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Abstract 

Objective: To investigate whether or not functional connectivity (FC) could be used 

as a potential biomarker for classification of primary insomnia (PI) at the individual 

level by using multivariate pattern analysis (MVPA). 

Methods: Thirty-eight drug-naive patients with PI and 44 healthy controls (HC) 

underwent resting-state functional MR imaging. Three commonly used FC metrics 

(voxel-wise functional connectivity strength, large-scale functional connectivity and 

regional homogeneity) were calculated for each participant. We used the MVPA 

framework using linear support vector machine (SVM) with the three types of metrics 

as features separately. Subsequently, an unbiased N-fold cross-validation strategy was 

used to generate a classification system and was then used to evaluate its 

classification performances. Finally, FC metrics with significant high classification 

performance were compared between the two groups and were correlated with clinical 

characteristics, i.e., Insomnia Severity Index (ISI), Pittsburgh Sleep Quality Index 

(PSQI), Self-rating Anxiety Scale (SAS), Self-rating Depression Scale (SDS). 

Results: The best classifier could reach up to an accuracy of 81.5%, with sensitivity 

of 84.9%, specificity of 79.1% and area under the receiver operating characteristic 

curve (AUC) of 83.0% (all P < 0.001). Right fronto-insular cortex, left precuneus and 

left middle frontal gyrus showed high classification weights. In addition, right 

fronto-insular cortex and left middle frontal gyrus were the overlapping regions 

between MVPA and group comparison. Correlation analysis showed that functional 

connectivity strength (FCS) in left middle frontal gyrus and head of right caudate 

nucleus were correlated with PSQI and SDS respectively. 

Conclusion: The current study suggests abnormal FCS might serve as a potential 

neuromarkers for PI. 

Key words: Primary insomnia; Insular cortex; Frontal lobe; Machine learning; 

Support vector machine 
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Key Points: 

FCS in fronto-insular cortex and middle frontal gyrus may be a neuroimaging 

biomarker for insomnia. 

FCS can be used to distinguish between patients with primary insomnia from healthy 

controls with high classification accuracy (81.5%; P < 0.001). 

FCS in left middle frontal gyrus and head of right caudate nucleus were correlated 

with PSQI and SDS respectively. 

 

Abbreviations: 

PI, primary insomnia;  

HC, healthy controls;  

FC, functional connectivity; 

MVPA, multivariate pattern analysis;  

SVM, support vector machine; 

FCS, functional connectivity strength; 

ROC, receiver operating characteristic curve; 

AUC, area under the receiver operating characteristic curve; 

ISI, Insomnia Severity Index; 

PSQI, Pittsburgh Sleep Quality Index; 

SAS, Self-rating Anxiety Scale; 

SDS, Self-rating Depression Scale.
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Introduction 

Primary insomnia (PI) is the most common sleep disorder and is a major risk factor 

for depression and in certain instances could increase mortality 1. At present, 

diagnosis for insomnia is mainly based on self-reported sleep difficulties. Objective 

neurobiological markers remain largely unclear and hence prevented the development 

of more cost-effective, efficient and accessible therapies 2. 

  Neuroimaging studies for insomnia have made substantial effort to understand the 

neuromechanisms of insomnia. Previous studies found aberrant brain metabolism and 

connectivity related to the prefrontal cortex, insular cortex, amygdala, precuneus and 

caudate in primary insomnia 3-16. For example, using PET, Nofzinger et al. 3 found 

smaller decrease in relative metabolism from waking to non-REM sleep states in the 

ascending reticular activating system, hypothalamus, thalamus, insular cortex, 

amygdala, hippocampus, anterior cingulate and medial prefrontal cortices, which 

supports the CNS hyperarousal hypothesis. Using independent component analysis, 

Michael C. Chen et al. 6 demonstrated that the anterior insular cortex had greater 

involvement with the salience network in PI. This greater involvement was also 

correlated with self-reported alertness and negative affect. This study highlights the 

importance of the salience network in hyperarousal and affective symptoms in 

insomnia. Diederick Stoffers et al. 13 found that hyper-arousal was associated with 

reduced caudate recruitment when performing an executive task. Interestingly, 

attenuated caudate recruitment did not recover after successful treatment, suggesting 

abnormal caudate activation is a potential vulnerability biomarker for insomnia. 

