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Abstract 

Nonrenal clearance pathways such as drug metabolism are decreased in chronic kidney disease 

(CKD). Although the mechanism remains elusive, uremic toxin retention and an altered gut 

microbiota are suspected to influence cytochrome P450s (CYPs) contributing to the 

unpredictable pharmacokinetics in patients with CKD. We characterized dysbiosis and uremia in 

CKD to elucidate associations between CYP expression and CKD progression. Rats fed control 

or CKD-inducing adenine diet were subsequently studied at five time points over 42 days. CYP 

expression and activity were compared to alterations in the 1) plasma and liver metabolome and 

2) gut bacterial microbiota. CYP3A2 and CYP2C11 were downregulated in CKD by ≥76% 

(p<0.001) concurrently with or slightly prior to CKD onset as defined by serum creatinine. 

Metabolite profiles were altered prior to changes in the gut microbiota, and gut-derived uremic 

toxins including indoxyl sulfate, phenyl sulfate and 4-ethylphenyl sulfate correlated with 

CYP3A2 or CYP2C11 expression. Bacterial genera Turicibacter and Parabacteroides were 

identified as being characteristic of CKD. In conclusion, CYP3A2 and CYP2C11 are 

downregulated before dysbiosis and correlate with select uremic toxins. 

Keywords: Uremia, gut microbiota, dysbiosis, cytochrome P450, drug metabolism, disease 

progression, metabolomics, sequencing 
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Introduction 

Chronic kidney disease (CKD) is a progressive and irreversible loss of kidney function over time 

affecting approximately 16% of the global population (1). Progressive loss of kidney function in 

CKD leads to accumulation of waste products in plasma, resulting in uremia (2). Uremia 

contributes to the progression of CKD into end-stage renal disease (2) and has also been 

associated with the activation of the immune response, gut microbial alterations (3), and 

cardiovascular events (4). 

The impairment of renal drug clearance in CKD is well established. However, non-renal, hepatic 

drug clearance is also significantly decreased in CKD. Non-renal drug clearance was identified 

by KDIGO (Kidney Disease: Improving Global Outcomes) as an important consideration for 

dose recommendations (5). CKD patients experience altered pharmacokinetics, partially mediated 

by altered activity of cytochrome P450 (CYP) drug metabolizing enzymes (6, 7). CYP3A4 and 

CYP2C9 metabolize approximately 43% of all clinically relevant drugs (8). Although several 

studies suggest hepatic drug metabolism is decreased in CKD (6, 7), the exact mechanisms 

underlying CYP downregulation are poorly understood. Uremia, hormones, gut bacterial 

alterations and associated inflammation are all factors proposed to affect drug metabolizing 

enzymes in CKD. Despite CKD being a progressive disease, many studies focus exclusively on 

severe CKD while the majority of patients suffer from earlier stages of the disease. This leaves a 

gap in our understanding of the temporal relationship between CKD progression and changes in 

CYP expression. Uremia may influence CYP enzyme changes by altering transcriptional 

regulation of CYP enzymes  (9); modulating inflammation or parathyroid hormone (PTH) (10) or 

direct inhibition by uremic toxins (11–13).  

The relationship between gut bacteria and host physiology/pathophysiology has been extensively 

studied. Alterations in gut bacteria have been linked with inflammatory bowel disease, obesity, 

cardiovascular disease, asthma and cancer (14, 15). Dysbiosis refers to changes in bacterial 

composition associated with a non-infectious disease state (15). In a large cohort study of 1106 

human stool samples, glomerular filtration rate (GFR) was a major factor associated with altered 

bacterial composition (16). Thus, it comes as no surprise that patients with CKD also exhibit 

dysbiosis (16).  
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In this study, we hypothesized that CKD would cause uremia and gut microbial changes 

detectable prior to downregulation of drug metabolizing enzymes. Bacterial alterations and 

metabolic changes have not been comprehensively studied with respect to altered drug 

metabolism throughout the temporal progression of CKD. To our knowledge, this is the first 

study to use metabolomics and 16S bacterial rRNA gene sequencing to investigate CYP 

expression and activity over CKD progression. Our study aims to characterize plasma and liver 

uremic toxins, the gut microbial composition and CYP expression and activity over the 

progression of CKD.  

Materials & Methods 

Animal Model & Study Design 

Sixty-six male Wistar rats (150g) were obtained from Charles River Laboratories, Inc. 

