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ABSTRACT   

Within the family of super-resolution (SR) fluorescence microscopy, single-molecule localization microscopies 

(PALM[1], STORM[2] and their derivatives) afford among the highest spatial resolution (approximately 5 to 10 nm), but 

often with moderate temporal resolution. The high spatial resolution relies on the adequate accumulation of precise 

localizations of bright fluorophores, which requires the bright fluorophores to possess a relatively low spatial density. 

Several methods have demonstrated localization at higher densities in both two dimensions (2D)[3, 4] and three dimensions 

(3D)[5-7]. Additionally, with further advancements, such as functional super-resolution[8, 9] and point spread function 

(PSF) engineering with[8-11] or without[12] multi-channel observations, extra information (spectra, dipole orientation) 

can be encoded and recovered at the single molecule level. However, such advancements are not fully extended for high-

density localizations in 3D. In this work, we adopt sparse recovery using simple matrix/vector operations, and propose a 

systematic progressive refinement method (dubbed as PRIS) for 3D high-density reconstruction. Our method allows for 

localization reconstruction using experimental PSFs that include the spatial aberrations and fingerprint patterns of the 

PSFs[13]. We generalized the method for PSF engineering, multi-channel and multi-species observations using different 

forms of matrix concatenations. Reconstructions with both double-helix and astigmatic PSFs, for both single and biplane 

settings are demonstrated, together with the recovery capability for a mixture of two different color species. 

Keywords: PRIS, Sparse recovery, super-resolution, PSF engineering, L1-norm, multi-species imaging, multi-channel 

imaging, localization microscopy 

1. INTRODUCTION  

Super-resolution (SR) fluorescence microscopy is an indispensable tool for biological and biomedical research [14-17]. 

Within the family of optical SR technologies, localization based methods, such as PALM[1], STORM[2] and their 

derivatives, exhibit among the highest spatial resolution (approximately 5 to 10 nm), but at the disadvantage of lower 

temporal resolution. Higher time resolution requires a faster accumulation of localized fluorophores, which can be achieved 

with localizations at higher emitter densities that require less frames of camera acquisitions. Such methods include fittings 

of multiple emitters that are demonstrated to work with moderate to high densities [18, 19], and compressive sensing 

methods such as CSSTORM[3], L1-homotopy[4] and SOFI inspired sparse recovery [20, 21].  

At the same time, advances in designing three dimensional PSFs, such as double-helix PSF[5, 11], astigmatic PSF[6], 

saddle-point PSF[22], and tetrapod PSF[23],  has led to fast growing interests and applications of localization based SR 

microscopy for thicker samples [24]. At the single molecule level, Aristov et al developed ZOLA-3D[25] that has enabled 

flexible 3D localization over an adjustable axial range. At the higher density conditions: Barsic et al utilized either 

matching pursuit or convex optimization combined with a PSF dictionary and sparsity constraint to solve for the emitter 

localizations [5]. Junghong et al introduced sparse recovery followed by refinement of localizations (FALCON3D) and 

demonstrated its utility for an astigmatic/biplane imaging system [6]. Shuang et al developed a similar approach with open 

source software package that was validated on various 3D PSFs [7].  
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In addition, several further advances have been achieved at the single-molecule level with integrations of better fitting 

models, optics engineering and extra observation channels. For example, by fitting towards an experimental PSF model 

that compensates for most of the optical aberrations, minimal uncertainty of localization fitting have been achieved with 

video rate localizations[13]. By combining extra observation channel with modified optics, a mixture of multi-color species 

can be identified with SR[8, 9]. Similarly, using engineered PSFs that encodes the information of dipole orientation [26] 

or spectra information [12], the extra information can be encoded and recovered with SR.  

However, such integrations are challenging in 3D under high-density conditions using the existing framework of open 

source implementation[7]. This is because the algorithm solves a sub-problem in the Fourier space, which indeed 

significantly reduces the computation cost, but causes the method to rely on the convolution assumption that requires the 

PSF to be translational invariant, therefore, without the ability to account for optical aberrations. We note here that when 

the PSF exhibits spatial variation, the observation is no longer a strict convolution between the ground truth and the PSF, 

therefore, the convolution assumption needs to be avoided. In order to extend the methodology advancements achieved at 

the single-molecule level [7-9, 12, 13, 26], a more generalized algorithm is needed for the recovery of 3D, high-density, 

multi-channel and multi-species conditions. 