Recently, Lee et al. 5 observed that subcortical FC was changed after 

cognitive–behavioral therapy, which suggested that FC may be a biomarker for 

tracking response to treatment. 

While these studies were valuable in finding relevant neuroimaging biomarkers, the 

studies were based on group comparisons, and hence was not sufficient for possible 

translational applications, such as for direct clinical diagnostic and prognostic 

evaluation 17. Up to now, it is still unclear whether or not neuroimaging could be used 

as a biomarker for the diagnosis of PI patients at the individual level. 
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In the present study, we explored whether or not three commonly used functional 

connectivity (FC) methods (i.e., voxel-wise functional connectivity strength, 

large-scale functional connectivity and regional homogeneity; please see the next 

section for details) could be used as potential biomarkers for the classification of 

individual patients with PI. This was performed using multivariate pattern analysis 

(MVPA) with linear support vector machine (SVM) 18. 

 

Methods 

Participants 

This prospective study was approved by the ethics committee of Guangdong Second 

Provincial General Hospital and all participants provided written informed consent 

after they were provided a complete description of the study. Thirty-eight patients 

with PI (16 men; mean ± standard deviation age, 40.61 years ± 9.43) were recruited 

from the Guangdong Second Provincial General Hospital.  

The inclusion criteria for PI patients were: (a) all patients must meet the 

Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition (DSM-IV) for 

diagnosis of PI; (b) patients complained of difficulty falling asleep, maintaining sleep 

or early awakening from sleep for at least one month; (c) patients had no other sleep 

disorders such as hypersomnia, parasomnia, sleep-related movement disorders or 

other psychiatric disorders; (d) patients were younger than 60 years old (e) free from 

any psychoactive medication for at least 2 weeks prior to and during the study; (f) 

patients were right-hand dominant as assessed using the Edinburgh Handedness 

Inventory. Exclusion criteria were as follows: (a) Patients had an abnormal signal in 

any region of the brain which was verified by conventional T1-weighted or 

T2-fluid-attenuated inversion recovery MR imaging; (b) the insomnia disorder was 

caused by organic disease or severe mental disease that was secondary to depression 

or generalized anxiety; (c) other sleep disorders; (d) women who were pregnant, 

nursing, or menstruating. A total of 44 age-, gender- and education-matched healthy 

control subjects were recruited (11 men and 33 women; age, 39.91 years ± 9.43) from 

the local community by advertisements. HC met the following criterion: (a) Insomnia 
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Severity Index score less than 7; (b) no history of swing shifts, shift work, or sleep 

complaints; (c) no medication or substance abuse such as caffeine, nicotine, or alcohol 

for at least 2 weeks prior to and during the study; (d) no brain lesions or prior 

substantial head trauma, which was verified by conventional T1-weighted or 

T2-fluid-attenuated inversion recovery MR imaging; (e) no history of psychiatric or 

neurological diseases; (f) right-hand dominant. All the patients were part of previous 

studies 19-21. All previous studies were investigations of between-group differences 

using resting-state functional MR imaging, whereas the present study explored 

whether resting-state functional MR imaging could be used as a neuroimaging 

biomarker to identify primary insomnia. 

Several questionnaires were completed by the study participants. These 

questionnaires included the Insomnia Severity Index, the Pittsburgh Sleep Quality 

Index, the Self-rating Anxiety Scale, and the Self-rating Depression Scale. 

Image Acquisition 

Functional MR imaging was acquired using a 1.5 Tesla MR scanner (Achieva 

Nova-Dual; Philips, Best, the Netherlands) in the Department of Medical Imaging, 

Guangdong Second Provincial General Hospital. Participants were instructed to rest 

with their eyes closed and remain still without falling asleep. Functional MR images 

were acquired in about 10 minutes using a gradient-echo planar imaging sequence as 

follows: interleaved scanning, repetition time/echo time = 2500ms/50 ms, section 

thickness = 4 mm, intersection gap = 0.8 mm, matrix = 64 × 64, field of view = 224 

mm × 224 mm, flip angle = 90°, 27 axial slices, and 240 volumes. After scan, all 

subjects were asked if they were asleep during the scan. Those subjects fallen asleep 

were excluded. 