(Wilmington, MA) and randomized into six groups defined by time of euthanasia (day 0, 3, 7, 14, 

28 and 42). Each time point consisted of six control and six CKD rats. Rats were housed with a 

same-group cage mate to minimize coprophagy alterations of the gut microbiota. Rats were given 

either 0.5% adenine supplemented chow to induce CKD or standard chow pair fed to match 

caloric intake. Rats were euthanized by isoflurane anesthetization followed by decapitation. 

Blood was collected in heparinized tubes and liver was snap-frozen in liquid nitrogen. Caecal 

samples were obtained on a sterile, single culture swab (BD, Sparks, MD) touched to an open 

incision of the caecum. All samples were stored at -80°C until further analysis excluding the right 

kidneys which were stored in 10% formalin.  

Disease Markers & Histology 

Conventional CKD markers urea and creatinine were measured in rat plasma using standard 

methods by the Pathology and Laboratory Medicine group (PaLM, London, ON; 

www.lhsc.on.ca/palm/). Kidney tissue and histological images were prepared as previously 

described (17). Light microscopy and photographs of prepared haematoxylin and eosin stained 

slides were obtained on a Leica DM1000 light microscope paired with a Leica DFC295 camera 

and Leica Application Suite v3.8.0 software.  

Real-Time Polymerase Chain Reaction (PCR) 
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Total mRNA was extracted from rat liver, tested for purity and quantified using quantitative PCR 

with methods and validated primers as stated previously (9). Gene expression was normalized to 

β-actin using the ∆∆CT method. 

Western Blotting 

Hepatic microsomal fractions were prepared by differential centrifugation as previously 

described (17). Western blot analysis was performed as previously published with minor 

alterations (17) and all blots were completed in duplicate for both CYP3A2 and CYP2C11. 

Enzymatic Activity 

Enzymatic activity was analyzed by incubating microsomal fractions with testosterone, a known 

substrate of CYP3A2 and CYP2C11. Testosterone metabolites 6βOH-testosterone (CYP3A2) and 

16αOH-testosterone (CYP2C11) were measured via mass spectrometry (MS) in a 96-well plate 

assay adapted from (17). In a final volume of 75µL, 0.2mg/mL microsomal protein and reaction 

buffer (50mM potassium phosphate with 2mM MgCl2 pH 7.4) was incubated with 1µL 

testosterone (Steraloids Inc., Newport, RI) at concentrations of 12.5, 25, 75, 200 and 400µM for 

10 min at 37°C. All reactions were initiated with the addition of 1mM NADPH (Sigma Aldrich) 

and shaken at 37°C for 20 min before the reaction was terminated using 225µL ice-cold 

acetonitrile with 80ng/mL flurazepam internal standard (Cerilliant, Round Rock, TX). Plates 

were shaken, centrifuged at 4000×g for 10 min, supernatant diluted 5-fold with milliQ water. 

Enzymatic products were separated on a Phenomenex Kinetex phenyl-hexyl column (1.7µm 

particle size, 50mm × 2.1 mm) maintained at 40°C in a Waters ACQUITY UPLC I-Class System 

(Milford, MA). Mobile phase flow was set to 0.5 ml/min and consisted of UPLC-grade water (A) 

and acetonitrile (B) both containing 0.1% formic acid with a gradient as follows: 0–0.5 mins, 

25% B; 0.5–2 mins 25–35% B; 2–2.5 mins 35–80% B; 2.5–3.5 mins held at 80% B; 3.5 mins 

25% B. Analytes were detected using quadrupole time-of-flight mass spectrometry (QTof/MS) 

on a Waters XevoTM G2S-QTof/MS and Waters ACQUITY I-Class UPLC with parameters as 

previously described (17). Mass-to-charge ratios for hydroxy testosterone were targeted (m/z = 

305.2117) for quantification using QuanLynx v4.1 software. Michaelis-Menten curves were 

generated with GraphPad Prism (v6.0; GraphPad Software Inc., San Diego, CA). 
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Untargeted Metabolomics 

Sample & Batch Preparation 

Plasma and liver samples were prepared as previously described (18) with 3:1 ice-cold 

acetonitrile and 2.5µM chlorpropamide internal standard (Sigma Aldrich) then run on both the 

Waters ACQUITY UPLC HSS T3 (1.8µm particle size, 100 mm × 2.1 mm) reverse-phase liquid 

chromatography (RPLC) column and the Waters ACQUITY BEH Amide (1.7µm particle size, 

100 mm × 2.1 mm) hydrophilic interaction liquid chromatography (HILIC) column. Supernatant 

was either diluted 5-fold in water for RPLC or directly injected for HILIC. Sample injection 

order was randomized, and a quality control sample made from pooled samples was run every ten 

injections. All samples were run in a single batch for each biological matrix and column.  