In this work, we introduce a systematic progressive refinement method for sparse recovery (PRIS) for 3D super-resolution 

microscopy, which is generalized and scalable for different imaging system with synchronization capability. PRIS keeps 

the form of simple matrix operations without relying on the convolution assumption of the observation process, allowing 

for convenient incorporation of experimental PSF, different background components, different species of signal sources 

and parallel measurements from different imaging channels. The sensing matrix and the reconstruction vector are defined 

with coarse discretization initially, and refined progressively and regionally to reach finer discretization. Such regional 

refinement enables higher resolution reconstruction without the drastic increase in the computational cost. In principal, the 

discretized location coordinates in the 3D space may also be extended into a hyper-dimensional space to include extra 

dimensions of information, or different PSF species that co-exist and overlap in the same measurement, such as dipole 

orientation [26], and color [12]. We have validated PRIS and the associated generalization strategy with realistic 

simulations for single- or multi-channel observations (biplane) and mixture of two color species, with 3D PSFs of either 

Double-Helix PSF (SPINDLE[27]) or astigmatic PSF. 

The rest of this paper is organized as follows: In section 2, we introduce the theory and algorithm used in our work, 

including both review of dependencies and emphasis on our contribution. In section 3, we validate our method and the 

associated generalization strategy with simulations under various conditions. We also characterized the performance of 

our method.  In section 4, we provide a discussion highlighting the advantages of our method. 

2. THEORY AND ALGORITHM 

2.1 L1-norm regularized sparse recovery with progressive refinement 

The image formation process of fluorescence microscopy can be described by a linear mapping process. Mathematically, 

we have: 

 y Ax   ,  (1) 

where x is a vector (we dub as the target vector) accounting for all possible signal sources, y is the observation vector 

corresponding to the observed image, A is the sensing matrix (observation matrix) describing the linear mapping from the 

signal source to the observation, and represents an additive noise component. The effect of omitting the Poisson noise is 

negligible as demonstrated by the existing compressive sensing applications for SR microscopy[3, 4, 20, 21]. The following 

L1-norm regularized sparse recovery solves for x when A and y are known and with the prior knowledge that x is sparse 

(possesses a small portion of non-zero entries): 

 1minimize || ||  subject t  o  yx Ax   (2) 

The observation vector y is obtained by vectorizing the observed (or simulated observation) image. An empty vector x is 

defined to represent a collection of location coordinates in a discretized manner, and the sensing matrix A is calculated 

using the knowledge of the observation process, for example, as provided by an experimentally characterized PSF or a 

theoretical PSF model. In cases when the noise component exhibits non-zero average, extra columns can be added to the 

A matrix to account for different background components[6], or an offset. In this work, we adopt the fast linearized 

Bregman iteration[28] that constrains the inverse problem in (2) as follows: 
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minimize || || + ||x||  subject to 

2
  y Ax x


   (3) 

Although (3) is different from (2), it has been shown to be equivalent to (2) for large [29]. As shown in Algorithm 1, 

linearized Bregman iteration involves only simple matrix/vector operations and shrinkage[28] operation consisting only 

Boolean operation and subtractions. 

 

Algorithm 1. Basic linearized bregman iteration  

1. Calculate the sensing matrix A based on the candidate signal sources and the PSF model. 

2. Obtain the y vector from the observation image. 

3. Define  and , and initialize the iteration index k as 0.

4. Initialize x0 and u0 as zero vectors, with length equals to the total number of candidate signal sources. 

6. While “|| y – A·x|| not converge”, do: 

  k = k + 1 

  uk = uk-1 + AT·( y – A·xk-1) 

  xk =  · shrink(uk, ) 

     End while, recovered x = xk 

Note that shrink(⸱) is the shrinkage operator[28]. We have incorporated fast linearized Bregman iteration with “kicking” 

to improve the convergence speed. Interested readers are referred to [28] for more details.  

