maps are largely concordant between populations, with high cor-

relation between all maps, even at the single base pair resolution (Spearman’s ρ > 0.70 for all

pairs), but some differences remain. As seen in Figure 2B, the correlation between recombination

maps largely recapitulates known demographic history, clustering continental-level super popula-

tions, and at a finer resolution separating northern and southern European populations, and sepa-

rating the eastern African Luhya (LWK) from west African and primarily west African-descended

populations. Admixed American populations show similarity to both African and European pop-

ulations, particularly the Spanish (IBS), especially in Puerto Ricans (PUR), providing evidence
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that the trans-Atlantic slave trade and European colonization, respectively, may have impacted the

recombination rates of present-day admixed American populations.

While such correlations in fine-scale recombination rates could be due to increased sharing

of recombinations in the genealogy of individuals from more closely related populations, they

could reflect population-level differences in the determinants of fine-scale recombination rate, such

as differences in local chromatin structure, PRDM9 binding site locations, or PRDM9 alleles.

Indeed, there are multiple PRDM9 alleles that bind different motifs in humans (28), and while

the PRDM9-A allele predominates in all non-African populations, both the the PRDM9-A and

PRDM9-C alleles are common in African populations, suggesting that African populations may

have additional recombination hotspots. This is borne out in our inferred maps, with PRDM9-A

binding motifs showing elevated recombination rates in all populations but the PRDM9-C binding

motif only showing elevated rates in African populations (Figure 2C).

An important consequence of PRDM9-driven recombination is meiotic drive against PRDM9

binding alleles, resulting from homology directed repair of double-strand breaks initiated at the

binding motif. While this process has been examined using the divergence between humans and

closely related species (12, 29), the magnitude of the effect has not been quantified. As mei-

otic drive is equivalent to genic selection on evolutionary timescales (10), we may summarize its

strength in terms of an effective selection coefficient, s, acting against PRDM9 binding alleles.

This selection must be strong enough to explain the substantial divergence between humans and

closely related species at PRDM9 binding sites (12, 29), but not so strong as to drive population

level differences within humans: male hybrids from species of mice with substantial differences in

the locations of PRDM9 binding sites are infertile (7,8), whereas such incompatibilities obviously

do not exist in humans.

To estimate the selection coefficient s, we computationally predicted genomic regions bind

PRDM9-A across the genome for each haplotype in 1KG and constructed a diallelic sample fre-

quency spectrum (SFS) for each population by treating sequences that can putatively bind PRDM9-

A as one allele and sequences that cannot as the alternative allele (Section S1 of Supplementary

Material). Because PRDM9 is predicted to bind ubiquitously and not all PRDM9 binding sites are

recombination hotspots, we subdivided each SFS by local recombination rate. We then used each

SFS to infer s while controlling for background selection and misspecification of the demography

(Section S1 of Supplementary Material). For low to moderate recombination rates, we inferred

selection coefficients close to zero, consistent with these PRDM9 binding sites not being “true”
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recombination hotspots, while for the highest recombination rates, we inferred weak but non-zero

selection against the PRDM9 binding allele (s ≈ 5− 15× 10−5, Figure 3A).

The above analysis implicitly assumes that the strength of selection has been temporally con-

stant, which is certainly violated as the motif-determining zinc finger array of PRDM9 evolves

extremely rapidly (e.g., archaic hominins do not have the PRDM9-A allele) (30). To address this

issue, we constructed an SFS of PRDM9 non-binding alleles that are private to Europeans (or

private to East Asians) that have most likely arisen since the divergence of Europeans and East

Asians (Section S1 of Supplementary Material), and compared the proportion of rare alleles to that

seen in a putatively neutral SFS of private SNPs. The observed deficit of singletons and excess of

alleles present in more copies (doubletons, tripletons, and quadrupletons) are consistent with an

s between 0.5 × 10−4 and 3 × 10−4, suggesting that our previous estimate of s is likely a lower

bound, but of the correct order of magnitude (Figure 3B).

Because fine-scale recombination rates vary substantially even outside of PRDM9-driven

hotspots, we also searched for modulators of fine-scale recombination rates beyond PRDM9, find-

ing a role for chromosome length, distance to the telomere, and chromatin state. Specifically, there

is a nearly linear relationship between total physical and total genetic length across chromosomes,

with a significantly positive slope and intercept (Figure S4A; slope, p = 7.76 × 10−13; intercept

p = 1.30 × 10−7). The positive intercept confirms that chromosomes require some minimum

number of crossovers during meiosis, while the positive slope indicates that longer chromosomes

can and do have more crossovers. Furthermore, recombination rates are elevated in subtelomeric

regions (Figure S4B), likely due to the geometry of the chromosomes during meiosis (31).