Chromatography & Mass Spectrometry 

Columns were maintained at 45°C and mobile phase flow set to 0.45 ml/min consisting of UPLC-

grade water (A) and acetonitrile (B), both containing 0.1% formic acid. The RPLC anlysis was 

run as previously described (18). The HILIC column followed a gradient of 0–0.5 mins 99% B; 

0.5–6 mins 99–50% B; 6–8 mins 50–30% B; 8–8.5 mins 30–99% B. Samples were run separately 

in succession for both positive and negative electrospray ionization (ESI) modes on the UPLC-

QTof/MS instrument. Mass spectrometer source, method, calibration and other parameters were 

identical to those in (18) and data was collected by MassLynx v4.1 software (Waters).  

Data Processing 

Data processing for each run and ionization mode was performed separately in R studio (v3.2.3). 

MassLynx data files were converted to mzData files using convert.waters.raw package v1.0 

(github.com/stanstrup/convert.waters.raw). Pooled samples were used to find the optimal peak 

picking parameters, retention time corrections and grouping parameters with the isotopologue 

parameter optimization package v1.0.0 (github.com/rietho/IPO/blob/master/vignettes/IPO.Rmd). 

The resulting parameters were inputted into the XCMS package v1.50.1 to pick appropriate 

peaks, integrate the area under the curve and replace zero values (19). The CAMERA package 

v1.32.0 was used to annotate possible isotopes and adducts (20). XCMS and CAMERA packages 
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were used to integrate positive and negative ionization modes before normalizing to internal 

standard and applying a threshold of 30% variability of the quality control.  

Metabolite Identification 

The accurate monoisotopic mass (m/z) and fragmentation spectrum of each metabolite was used 

to identify metabolites via METLIN, MassBank or Human Metabolome Database (HMDB) (21). 

Metabolites were identified in accordance with the reporting standards for metabolite 

identification  (22). 

In Vitro Assessment of Uremic Toxins on CYP3A4 Expression 

Human hepatoma Huh7 cells were maintained in Dulbecco’s modified Eagle’s medium 

supplemented with 10% FBS, 100 IU/ml penicillin, and 100 µg/ml streptomycin and 2 mM L-

glutamine. Cells were grown at confluence for 4 weeks prior to treatment to ensure adequate 

CYP3A4 expression levels (23). Huh7 cells were treated with select uremic toxins: creatinine 

(2121.6 µM), p-cresyl sulfate (186.1 µM), indoxyl sulfate (1113.2 µM), urea (76.6 mM) for 24 

hours. An indoxyl sulfate concentration-response effect on CYP3A4 mRNA expression was 

generated using a concentration range of indoxyl sulfate found in normal and CKD patients (0 to 

1000 µM) with 40 g/L human serum albumin (HSA, Lee Biosolutions, St. Louis, MO). Indoxyl 

sulfate was incubated in media containing 40 g/L HSA for 3 hours at 37°C to allow for plasma 

protein binding equilibration prior to cell treatment. Cell viability was assessed using the TACS 

3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay as previously 

described (24). 

Gut Microbial Sequencing 

Illumina Sequencing  

DNA was extracted from caecum swabs using the PowerSoil-96 Well DNA isolation kit from 

MoBio using convenience modifications of the Earth Microbiome Project protocol (25). 288 

unique primer combinations were established using the 515F and 806R barcoded primers (25, 26) 

to amplify the V4 variable region of the 16S rRNA gene. Primers followed the template: Forward 

primer [5’-ACACTCTTT 
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CCCTACACGACGCTCTTCCGATCTnnnn(8)GTGCCAGCMGCCGCGGTAA-3’] and reverse 

primer [5’-CGGTCTCGGCATTCCTGCTGAACGCTCTTCCGATCTnnnn 

(8)GGACTACHVGGGTWTCTAAT-3’] where the 5’ end is the Illumina adaptor sequence, the 

nnnn indicates four random nucleotides, (8) represents one of 36 barcoded sequences and the 3’ 

end is the primer region for V4 (Supplementary Table 1). Amplification was carried out in 42µL 

total volume with 20µL primer mix (3.2pmol/µL per primer), 20µL GoTaq Hot Start Mastermix 