To bring more insight, we discuss here the physical meaning of the formula of our sparse recovery task. In the basic form 

for 3D recovery, one element in the x vector (denote the ith element as xi) represents one candidate position for the emitters 

in the sample. The x vector corresponds to a group of voxels that collectively represent a 3D volume in a discretized 

manner, and the value of xi represents the total signal emitted from the corresponding voxel. In addition, extra elements 

can be added to x to account for extra possible signal sources, and the corresponding observation profile produced by each 

candidate needs to be added as extra columns in A. With further generalization, one element in x could represent any 

candidate signal source defined by multiple dimensions of information in addition to the location coordinates, such as 

dipole orientation, spectra, etc. We note here that the ith column in A represents the unit profile of the observation created 

by the ith possible source, as corresponding to xi. In other words, the multiplication of the ith element in x and the ith column 

in A yields a linear component (i.e. additive component) in the observation vector y, while the value of xi is the coefficient 

of this linear component, and the ith column in A is the unit observation profile created by the ith signal source.  

In order to push for optimum performance of 3D recovery of a thick sample, the inverse problem needs to account for a 

sufficiently large 3D space with high sampling rate. Therefore, the total number of voxels increases, leading to an increase 

of RAM requirement. For example: Assuming an input image patch of 64-by-64 pixels, with a cubic volume of 6.4×6.4×1 

m3 represented by close-packed voxels of size 163 nm3, the RAM requirement for the sensing matrix A with single float 

precision is approximately 152.6 Gigabytes. We note here that setting up the problem with Fourier transforms[7] can 

significantly reduce the RAM requirement, but relies on the convolution assumption that we explicitly would like to avoid 

as discussed in the previous section. 

The proposed progressive refinement method (PRIS) is designed as an iterative algorithm on top of the sparse recovery 

solver to address the computation cost, without assuming the formation of the observation image as a convolution process. 

As shown in Figure 1 and Algorithm 2, the PRIS iteration is initialized by constructing the initial inverse problem, where 

the candidate locations are represented by close-packed coarse voxels (Figure 1(a)), yielding A and an empty x vector to 

recover, and the y vector is obtained by vectorizing the observation image. We note here that a pre-processing step can be 

used to initialize the pool of candidates more compactly with even lower RAM requirement.  For example, incorporation 

of a segmentation step as implemented in many existing tools for single molecule localization microscopy, but without 

discarding aggregates. Once the inverse problem is clearly defined, a sparse-recovery solver is used to solve for x. The 

resultant x is inspected, and the non-zero elements in x are identified for the next PRIS iteration (Figure 1(c)). Specifically, 

the voxels corresponding to the non-zero x elements are refined into smaller voxels to yield a new set of candidate locations 

(Figure 1(d)), with which a new x and A will be constructed and combined with the original y to form a new sparse recovery 

task. The refinement process is repeated progressively (Figure 1(b)): Upon completion of each sparse recovery task, zero-

value voxels are discarded, and non-zero voxels are refined to construct a new sparse recovery task for the next PRIS 

iteration. The sparse recovery solver inside the PRIS iterations is a modular component that is not restricted to our 
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implementation. In Algorithm 2 we demonstrate the algorithm with linearized Bregman iteration in its basic form. In our 

implementation, we incorporated “kicking” [28].  

 

Algorithm 2. Progressive Refinement method for Sparse recovery (PRIS)  

1. Obtain the y vector (from the observation image); and obtain the system response function (i.e. PSF). 

2. Define total PRIS iteration number N, and the list of PRIS refinement folds: f = {f1, f 2, …, f N-1}. 

    Typically, we have N = 4 or 5, and f = {1, 2, 2, …, 2}. 

3. Initialize sample volume V0, discretization size D0.  

4. PRIS iteration begins: For PRIS iterations i = 0 to N-1: 

            4.1. If i > 0: Refine sample volume and discretization: Vi+1 = Refine(Vi , xk), Di+1 = Di  / fi  

            4.2. Obtain the collection of candidate signal sources: Ci = Sampling(Vi, Di). 

            4.3. Calculate sensing matrix Ai based on Ci and PSF model: Ai = Sensing(Ci, PSF). 

            4.4. Define  and , and set iteration index k = 0.

            4.5. Initialize x0 = 0, u0 = 0 with lengths equal to the size of Ci. 

            4.6. While “|| y – A·xk|| not converge”: 

   k = k + 1 

   uk = uk-1 + Ai
T·( y – A·xk-1) 

                xk =  · shrink(uk, ) 

                    End while, recovered x = xk 

      PRIS iteration ends. 

 5.  Post processing and final result rendering using CN-1 and recovered x.           

In summary, PRIS does not rely on the convolution assumption but can perform sparse recovery over a finely discretized 

pool of candidate signal sources. The reduction of RAM requirement is realized by progressively focusing the computation 

power onto smaller and regional subsections of the pool, allowing for recovery with larger volume and finer discretization.  