Data Preprocessing 

Functional images were preprocessed using the SPM12 software package and the 

Data Processing Assistant for Resting-State fMRI software (DPARSF, Advanced 

Edition, V4.3) (http://www.rfmri.org/DPARSF) 22. The first 10 images of each 

participant were discarded to allow the signal to reach equilibrium. Subsequently, the 

resting-state fMRI data was corrected for temporal differences between slices and 
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head motion. All participants had no more than 2.0 mm of maximal displacement and 

2.0 of maximal rotation in any direction. Next, the corrected fMRI data were spatially 

normalized to the standard Montreal Neurological Institute (MNI) template, and were 

resampled to 3×3×3mm3. We further processed the data to remove linear trends and 

filtered temporally (band-pass, 0.01–0.1Hz). Finally, nuisance signals including 24 

head motion parameters, CSF signals, white-matter signal, and global signal were 

regressed out from the fMRI data. 

Whole-Brain Voxel-wise Functional Connectivity Strength Analysis 

Whole-brain voxel-wise functional connectivity strength as well as large-scale 

functional connectivity (large-scale FC) and regional homogeneity (ReHo) analysis 

were performed using DPARSF (http://www.rfmri.org/DPARSF). For each participant, 

all voxels’ time series were extracted, and then the Pearson’s correlation coefficients 

between the time series of all pairs of voxels were obtained to form a whole-brain 

voxel-wise functional connectivity matrix. Then, for each voxel, functional 

connectivity strength (FCS) value was calculated as the sum of the Pearson’s 

correlation coefficients between each voxel and all other voxels. We set a threshold of 

r = 0.25 to remove weak correlations. Consequently we obtained a 3D FCS map for 

each participant. Finally, the FCS map was converted to z scores using Fisher r-to-z 

transformation and further spatially smoothed with a 6 mm full-width at half 

maximum isotropic Gaussian kernel. It is worth noting that this computation was 

constrained within a gray matter mask, which was created by setting a threshold of 0.2 

on the SPM12’s gray matter probability template. 

Whole-Brain Large-scale FC Analysis 

Nodes were demarcated by a 268-node functional atlas 23, which was defined using a 

group-wise spectral clustering algorithm 24 and consequent analysis were similar to 

previous studies 25. Time series for each node was extracted for each participant by 

averaging the time series throughout all voxels for each node. Functional connectivity 

between each pair of nodes was calculated using Pearson’s correlation analysis, which 

produced (268×267)/2=35778 dimensional functional connectivity feature vector for 

each participant. Finally, Fisher r-to-z transformation was performed for functional 
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connectivity. 

Whole-Brain ReHo Analysis 

ReHo calculation was also constrained within the same gray matter mask similar to 

the whole-brain voxel-wise functional connectivity analysis. For each voxel of each 

participant, ReHo value was calculated by calculating Kendall's Coefficient of 

Concordance (KCC) of the time series for the given voxel with those of its 26 

neighbors 26. A 3D ReHo map was obtained for each participant. We further normalize 

the ReHo map by dividing the ReHo value for each voxel by the averaged ReHo 

value of the whole brain. Finally, all ReHo maps were smoothed using a 6 mm 

full-width at half maximum isotropic Gaussian kernel. 

Multivariate Pattern Classification Analysis 

A flow chart overview of the MVPA is illustrated in Figure 1. The MATLAB codes 

used in our analysis are available online:  

https://github.com/lichao312214129/lc_rsfmri_tools_matlab/tree/master/Machine_Le

arning/Classification (SVM_LC_Kfold_PCA _*.m). Our analysis consisted of a 

5-fold cross-validation procedure for each of the 3 modalities (i.e., FCS, large-scale 

FC and ReHo). At each fold k (k = 1, 2, 3, 4, 5), data of both PI and HC were divided 

into 2 subsets of 8 to 2. Then the 2 larger subsets from both group were fused together 

to form the training data (80%), with the others being test subsets (20%) and only 

used to assess generalization performance. Normalization and principal component 

dimensionality reduction were further performed on the training data. Testing data 

was also processed by these 2 processes using the same parameters (e.g., principal 

component coefficients) from the training data. We retained all the principal 

components to balance information loss and computational complexity of the 

classifier 27. Then, a linear SVM classifier was trained on the training data and used to 

classify the testing data. By comparing the predicted labels with the real labels, we 

acquired the classification performances (i.e., accuracy, sensitivity, specificity and 

area under ROC curve (AUC)) of one fold. Moreover, discriminative weights were 

obtained as linear SVM weights (i.e., Beta values of features from the linear SVM 

classifier). Final classification performances and discriminative maps were acquired 
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as the average over the 5 folds. At the end of the iteration, we acquired the prediction 

labels for every participant, which was used to build the confusion matrix (please see 

Figure 2.A-C). 