(Thermo Scientific) and 2µL template DNA then run for 2 min at 95°C followed by 25 cycles of 

1 min at 95°C; 1 min at 52°C and 1 min at 72°C excluding a final elongation. Barcoded PCR 

products were quantified with a Qubit dsDNA assay kit on a Qubit 2.0 (Life Technologies), 

normalized by amount of DNA, pooled then purified with a PCR clean-up column. The cleaned 

DNA was amplified once more with primers OLJ139 

[5’AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACACGA3’] and OLJ140 

[5’CAAGCAGAAGACGGCATACGAGATCGGTCTCGGCATTCCTGCTG AAC3’] before 

paired-end sequencing on the Illumina MiSeq platform at the London Regional Genomics Centre 

(LRGC, lrgc.ca, London, ON).  

Data Processing 

Paired reads, each 220bp long were processed with the Illumina_SOP protocol accessed through 

Github with minor convenience revisions (https://github.com/ggloor/miseq_bin). After 

demultiplexing, raw reads were overlapped with a minimum 30 nucleotides using Pandaseq 

(v2.5) (27) then filtered with in-house Perl and UNIX scripts to ensure exact barcode matching 

and primer matching with up to two allowable mismatches (28). OTUs were clustered at 97% 

identity using the uSearch (v7.0.1090) tool (29) and the most abundant sequence in the OUT was 

annotated via the mothur script (30) to search the Silva 16S rRNA gene reference database 

(Silva.nr_v119) (31, 32). In mothur, a bootstrap cut-off of 70% was used for taxonomical 

identification and redundancy. A total of 1199 OTUs were retained across all samples 

(Supplementary Table 2). In R studio (v3.2.3) the zCompositions (v1.0.3-1) package (33) was 

used for zero-replacement before data was centered-log ratio (clr) transformed for compatibility 

with downstream multivariate statistical analysis (34, 35).  

Statistical Analysis  
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Disease Markers, Real-Time PCR, Western Blotting & Enzymatic Activity Assay 

CYP measurements and disease markers urea and creatinine are presented as mean ± SEM and 

analyzed by 2-way ANOVA paired with Sidak’s multiple comparisons test. *p < 0.05 compared 

to matching day control indicates significance.  

Untargeted Metabolomics 

MassLynx software and the EZInfo v2.0 package (Umetrics, Umeå, Sweden) were used to 

perform principal component analysis (PCA) to evaluate the initial separation between CKD and 

control over time for each of the four analytical runs. Data was Pareto scaled and pooled samples 

were run to confirm minimal variance. Multivariate analysis was performed on each day of each 

run. EZInfo was used to generate orthogonal partial least squares discriminant analysis (OPLS-

DA) of the original PCA (Supplementary Figure 1). To assess multivariate OPLS-DA 

sufficiency, each comparison received a goodness of fit value ratio threshold (R2/Q2 < 2) (36). 

Subsequent thresholds were applied (VIP > 0.8; p(corr)[1] > 0.4 or < -0.4) by finding the variable 

importance in projection (VIP) and the p(corr)[1] axis as a measure of magnitude and difference 

between treatments (37) (Supplementary Figure 1). Only metabolites that met or exceeded the 

thresholds on two or more consecutive time points were retained for comparison with univariate 

and correlative analyses. Univariate analysis was performed by the open-access online software 

MetaboAnalyst 3.0 to conduct a p-value corrected (FDR = 0.05) independent 2-way ANOVA on 

each metabolite via the “Time series” and “Two-factor independent samples” applications (21). 

Significance (p<0.05) was required for both “Time” and “Disease” to retain the metabolite for 

comparison with multivariate and correlative analyses. Spearman correlations were conducted 

between each metabolite and the mRNA, protein or enzymatic activity levels of each enzyme. 

Metabolomics datasets were matched by sample to the corresponding CYP dataset and 

correlation coefficients (r-values) manually filtered with high stringency (r > 0.65 or r < -0.65). 

Metabolites that did not also satisfy univariate analysis were removed from the correlation subset. 

Metabolites that did not satisfy multivariate analysis are indicated but retained to capture 

biologically relevant changes independent of magnitude.  