 

Figure 1. Sparse recovery with progressive refinement. (a) shows the formulation of the recovery problem Ax = y, with known 

A and y, to recovery x. As labeled in (a), we highlighted the one-to-one correspondence between columns in A, elements in x, 

and the linear component in y. (b)-(d) shows the progressive refinement process of sparse recovery.   

2.2 Generalization of PRIS with matrix concatenations 

With the spared RAM requirement, the advances achieved at the single molecule level can be easily integrated with PRIS 

using different forms of matrix concatenations. First, vertical concatenation of the sensing matrixes allows for 

synchronization of multi-channel observations, such as multiple focal planes, or different phase masks. Second, horizontal 

concatenation of the sensing matrixes allows for incorporation of multi-species of the signal source, such as background 

components[6], or different PSFs (such as different colors [12] or dipole orientation [26], etc.). Hybrid of horizontal and 
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vertical concatenations can be utilized as well. In the general sense, PRIS can be applied to sparse recovery even at a 

hyperdimensional space[30], and the progressive refinement can be applied at each dimension independently. We explain 

below the vertical and horizontal concatenations of the sensing matrix, and further generalization can be realized 

recursively in the same manner. 

 

Figure 2. Generalization of PRIS with vertical matrix concatenations. Only the initial sparse recovery is illustrated, and the 

iteration with PRIS refinement is the same as shown in Figure 1. A0 is the overall sensing matrix, and the concatenation is 

between two different sensing matrixes that describe the observations of two different channels. x0 represents the pool of 

candidate signal sources that uniform for both observation channels, and y represents the overall observation as the 

combination of the separate observations from different channels.   

As shown in Figure 2, the sensing matrixes are concatenated vertically, and the two different observation vectors are 

concatenated accordingly. The x vector remains the same, because the observations for both channels are generated by the 

same signal sources. Consequently, the overall sparse recovery task is reduced to the same form: 

 1 1
0 0 1 0

22
Construct  and , with and minimize || ||  subject t,  ;o;   c c

cc

A y
A y y A xx

yA
A y      

     
  (4) 

where Ac1 and Ac2 are the sensing matrixes corresponding to two different observation processes, yc1 and yc2 are the two 

different observations, and x is the recovery target. Such way of generalization can be applied to the recovery of different 

observations generated by identical signal sources (as circled by red dashed line in Figure 2 at the observation channels). 

Multiple observation channels could be, for example, biplane, or multiplane observations, etc. Accompanying information 

can be synchronized directly in the data analysis step via combined reconstruction. If the sample contains different species 

of signal sources that respond selectively to the observation channels (as labeled by cyan stars in Figure 2), then the species 

variation is underestimated by this strategy and a different generalization strategy for PRIS is required (discussed later).  

Here we first discuss a generalization strategy for the case of two signal species observed through a single channel. As 

shown in Figure 3, the candidate locations for both species are initialized independently, and the corresponding voxels 

could be overlapping because both species exist in the same sample space. However, as PRIS iteration proceeds, the 

recovered candidate signal sources for each species can be located at different sets of voxels. Therefore, the refinement is 

performed independently for each species. In addition, we applied a soft species exclusion constraint to the fast linearized 

Bregman iteration solver. To be specific, as shown in Algorithm 2, the increment of k is Ai
T·(y – A·xk-1), and we call it 

the increment vector. Similar to x, the elements in the increment vector has a one-to-one correspondence to the voxels co-

specified by the species tag and the 3D coordinates. In each iteration, for each doubly occupied voxel (defined as two 

voxels with the same 3D coordinates but different species tags), the corresponding two elements in the increment vector 

are inspected, and if the values of these two elements have the same signs, the element with a smaller amplitude is set to 

zero.  