Statistical Analysis 

Demographic and scale data of all participants were analyzed using SPSS (version 20; 

SPSS, Chicago, III). Differences in age, education level, Insomnia Severity Index 

(ISI), Pittsburgh Sleep Quality Index (PSQI), Self-rating Anxiety Scale (SAS), and 

Self-rating Depression Scale scores (SDS) between PI patients and healthy controls 

were compared using Wilcoxon rank sum tests. Differences associated with age were 

assessed using chi-squared tests. 

Nonparametric permutation testing was used to estimate the statistical 

significance of the averaged classification performances by determining whether these 

performances exceeded chance levels. The class labels (i.e., PI patients vs. HC) of the 

training data were randomly permuted 1,000 times prior to training, and repeated the 

entire 5-fold cross-validation procedure. The P value of the permutation test was 

defined as: P = (Nexceed+1)/ (Npermutation+1). Where Nexceed represents the number of 

times the permuted performance exceeded the one obtained for the true labels. 

Npermutation represents the times of permutation. 

Because of the unfavorable classification performance of the large-scale FC and 

ReHo (please see Figure 2), we only performed the permutation test on FCS. We 

additionally analyzed the between-group differences of these three FC metrics using 

traditional two-sample t-test, with age, sex and years of education as covariates. Since 

the focus of this study is FCS, correlation analysis was conducted to determine 

whether FCS was correlated with clinical characteristics in the PI group. 

 

Results 

Demographic and Scale Data  

As shown in Table 1, the PI patients and the controls showed no significant 

differences in age (P = 0.74), sex (P = 0.10), and education level (P = 0.19). However, 

PI patients had higher ISI, PSQI, SAS, and SDS scores compared to HC (all P < 
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0.001). 

Classification Performances 

Figure 2 shows the confusion matrix and classification performances of the 3 

modalities. FCS reached 81.5±9.0% for accuracy, 84.9±14.7% for sensitivity, 

79.1±12.3% for specificity, and 83.0±10.8% for AUC (all P < 0.001). However, 

several performances for large-scale FC and ReHo were around 50%, i.e. the chance 

level. Consequently, the focus of our study was only on FCS. Please note the subtle 

numerical differences between the confusion matrix and bar graph, which were the 

result of rounding. 

Classification Weight Maps 

Figure 3 and Figure S1 show the top one percent of classification weight maps from 

linear SVM classifier using the FCS (cluster size threshold = 100). Right 

fronto-insular cortex, left precuneus and left middle frontal gyrus contributed high 

weight to the classifier. 

MVPA Results of More Rigorous Inclusion Criteria 

Considering that previous research used more rigorous inclusion criteria: duration > 6 

month, total sleep time ≤ 6.5 h and either sleep onset latency (SOL) > 45 min or 

WASO > 45 min or SOL + WASO > 60 min 28,29, we also adopted the additional 

specific severity criteria to the patients group and repeated the MVPA for FCS 

(number of patients=22; duration=61.7±69.2; total sleep time=326.8±35.0; SOL=46.8

±28.8; WASO=95.0±52.3). Results showed that the classification performances were 

76.6±9.3% for accuracy, 76.3±9.5% for sensitivity, 76.9±13.7% for specificity, and 

86.0±7.0% for AUC. The right fronto-insular cortex, left middle frontal gyrus and 

bilateral superior frontal gyrus had relatively high classification weights (right 

fronto-insular cortex and left middle frontal gyrus were the repeated regions in the 

two analyses). We reported the results that adopted the specific criteria in the 

supplementary material (Figure S2). 

In addition, as to the healthy controls, substantial studies reported that PSQI total 

score�<�5 was defined to the healthy controls 30-32. In order to minimize the 
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influence of PSQI on the results, we use linear regression method to remove the 

covariate PSQI. Then, we repeated the MVPA for FCS. Results showed that the 

classification performances were 82.9±5.9% for accuracy, 84.7±13.4% for sensitivity, 

80.7±13.1% for specificity, and 90.7±5.1% for AUC. The right fronto-insular cortex 

and left middle frontal gyrus had relatively high classification weights (these two 

regions were all the repeated regions in the two analyses). We reported the results in 

the supplementary material (Figure S3). 