Caecal Microbiota 
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Multivariate PCA was performed in EZInfo as described above for untargeted metabolomics 

excluding scaling. To evaluate univariate differences between CKD and control groups, the effect 

size and overlap for each bacterial taxonomic group was calculated for each time point 

individually using the R package ALDEx2 (v1.2.0) 

(bioconductor.org/packages/release/bioc/html/ALDEx2.html) (38, 39). Severe thresholds were 

applied to both effect size (> 1.5 or < -1.5) and overlap (< 6.5%) for each bacterial abundance 

(39, 40). Significance was defined as satisfying the effect size and overlap thresholds with 95% 

confidence. Species and strain information were manually searched using the Targeted Loci 

Nucleotide BLAST application through NCBI (blast.ncbi.nlm.nih.gov/Blast.cgi).  

Results 

Model of CKD Progression 

CKD markers urea and creatinine both showed significant increase in CKD rat plasma by day 14 

(Figure 1 A-B). This increase continued to a 9-fold and 11-fold difference between CKD and 

control for urea and creatinine, respectively, on day 42. Kidney histology showed enlarged 

tubules, inflammation and fibrosis by day 14 through to day 42 (Figure 1 C-H). Animal weights 

did not change between groups (Supplementary Table 3).  

Hepatic CYP3A2 & CYP2C11 mRNA Expression over CKD Progression 

CYP3A2 mRNA expression was minimally decreased on day 3, recovered on day 7, then 

declined substantially by day 14 (-83%, p<0.001) which persisted to day 42 (-99%, p<0.001) 

(Figure 2A). CYP2C11 mRNA expression was unchanged on day 3 but largely increased in the 

control group on day 7 leaving CKD rats well below normal (-76%, p<0.001) (Figure 2B). On 

day 14 (-84%, p<0.001), day 28 (-96%, p<0.001), and day 42 (-98%, p<0.001) the CKD 

CYP2C11 mRNA expression was decreased in comparison to control.  

Hepatic CYP3A2 & CYP2C11 Protein Expression over CKD Progression 

Significant decreases in CYP3A2 protein expression were observed in CKD animals on day 14 (-

63%, p<0.001), day 28 (-86%, p<0.001) and day 42 (-85%, p<0.01) (Figure 2C). CYP2C11 
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protein quantification also shows depletion in CKD but starting on day 7 (-42%, p<0.05) through 

to day 42 (-83%, p<0.001) (Figure 2D).  

Hepatic CYP3A2 & CYP2C11 Enzymatic Activity over CKD Progression 

CYP3A2 intrinsic activity in CKD rats decreased on day 3, recovered on day 7 and fell again 3.6-

fold by day 14, 13-fold by day 28 and nearly 14-fold lower than controls by day 42 (Figure 2E). 

The intrinsic activity of CYP2C11 showed a 4.6-fold difference between CKD and control as 

early as day 7 and up to 12.8-fold difference by day 42 (Figure 2F). Michaelis-Menten 

parameters are summarized (Table 1).  

Plasma & Liver Metabolomics 

Untargeted metabolomics analysis was used to assess changes in metabolite composition. 

Principal component analysis (PCA) clearly separated CKD and control for both rat plasma and 

liver samples (Figure 3). Early disease stages are arbitrarily defined as day 3-14 and late stages 

days 28 and 42. R2 and Q2 parameters were used to accompany the interpretation of OPLS-DA 

plots (Table 2). Metabolites in rat plasma were well separated from control as early as day 3 

when using RPLC (Figure 3A). Liver RPLC showed far less separation between control and 

CKD before day 28 (Figure 3B). The HILIC column showed separation back to day 7 except for 

poor Q2 values on day 14 in both plasma and liver samples (Figure 3 C-D). 

CYP Enzymes & Uremic Toxins 

After satisfying multivariate and univariate analysis, metabolites were correlated to CYP mRNA, 

protein and enzymatic activity. There were 204 unique m/z ratios identified across all four runs 

that correlated with either CYP3A2 or CYP2C11 (Supplementary Table 4). Of these 204 m/z 

ratios, 9 metabolites were identified at identification level 1 using purchased standards. These 

metabolites include: allantoin, L-carnitine, creatinine, 2,8-dihydroxyadenine, equol-4/7-O-

glucuronide, 4-ethylphenyl sulfate, indoxyl sulfate, pantothenic acid (vitamin B5) and phenyl 

sulfate (Table 3). Indoxyl sulfate, phenyl sulfate and 4-ethylphenyl sulfate had increased 

concentration (p<0.0001) on days 28 and 42 for both plasma and liver tissue (Figure 4). 