As shown in Figure 3, the sensing matrixes characterizing different species are horizontally concatenated that allows for 

the synchronization of different species. And the associated sparse recovery task has the conserved form as follows: 

    0 0 1 2 1 2 1 0, ;  construct  and empty  with and   minimize || ||  subject t  ;o  c c c cA A A x x xx yA xx A     (5) 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted January 29, 2019. ; https://doi.org/10.1101/532143doi: bioRxiv preprint 

https://doi.org/10.1101/532143
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 
 

 

 

 

 

Figure 3. Generalization of PRIS with horizontal matrix concatenations. Only the initial sparse recovery task is illustrated and 

the iteration with PRIS refinement is the same as shown in Figure 1. A0 is the overall sensing matrix that is the concatenation 

of two different sensing matrixes, each describing one portion of the observation contributed from an identical species through 

the same observation channel. x0 represents the concatenated pool of candidate signal sources of two different species, and y 

represents the single channel observation with co-existence of two different species.  

Following the similar strategy, hybrid concatenations can be constructed as well to account for different species observed 

through different channels, in case if a species produces no signal in part of the observation channels (as labeled by cyan 

stars in Figure 2), the corresponding sensing matrix can be a zero matrix. We remark here that the refinement has been 

previously used to improve the resolution and reduce the RAM requirement of sparse recovery for SR microscopy[6]. The 

merit of this work is the systematic progressive refinement and the generalization strategy for sparse recovery, while 

excluding the convolution assumption on the image observation process. The access to the fine discretization further allows 

for the classification step to identify the localization coordinates and efficiently reject dim localizations that could be false 

and misleading. Such merit allows for extension of a variety of different fluorescence imaging modalities and objects 

achieved at the single molecule level to the 3D high-density conditions, the increased time resolution of such methods 

through the faster accumulations of localizations can open up diversified possibilities for the study of dynamics and longer-

range processes in complex systems. In the more general sense, PRIS can be generalized to sparse recovery at a 

hyperdimensional space with tensor formulation[30], and the progressive refinement can be applied at each dimension 

(each mode of the tensor) independently or collectively. 

3. VALIDATION WITH SIMULATIONS 

 
The performance of PRIS is validated and quantified on three set of simulations, and the general applicability of the method 

is demonstrated with two different 3D PSFs: astigmatic and SPINDLE PSF (a version of double-helix PSF) [27]. Details 

are explained below. 

3.1 Recovery with astigmatic and SPINDLE PSFs with single plane observation 

In this simulation, single plane observations are used with either SPINDLE PSF or astigmatic PSF to validate the 

performance of PRIS. A series of simulations are generated with randomly placed emitters in a 3D volume with a various 

total number of emitters. Figure 4 shows a representative recovery result for both PSFs. The PRIS result represents each 

candidate localization as a group of non-zero voxels. The recovered 3D voxels are classified into groups using the density 

based classification method[31], and further converted into a list of localization results for which the coordinates are 

calculated as the mass center of the voxels belonging to the same group, and the brightnesses information are obtained by 

taking the integral of the values of the voxels within the same group. The full set of simulated samples is used for further 

quantification, with a range of 10 to 400 emitters in a 3D volume of 6.4 m in the lateral- (XY-) dimensions, and 1 m in 

the axial- (Z-) dimension. The resultant simulations include different emitter densities ranging from 0.244 to 9.766 m-2. 
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The photon budget for each emitter is 5000, and a background level of 100 photons are added to each pixel area. The 

simulated observation images are generated on an initial discretization of 10 nm pixels followed by 1010 binning to reach 

a final pixel size of 100 nm. Photon counting noise (shot noise) is simulated with Poisson statistics. For each density 

condition, 20 simulations are performed with randomized 3D locations. We have quantified the performance of our method 

gauged by the recovered emitter density and localization precisions as shown in Figure 5. For the convenience of reading, 

we have plotted similar quantifications from previous works on the same graphs. We note here that the quantifications of 

different methods were not performed under the same simulation condition (as noted in Appendix, Table 1.). Our 

simulations represent among the challenging conditions. The SPINDLE PSF we have used is a non-optimized version of 

double-helix PSF. when comparing to the 2D cases, the signal from a single emitter expands over a larger area because of 

the larger PSF, and our signal is integrated over a smaller pixel area, resulting in a reduced SNR as compared to a more 

compact PSF and/or with larger integration area of the larger pixels.  