 

Between-group Differences and Correlation Analysis  

Figure 4, Figure S4 and Table 3 illustrate the regions showing between-group 

differences in FCS maps (Alphasim correction for multiple comparisons of P < 0.05 

combined with single voxel P < 0.01). The estimated Gaussian filter width (FWHM, 

in mm) were [7.161, 7.834, and 7.771]. The number of Monte Carlo simulations was 

1000. Compared with HC, PI patients showed increased FCS in right fronto-insular 

cortex and left middle frontal gyrus, while decreased in the right head of the caudate 

nucleus. It is worth noting that the right fronto-insular cortex and left middle frontal 

gyrus also showed high classification weights.  

  In addition, we found that patients with primary insomnia showed increased ReHo 

in bilateral anterior cingulate gyrus, left precentral gyrus and superior frontal gyrus 

(Alphasim correction for multiple comparisons of P < 0.05 combined with single 

voxel P < 0.01). The estimated Gaussian filter width (FWHM, in mm) were [7.276, 

8.014, and 7.841]. The number of Monte Carlo simulations was 1000. However, 

larger scale FC showed no between-group difference (FDR q < 0.05). We have added 

the between-group difference in ReHo to supplementary material (Figure S5). 

Correlation analyses showed the FCS in the left middle frontal gyrus and right 

head of the caudate nucleus were correlated with SDS and PSQI respectively (Figure 

4.B). 

 

Discussion 

To our knowledge, this is the first study to employ MVPA for the automatic 
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classification of patients with PI using three types of FC features. In the current study, 

we investigated whether or not the three types of FC metrics could be used as 

biomarkers to define PI. Specifically, the classification performances of FCS were all 

approximately equal to or more than 80% for diagnosing PI patients. The right 

fronto-insular cortex and left middle frontal gyrus not only had higher classification 

weights, but also were the repeated regions with those of between-group comparison. 

In addition, correlation analysis showed that FCS in left middle frontal gyrus and head 

of right caudate nucleus were correlated with PSQI and SDS respectively. 

  Convergent findings based on functional MR imaging support that spontaneous 

neural activity or FC in the insular cortex, prefrontal cortex and precuneus were 

disrupted in patients with insomnia or subjects with insomnia symptoms 5-11. In line 

with previous findings, our study firstly showed that these regions also have high 

classification weights. 

Intriguingly, right fronto-insular cortex and left middle frontal gyrus not only had 

high classification weights, but also showed differences between groups. Right 

fronto-insular cortex is a key node of the salience network, and is implicated in 

arousal and insomnia 6,33. Michael C. Chen et al. demonstrated that the anterior insular 

cortex had greater involvement with the salience network, which indicated that the 

region was involved in hyperarousal in insomnia, and may be an important target for 

novel therapies for PI 6. Our findings that the right fronto-insular cortex had high 

classification weight and increased FCS might offer further confirmation. 

However, our findings that increased FCS in the left middle frontal gyrus were not 

consistent with previous studies. Reduced metabolism, activation or spontaneous 

neural activities in the prefrontal cortex are the general findings 3,9,20,34. One 

explanation might be that increased FCS, a manifestation of increased interaction 

between a given region and other regions, was compensatory to the above reduction in 

the prefrontal cortex. Future researches need to verify this hypothesis. 

In addition, we also found decreased FCS in the head of the caudate nucleus, which 

also negatively correlated with PSQI. Previous studies have established that the 

caudate is involved in the most consistently reported abnormalities for insomnia, i.e., 

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 13, 2019. ; https://doi.org/10.1101/532127doi: bioRxiv preprint 

https://doi.org/10.1101/532127
http://creativecommons.org/licenses/by-nc/4.0/


hyper-arousal, sleep problems and deficits in working memory, episodic memory and 

problem solving 13. Furthermore, stimulating the caudate could reduce excitability of 

the human cortex 35. Using functional MR imaging, Diederick Stoffers et al. found 

that hyper-arousal, a most prominent characteristic of insomnia, was associated with 

reduced caudate recruitment when performing an executive task 13. Interestingly, our 

study found that the functional interaction between the head of the caudate nucleus 

and other brain regions was weaker at the resting state. Although FCS in the head of 

the caudate nucleus cannot be used to identify insomnia, decreased FCS in this region 

might be the underlying neurobiological substrate for hyper-arousal in insomnia. 