We also found a significant role for chromatin structure in shaping fine-scale recombination

rates. We used annotations from chromHMM (32) called on 127 ENCODE epigenomes (33); be-

cause this dataset does not contain calls in gametic cells, we used the most common chromatin

state across the 127 cell types as the label for each locus. We found that recombination rate varies

significantly across chromatin states (Figure 4; ANOVA p < 2.2 × 10−16), and that this effect is

not driven by differences in background selection (Figure S6 and Section S4 of Supplementary

Material). Repetitive regions of the genome have the lowest recombination rates, consistent with

a previous finding that a motif present in THE1B repeats is associated with lower recombination

rates (2), and suggesting that recombination suppression in repetitive regions is a broader phe-

nomenon. We also found lower recombination rates in transcribed regions, providing support for

the hypothesis that PRDM9 evolved to direct recombination away from functionally important re-
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gions. Furthermore, recombination rates are low in “closed” heterochromatic or quiescent regions

perhaps because these regions preclude access to the recombination machinery.

We found that chromatin states partially characterized by H3K27me3, especially those called

as being repressed by Polycomb group proteins (PcGPs), have the highest recombination rates,

suggesting a role for H3K27me3 and PcGPs in meiotic recombination. This connection has been

noted before, with PcGPs being recruited to double-strand breaks (34) and disruption of the PcGP

repression pathway leading to improper chromosomal segregation (35). This improper segregation

in PcGP mutants may be due to a reduced number of successful crossover events in the absence of

the H3K27me3 marks deposited by PcGPs. We also note that the substantial impact of chromatin

on local recombination rates, along with differences between chromatin structure in male and

female gametic progenitor cells, could explain previously observed sex-specific differences in fine-

scale recombination rates (36). While this manuscript was in preparation, an analysis of a large

number of Icelandic trios also found that H3K27me3 and PcGPs are associated with higher local

recombination rates (37).

The distribution of PRDM9 binding sites across chromatin states is non-uniform (Figure S4D;

χ2 test p < 2.2 × 10−16) and putative PRDM9 binding is associated with a 49% increase in

recombination rate (Figure S4C, t-test p < 2.2 × 10−16), but the variation in recombination rate

across chromatin state cannot be explained by differences in PRDM9 binding (p < 2.2 × 10−16

when controlling for PRDM9 binding status). “Bivalent” chromatin states characterized by active

H3K4me1 marks and repressive H3K27me3 marks are particularly enriched for putative PRDM9

binding sites, with over 90% of loci in such states being within 100 bp of a putative PRDM9

binding site. This enrichment cannot be explained by the methyltransferase activity of PRDM9,

which trimethylates H3K4 and H3K36 (3), leaving the cause of this enrichment unknown.

To investigate the interplay of PRDM9 and chromatin state, we compared a model where

PRDM9 affects recombination rate in a chromatin-independent fashion (independent effects model)

with a model where PRDM9 can have different effects in different chromatin contexts (dependent

effects model), and found that the dependent effects model fits better (F -test p < 2.2× 10−16). In

spite of favoring the dependent effects model, we found that in most chromatin states, the predicted

mean recombination rate is similar to that in the independent effects model (Figure 4), indicating

that PRDM9 and chromatin state usually act independently. A notable exception is at transcription

start sites, where PRDM9 binding is found to have an attenuated effect on recombination rate. This

could indicate that the recently discovered ability of PRDM9 to act as a transcription factor may
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be antagonistic to its role in directing recombination or that PRDM9-independent mechanisms act

to suppress recombination at transcriptions start sites (2).

Data and software availability

Software implementation of pyrho and inferred recombination maps can be downloaded from

https://github.com/popgenmethods/pyrho.
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Figure 1 Accuracy of inference on simulated and real data.

(A) Spearman correlation between inferred and true maps for 100 simulations, each 1 Mb
long, for both pyrho and LDhat with our method showing improved performance especially at
finer scales. (B) Our inferred recombination maps provide a better fit to observed r2 values. Solid
lines show theoretical deciles of the distribution of r2 for pairs of sites with minor allele frequency
> 0.1 at both sites separated by different recombination distances. Shaded points are the empirical
deciles for pairs of sites with minor allele frequency > 0.1 binned by the recombination rate
separating them according to different recombination maps.
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Figure 2 Interplay of demographic history and fine-scale recombination rates.

(A) Population sizes as inferred by smc++. All non-African populations show an out-of-
Africa bottleneck, which is deepest in east Asian populations. (B) Heatmap of the Spearman
correlation between the inferred recombination maps. All maps show a high degree of correlation,
yet the relative correlations agree with continental levels of population differentiation. (C)
Recombination rates at different PRDM9 binding motifs in each population, normalized by the
average recombination rate in that population. All PRDM9-A binding motifs show elevated
recombination rates across all populations, while PRDM9-C binding motifs have elevated rates in
African populations.
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Figure 4 PRDM9 and chromatin structure shape fine-scale recombination rates.

Different chromatin states have substantially different average recombination rates as deter-
mined by fitting a model using only chromatin state (Chromatin only), a model with independent
chromatin state and PRDM9 binding effects (PRDM9 + Chromatin: Ind. Effects), and a model
where PRDM9 binding may have a different effect in different chromatin states (PRDM9 +
Chromatin: Dep. Effects). Sites characterized by H3K27me3 marks (bivalent states and regions
repressed by Polycomb) have the highest recombination rates, while repetitive regions, transcribed
regions, and heterochromatic or quiescent regions all have depressed recombination rates.
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