 

Figure 4. Representative recovery result for PRIS with (a) SPINDLE PSF and (b) Astigmatic PSF are shown here. (a/b)-1 are 

the input noisy blur images, where two zoom-in regions are labeled (as 1 and 2) and displayed in the rest of the panels. (a/b)-

2 shows the zoom-in region 1 with two emitters, which are further amplified into region 1’, as shown in (a/b)-3 for views in 

xy/xz/yz-planes. The reconstructed result is displayed at gray scale, appearing as groups of dark pixels (highlighted with 

circled with green dashed lines), and the ground truth emitter locations are labeled as red/blue crosses for E1 and E2 

respectively. The red cross (E1) indicates a representative precise localization for both PSF models, with displacement of 23 

nm for SPINDLE PSF, and 28 nm for Astigmatic PSF. Accordingly, the blue cross (E2) indicates a representative localization 

with worse precision for both PSF models, with displacement of 148 nm for double-helix PSF, and 66 nm for astigmatic PSF. 

The second region (Region 2, as labeled in (a/b)-1) represent a higher emitter density (equivalent to approximately 7.4 emitters 

m-2), the corresponding zoom-in panels are shown in (a/b)-4.  Scale bars in (a/b)-1 are 800 nm, scale bars in (a/b)-2/3/4 are 

100 nm. 

A simulated emitter is identified as recovered if a localization result is found within 1-pixel distance in the XY-plane. The 

densities of the recovered emitters are plotted against the actual emitter density (ground truth) in Figure 5(a). We can see 

that PRIS demonstrates excellent performance as compared to previous 3D recovery methods using compressive sensing 

[5, 7], and single- or multi-emitter fitting methods. We attribute such performance to the access of a very fine discretization 

(8.25 nm) granted by the progressively refined voxels. For the same reason, we have access to the much higher density 

conditions in our characterization. PRIS also exhibit comparable performance as compared to 2D approaches[3, 4, 20], 

regardless of the fact that the 3D PSFs used in our characterizations are imposing an intrinsically more challenging recovery 

task as compared to the 2D approaches where the regular PSFs are much more compact. When the PSF expands a larger 

area (SPINDLE), we expect an increase of the overlapping region, and the total budget of photons would also spread over 
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a larger area, resulting in a lower SNR. The size difference between the astigmatic PSF and SPINDLE PSF can also explain 

the different performances of the two PSFs in our characterization. 

The comparison of localization errors is performed after identification of correct localizations: A localization result is 

identified as correct if there exist a ground truth emitter within 1-pixel distance in the XY-plane. For all the correct 

localizations, the fitting error is defined as the displacement of the localization result from the ground truth, and the fitting 

precision is calculated as the standard deviation of the fitting errors. Figure 5(b) shows the comparison of PRIS with the 

2D methods [3, 4, 20] by comparing the standard deviation of fitting errors in the XY-plane (dubbed as xy). We can see 

that PRIS demonstrate comparable or better performance in the lateral precision at high-density conditions (> 2.5 m-2). 

Precision comparison with 3D methods [5, 7] are shown in Figure 5(c) to (e), where PRIS excels under high-density 

conditions (> 1 m-2) among all the 3D methods [5, 7]. We note here that a least square fitting approach was applied to the 

localization result to finalize the localization result in the previous 3D approach[7], which is not implemented in our work, 

but is compatible with our method and is expected to further improve the performance of PRIS.  

 

Figure 5. Performance of RIS recovery and previous works. (a) shows the recovered emitter density plotted against the ground 

truth emitter density. (b)-(e) shows the localization precision in the XY-, X-, Z-, Y- planes as a function of emitter density 

respectively. We can see that our method exhibits excellent 3D recovery capability with high fidelity at high-density 

conditions. 

3.2 Recovery with multi-channel observation and single species (vertical concatenation) 

Further simulations are performed to validate the generalization scheme of our method that utilizes vertical or horizontal 

concatenation of the sensing matrixes. Simulation of biplane observations of a pure color species is used to validate the 

vertical concatenation strategy, and single-channel observation for a mixture of two species with two different colors is 

used to validate the horizontal concatenation strategy. 