Several limitations of the current study have to be acknowledged. First, our sample 

size was relatively small. Further studies using larger cohorts and multi-center 

imaging datasets are needed to confirm our findings. Second, we only used functional 

MR imaging data. The integration of structural with functional data may be a more 

effective method to elucidate disease factors that are shared across different 

modalities. Third, we only investigated the static features of the three types of FC and 

did not study their dynamic features. Increasing evidence has demonstrated that the 

functional brain connectivity have dynamic characteristics, emergent over time scales 

spanning milliseconds and tens of minutes. Future studies using dynamic FC are 

needed when performing MVPA for PI. 

In summary, these limitations notwithstanding, our findings suggest that abnormal 

FCS in the right fronto-insular cortex and left middle frontal gyrus might serve as a 

potential neuromarkers for PI. 
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Figure 1. Flow chart overview illustrating the MVPA. 

MVPA: multivariate pattern analysis. 
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Figure 2. Confusion matrix (A-C), classification performances (the upper part of D) 

and ROC (the lower part of D) of linear SVM classifier using the three types of the 

functional connectivity features. Please note the subtle numerical differences between 

the confusion matrix and bar graph are the result of rounding. 

ROC: receiver operating characteristic; SVM: support vector machine. 
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Figure 3. The top one percent of classification weight maps from the linear SVM 

classifier using the FCS as feature (cluster size threshold = 100). 

FCS, functional connectivity strength. 
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Figure 4. FCS differences between PI patients and HC (PI-HC). The threshold was P 

< 0.01 at the voxel level, with Alphasim corrections for multiple comparisons of P < 

0.05. The color bar represents the t value (A). Correlation between FCS and sleep 

scales in the PI group. 

FCS: functional connectivity strength, PI: primary insomnia, HC: healthy controls. 

 

 

 

 

 

 

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 13, 2019. ; https://doi.org/10.1101/532127doi: bioRxiv preprint 

https://doi.org/10.1101/532127
http://creativecommons.org/licenses/by-nc/4.0/


 

 

 

 

 

 

 

 

 

 

 

 

Table 1 Demographic and Scale Data of All Study Participants 

 

Variables 

PI Group 

(n=38) 

HC Group 

(n=44) 

 

P Value 

Gender (M/F) 16/22 11/33 0.10* 

Age (y) 40.61 ± 9.43 39.91 ± 9.43 0.74# 

Duration (mo) 40.31 ± 40.09 N/A N/A 

Education (y) 7.50 ± 3.54 8.45 ± 4.31 0.19 # 

ISI 19.32 ± 3.09 5.43 ± 2.46 < 0.001 # 

PSQI 12.45 ± 3.09 5.77 ±3.15 < 0.001 # 

SAS 50.29 ± 11.29 39.73 ± 5.68 < 0.001 # 

SDS 55.21 ± 9.57 40.39 ± 2.54 < 0.001 # 

Note.—Unless otherwise noted, data are mean± standard deviation. 

*—The P value was obtained using the chi-square test.  

#—The P value was obtained using the Wilcoxon rank sum tests. 

N/A, Not Available; PI, Primary Insomnia; HC, Healthy Control; ISI, Insomnia Severity 

Index; PSQI, Pittsburgh Sleep Quality Index; SAS, Self-rating Anxiety Scale; SDS, Self-rating 

Depression Scale. 
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Table 2 Top One Percent of the Region Weights from SVM Classifier Using the Functional 

Connectivity Strength 

 

Brain regions 

MNI coordinates (Peak) Cluster size 

(Voxels) 

weight 

(Peak) X    Y Z 

Fronto-insular cortex (R) 39  3  -6 122 0.03 

Precuneus (L) -3 -66 60 114 -0.03 

Middle frontal gyrus (L) -33  21 51 212 0.05 

L, Left; R, Right. 
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Table 3 Between-group Differences (PI-HC) for Functional Connectivity Strength 

 

Brain Regions 

MNI Coordinates (Peak) Cluster Size 

(Voxels) 

T 

Values 

(Peak) 

X    Y Z 

Fronto-insular cortex (R) 36  3  -6 100 5.40 

Head of caudate nucleus (R) 9 12 9 70 -4.85 

Middle frontal gyrus (L) -33  21 51 64 4.58 

L, Left; R, Right. 

The significance level was set to P < 0.01 at the voxel level, with Alphasim corrections for 

multiple comparisons of P < 0.05. 
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