Indoxyl Sulfate Downregulates Hepatic CYP3A4 Expression in vitro 
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To investigate the mechanism of CYP3A downregulation in CKD, human hepatoma Huh7 cells 

were treated with selected uremic toxins. As an initial proof-of-concept screen, concentrations of 

uremic toxins used were the highest reported in patients with CKD (41). A 24-hour indoxyl 

sulfate treatment decreased CYP3A4 mRNA expression by 70% in Huh7 cells (Figure 5A). Other 

individual uremic toxins did not affect CYP3A4 mRNA expression. Indoxyl sulfate is a protein 

bound uremic toxin; therefore, the concentration dependence of this effect was evaluated in the 

presence of 40 g/L HSA in the culture medium. Treatment with indoxyl sulfate for 48 hours 

produced a concentration-dependent decrease in CYP3A4 mRNA expression as the concentration 

was increased from those measured in healthy controls to concentrations in patients with CKD 

(IC50 = 113.0 ± 3.5 µM) (Figure 5B). A significant decrease in the steady-state levels of CYP3A4 

mRNA was demonstrated when Huh7 cells were treated with ≥ 300 µM indoxyl sulfate in the 

presence of 40 g/L HSA supplemented media (Figure 5B, p < 0.05). Huh7 cells treated with 

indoxyl sulfate in the uremic range resulted in a 21% to 95% decrease in CYP3A4 mRNA 

expression. Cell viability was unaffected by indoxyl sulfate in media containing HSA after 48 

hour treatment at clinically relevant concentrations (Figure 5C).  

Caecal Microbiota 

To understand if the gut microbiota was changing in parallel with metabolite changes, next-

generation Illumina sequencing was used to assess the bacterial composition of the caecum 

(Supplementary Table 2). Exploratory PCA ordination showed that the  caecum samples had high 

intrinsic biological variation, but separated by time, regardless of disease state (Figure 6A). A 

multivariate analysis found that CKD and control separated into distinct groups at day 28 and 42 

(day 28: R2 = 0.97; Q2 =0.71 and day 42: R2 = 0.98; Q2 =0.70) (Figure 6B). Effect size and 

overlap of each OTU relative abundance was tabulated and assessed for trends. Only two 

bacterial OTUs changed between control and CKD on two or more consecutive days with respect 

to effect size and overlap. The first OTU was from the phylum Firmicutes and genus Turicibacter 

and was significantly higher in CKD rats compared to control animals on days 14, 28 and 42 

(Figure 7A) with an increasing trend associated with disease progression. The second OTU from 

phylum Bacteroidetes and genus Parabacteroides showed a significant decrease in control rats 

over time (Figure 7B). 
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Discussion  

The pharmacokinetics of many drugs are unpredictably altered in CKD, making these patients 

susceptible to adverse drug events. Hepatic CYPs play a crucial role in nonrenal drug clearance 

and alterations in these CYPs may contribute to pharmacokinetic changes observed in CKD. CYP 

downregulation has been associated with decreased renal clearance and consequent retention of 

uremic toxins in animal models of CKD. Mechanistic studies suggest the involvement of various 

pathways from pre-transcriptional regulation to direct inhibition by uremic toxins, inflammatory 

factors, and hormones (9–13, 42, 43). Uremic toxins are also suggested to change the relative 

abundance of gut bacteria to favor uremic-toxin producing microbes and create a state of 

dysbiosis in CKD patients (44). Changes in metabolite or toxin production as a consequence of 

the altered microbiota may exacerbate CKD progression and potentially CYP downregulation. 

However, the pathophysiological factors of uremia and dysbiosis have yet to be evaluated 

temporally. In this manuscript, uremia and dysbiosis were characterized over CKD progression to 

identify potential causes of CYP downregulation.  

CYP3A2 and CYP2C11 were both downregulated by CKD with respect to mRNA expression, 

protein expression, and enzymatic activity as previously observed (45). These findings suggest 

these CYPs were initially influenced at the transcriptional level, consequently leading to altered 

protein expression and enzyme activity. Expression of CYP3A2 in control rats was stable 

throughout the study while expression started to decrease on day 14 in CKD rats. These 

observations suggest the removal, inhibition, or downregulation of a constitutive factor required 

for expression, potentially mediated by the increase in uremic toxins (46). In contrast, control rats 

exhibited an increase in CYP2C11 expression as early as day 7 but this increase was not evident 

in CKD rats. Increased CYP2C11 expression over time has been described in healthy male 

juvenile rats, where it was suspected to reflect increased testosterone levels during puberty (46). 