Figure 6 shows the results for dual-channel observation simulations. The simulated sample contains 100 emitters randomly 

positioned in the sample volume of size 6.4×6.4×1 m3. Different observations are generated to simulate biplane and 

single-plane observations with either SPINDLE and astigmatic PSFs, while the photon budget is maintained at 5000 counts 

per emitter. Figure 6(a) shows the single plane observation for both SPINDLE and astigmatic PSF separately, and Figure 

6(b) shows the corresponding biplane observation for both PSF models separately. Due to the split of the dual planes, the 

total photons also split between the two observation channels (accounted in the simulations). The SNR difference between 

the observation images for single and biplane observations is due to this split. The recovery is performed through the 

vertical concatenation of the sensing matrixes corresponding to two different focal planes, and the recovery results are 

compared in Figure 6(c). We can see that although the SNR is reduced in a biplane observation, its recovery precision (as 

shown with our simulations) was higher due to the added constraints afforded by the biplane observation. 
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Figure 6. Validation of generalized PRIS recovery with vertical concatenation. PRIS recovery for biplane observation is 

demonstrated and compared to single-plane. The identical simulated sample is used for both observation configurations, using 

either SPINDLE PSF or Elliptical (astigmatic) PSF. (a) shows the input images for both PSF models using single plane 

observation and (b) shows the corresponding biplane observations, where the two focal planes are 125 nm apart from the focal 

plane used in single plane simulations. The recovery results are compared in (c), where each recovered localization coordinate 

is compared to the ground truth coordinate, and the displacement in three dimensions are plotted in the 3D scatter plot (with 

projections as shown in the graph). Four scattered plots demonstrate four different conditions with either single or biplane 

observations, using either SPINDLE or Astigmatic PSF. We can see that biplane improves localization precision for both PSF 

models, and Astigmatic demonstrate better precision in the lateral dimensions, while SPINDLE demonstrate better precision 

in the axial dimension. Scale bars:m. 

3.3 Recovery with single-channel observation and dual-species (horizontal concatenation) 

We further tested the generalization strategy of PRIS with the horizontal concatenation of the sensing matrixes (Figure 7). 

The simulation contains a mixture of two Cy3 molecules (577 nm emission) and two Cy5 molecules (690 nm emission) 

both detected through the same channel. The simulated detection scenario could be (but not limited to) dual laser excitation 

with a multi-band pass filter that allows for detection of both colors. For the detection path, we simulated a transparent 

phase mask that alters only the phase of the wavefront without phase wrapping in the fabrication. We set the phase mask 

to be a SPINDLE phase mask that matches 577 nm emission. Emission of both colors pass through the same focusing lens 

and phase mask, but the phases of the wavefront were altered differently by the phase mask and the defocus depth, due to 

different wavelengths, yielding different PSF profiles for each color. As shown in Figure 7(a), the PSF for Cy3 exhibit the 

expected SPINDLE PSF profile. However, for Cy5 molecule with mismatched emission wavelength used in the phase 

mask design, the PSFs exhibit extra central lobe and diffraction patterns (Figure 7(a)) that mismatches with a theoretical 

SPINDEL PSF profile. Such differences in the PSFs enable PRIS to distinguish two species by constructing the sensing 

matrixes A1 and A2 through the two PSFs separately as shown in Figure 7(b). The related experimental scenario could be 

independent characterizations of experimental PSFs with fluorescence beads of different colors through the same detection 

path.  

In the common dual-color imaging system, either two filters are applied sequentially with sequential camera exposure, or 

the channel is split into two with different color filters. Such hardware approaches to separate color channels come at the 

cost of detected photon budget. This example demonstrates the separation of different color species mathematically by 

constructing the different species into the sensing matrix while capturing photons from both species in the same channel 

at the same time.     
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Figure 7. Validation of generalized PRIS recovery using horizontal concatenation. A single channel observation is simulated 

with a mixture of 4 fluorophores (two Cy3 molecules with 577 nm emission, and two Cy5 molecules with 690 nm emission). 

In the single observation channel, the SPINDLE phase mask is simulated to match the wavelength of Cy3. (a) shows the 

simulated 3D PSF slices for both fluorophores under the same detection path, for which Cy3 PSF shows the SPINDLE PSF 

profile, and Cy5 PSF shows extra diffraction lobes/patterns that would be unwanted in a traditional sense of double helix PSF 

application. (b) shows the simulated blurry noisy observation with the four emitters. The observed images of Cy3/Cy5 

molecules are circled with green/red dashed lines respectively. For the sparse recovery problem, the single input image is 

vectorized to construct the y vector, two sensing matrixes constructed from the two species are horizontally concatenated to 

from the overall sensing matrix, and the sparse recovery target is the combined vector of x1 and x2. PRIS refinement are 

applied to two species separately. The final PRIS result is the recovery coordinates shown in (c) with species tag, and compared 

to the ground truth coordinates. (d) shows the observation reconstructed from the recovered x1, y2 with PRIS iterations. which 

clearly indicates the separation of two color species. Scale bars: 1 m. 