Furthermore, CKD has been associated with hypogonadism and testosterone deficiency (47). 

CYP2C11 is also influenced by alterations in the normally cyclic levels of growth hormone (GH) 

where continuous GH release or loss of GH production will both downregulate CYP2C11 (48).  

The differing trends between CYP3A2 and CYP2C11 may be attributed to nuclear receptor 

differences. CYP2C11 is less dependent on hepatocyte nuclear factor 4 alpha induction, and 

CKD-induced receptor binding inhibition is less extensive for CYP2C11 than it is CYP3A2 (17, 
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49). Alternatively, it is also possible that removal or inhibition of shared nuclear receptor PXR or 

reduced receptor binding of RNA polymerase II is affecting both enzymes but in different 

manners depending on substrate availability (9, 17).  

Plasma samples showed greater metabolomics separation in earlier stages of disease (days 3-14) 

than liver samples. This suggests CKD first inflicts a uremic environment in the plasma before 

infiltrating the liver. Uremic changes also overlapped with the early changes in CYP3A2 and 

CYP2C11, supporting the hypothesis that uremic toxins are involved with CYP regulation. 

Metabolites from each metabolomics run were subjected to correlation analysis with CYP3A2 or 

CYP2C11 mRNA, protein or enzymatic activity levels. Of the 204 m/z features retrieved, 8 of the 

9 identified at level 1 classification were increased with CKD progression [allantoin, creatinine, 

2,8-dihydroxyadenine, pantothenic acid (vitamin B5), indoxyl sulfate, phenyl sulfate, equol-4/7-

O-glucuronide and 4-ethylphenyl sulfate]. L-carnitine was the only level 1 metabolite that 

showed a positive correlation with CYP downregulation, decreasing over CKD progression. 

Gut derived uremic toxins that are potentially involved in CYP downregulation from this study 

include indoxyl sulfate, phenyl sulfate, 4-ethylphenyl sulfate, equol-4/7-O-glucournide and 

products of L-carnitine metabolism. Indoxyl sulfate and phenyl sulfate are two highly retained 

gut-derived uremic toxins (50, 51) both found in CKD patients and animal models (18, 52). 

Indoxyl sulfate and phenyl sulfate have been associated with altered drug metabolism both 

through transcriptional regulation (42), and indoxyl sulfate as a direct inhibitor of CYP activity 

(13). Thus, the identification and observed increase in concentration of indoxyl sulfate and 

phenyl sulfate in this study support their previously described roles in modifying CYP regulation 

in CKD (Figure 4). Further, our in vitro studies using Huh7 human hepatoma cells showed 

indoxyl sulfate decreases CYP3A4 expression in a concentration dependent manner. 

Interestingly, of the metabolites found by correlation to CYP3A2 or CYP2C11, the five 

metabolites that are associated with CYP downregulation in the literature are all gut-derived 

uremic toxins.  

Indoxyl sulfate, phenyl sulfate and 4-ethylphenyl sulfate concentration all increase after day 28 

when changes are simultaneously observed in the gut microbiota that was phylogenetically 

analyzed using 16S sequencing. This lends support to the idea that uremia may be driving the 

change in gut microbial abundance through a damaged gut wall (Figure 8) (44, 53). The late and 
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pronounced increase in gut-derived uremic toxins also suggests dysbiosis contributes to the 

exacerbation of uremia, likely adding to the uremic milieu by increasing the number of bacteria 

capable of uremic toxin production (44). Multivariate analysis showed the microbiota was most 

significantly influenced by time (i.e. age) and secondarily by disease state. This correlation 

suggests that the microbiota changes caused by CKD induction are less profound than age-

associated bacterial changes. Additionally, in comparison to the metabolomic PCA, microbial 

clustering with respect to disease state was poor. This may indicate that the uremic environment 

in the plasma and liver are altered prior to the onset of dysbiosis. Bacterial families significantly 

changed on days 28 and 42 contained strains capable of producing at least one of the following 

genes: urease, tryptophanase, phosphotransbutyrylase or butyrate kinase, although the bacteria 

were inconsistently characteristic of either control or CKD rats (54). The sole bacterial genus 

significantly changed due to disease state prior to day 14 was of the order Clostridiales, in 

accordance with the findings of Barrios and colleagues who sequenced the gut microbiota of 855 

people and correlated bacteria from the order Clostridiales with early renal decline (55).  