3.4 Recovery of curve feature with ultra-high labeling density 

We further tested the recovery capability with a densely labeled curve in 3D with SPINDLE PSF (Figure 8(a)). The virtual 

sample is a curve with a total length of 8 m, that expands approximately 5 m in the lateral dimensions, and 0.56 m in 

the axial dimension. A total number of 400 emitters are randomly placed along the line with cross-section location 

uncertainty of 7 nm, resulting in an average labeling density of 1 emitter per 20 nm. The emitters are all set at bright state 

in the simulation with randomly selected photon budgets between 4000 to 5000 and the background photon count is set to 

be 100 per pixel, and the photon counting noise is simulated with Poisson statistics. Figure 8(d) shows the simulated image 

measurement with the SPINDLE PSF. We note here that because SPINDLE PSF has two lobes with changing orientations 

to encode the defocus depth, the observation of the densely labeled curve in 3D appears as two lines.  Figure 8(b)(c)(e) 

demonstrate the sparse recovery result of this simulated condition with different projection and zoomed panels as labeled 

in the figure. The sparse recovery is good in terms of recover the ground truth 3D curve, but without exhibiting individual 

localization coordinates. Additionally, because the intensity along the recovered line is rather smooth, the subsequent 

classification method couldn’t identify the coordinates of individual localization results. We attribute this to the ultra-high 

labeling density where the inter space between adjacent emitters are limited, therefore the reconstruction lacks the ability 

to distinguish individual emitters at this regime of high local density of emitter. However, as shown in Figure 8(b)(c)(e), 

the recovery result faithfully represents the ground truth feature as a curve. 
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Figure 8. PRIS recovery of densely labeled curve in 3D. PRIS result of a simulate 3D densely labeled (1 emitter per 20 nm on 

average) curve is shown here. (a) shows the ground truth emitter locations in projection of XY-plane (center), XZ-plane (right) 

and YZ-plane (top). Each emitter location is labeled as a magenta dot. The displays of the ground truth appear as curves due 

to the high-density of labeled emitters.  The simulated measurement with SPINDLE PSF is shown in (d). Note that because 

of the nature of the double-helix PSF (two lobes), the image of a single curve appears as two curves in the observation. The 

sparse recovery results are shown in (b), (c) and (e) with different projection views with zoomed panels as labeled in the major 

panel and connected to the zoomed panels. In the zoomed panels, the ground truth emitters are marked with magenta triangles. 

We can see that although the sparse recovery does not recover the location coordinates of individual emitters, but the result 

represents the underlying 3D curve as compared to the ground truth. Scale bars in major panels are 1 as labeled in the figure; 

scale bars in zoomed panels without labels are 100 nm. 

 

4. CONCLUSIONS AND DISCUSSION 

 
In this work, we developed a progressive refinement method for compressive sensing (PRIS) to perform 3D super-

resolution recovery of fluorescence microscopy observations, without reliance on the convolution assumption of the 

imaging process. The method is generalized to work with different PSF models, multiple observation channels and a 

mixture of species of the signal sources. We have demonstrated high-fidelity reconstructions of simulated data sets for 

double-helix PSF (SPINDLE), astigmatic PSF, and for both single and biplane image acquisitions. We also demonstrated 

the recovery capability with a densely labeled curve in 3D. Our work is useful for the algorithmic synchronization of 

different imaging modalities, where the synchronization is realized at the stages of data acquisition and data reconstruction. 

It affords a deeper level of synchronization as compared to sequential data analysis. In the more general sense, PRIS can 

be generalized to sparse recovery even at a hyperdimensional space with tensor formulation[30], and the systematic 

progressive refinement can be applied at each dimension (each mode of the tensor) independently and/or collectively. Our 

method can also be applied to observations with well isolated PSFs in the observation image for single molecule 

localization microscopy. Accordingly, proper initialization of PRIS iteration can be used with voxels covering only 

identified interested areas to reduce the computation cost further. Least square fittings can be applied on top of our 

algorithm to enhance the localization precision further. The highly generalized form and computation simplicity allow for 

scalable recovery platforms, such as cloud computing, GPU, and FPGA implementations. 
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APPENDIX 

 

Table 1. Simulation conditions used for the recovery performance quantification in previous 

works[3-5, 7, 20] and plotted in Figure 5. 
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