Although interesting to examine the temporal relationship for OTUs differing due to CKD, only 

two bacterial genera, Turicibacter and Parabacteroides, were significant on two or more 

consecutive days, best correlating with CYP trends. Turicibacter was the most consistently 

changed bacteria, changing as early as day 14 through to day 42 with an increasing trend as CKD 

progressed. Identifying the genus Turicibacter in CKD animals is a novel finding. Turicibacter 

are gram-positive, strictly anaerobic, rod-shaped bacteria of which very little is known. 

Turicibacter has been identified in the blood of febrile patients with acute appendicitis (56) and 

associated with pouchitis – a complication of proctocolectomy – in ulcerative colitis patients 

(57). A fecal microbiota transplant from healthy human into colons of germ-free rats also 

identifies Turicibacter sp  (58). Only 4 strains, within the sanguinis species , have been published 

to date: MOL361 (56), PC909 (59), ZCY83 (60), H121 (61). A BLASTn search of our 

Turicibacter sequence matched the MOL361 species with 100% identity (NR_028816.1). 

Assuming all rats were exposed to Turicibacter for the study duration, our findings suggest CKD 

animals are more susceptible to gut colonization by Turicibacter. 

The BLASTn results for the Parabacteroides genus OTU suggested 99% sequence identity to 

two stains of the species distasonis: strain ATCC 8503 (NR_074376.1) and JCM 5825 
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(NR_041342.1). In 2006, Bacteroides distasonis was reclassified as Parabacteroides distasonis 

and thus, all subsequent information pertains to either classification (62). Parabacteroides is a 

gram-negative, anaerobic, non-spore-forming genus. P. distasonis is classified in the KEGG 

pathway database as an opportunistic pathogen capable of anaerobic infection (63). Analysis of 

bacteria capable of generating phenol and indole compounds found P. distasonis proficient at 

producing p-cresol (64) and indoxyl sulfate (65). In general, it seems P. distasonis is potentially 

both harmful and beneficial depending on translocation and abundance. Our results show a 

unique trend where CKD rats have a stable level of Parabacteroides and controls slowly reduce 

the abundance of this genus after 28 days. Given the multitude of associations with disease, 

Parabacteroides may be taking advantage of the dysbiotic state in CKD when it is normally 

removed in controls by other healthy bacteria as a part of the progression in age-associated 

microbial changes. 

In conclusion, global plasma and liver alterations of the metabolome over disease progression 

provide support for uremic toxins playing a role in CYP downregulation. Alternatively, the early 

detection of CYP downregulation and late surge of gut-derived uremic toxin concentrations 

suggest other factors are involved in CYP regulation in early stages of CKD (Figure 8). A 

temporal association was established between severe CKD, caecal dysbiosis and increase in gut-

derived uremic toxins indoxyl sulfate, phenyl sulfate and 4-ethylphenyl sulfate. This association 

supports the positive-feedback loop of uremia and dysbiosis suspected to drive severe CKD 

(Figure 8).  
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Table 1. CYP3A2 and CYP2C11 enzymatic activity over CKD progression. 6βOH-testosterone 

(CYP3A2) and 16αOH-testosterone (CYP2C11) production of liver microsomes measured 

following incubation with NADPH and testosterone. Vmax values are in pmol/min/mg protein and 

Km values are µM. *p<0.05 compared to matching day control; n ≥ 6. 
 

6βOH-testosterone (CYP3A2) 

                 Vmax
a                    Km

a Intrinsic Clearance (Vmax/Km)a 

Control CKD Control CKD Control CKD 
Day 0 35938±2841 35938±2841 29.5±9.02 29.5±9.02 1275±393.87 1275±393.87 
Day 3 56184±5640 26425±2097* 40.1±14.46 29.8±9.13 1422±540.42 894±288.25* 
Day 7 49912±1806 42396±4911 40.2±5.218 42.7±17.48 1272±214.04 1036±489.05 
Day 14 38223±2797 12804±1983* 49.4±12.34 59.4±29.88 804±207.09 222±152.72* 
Day 28 61702±3069 10102±1289* 66.6±10.43 141.6±44.74* 936±86.36 71±21.50* 
Day 42 45706±2266 7849±1297* 58.5±9.46 135.6±56.32* 795±139.12 58±24.76* 
 16αOH-testosterone (CYP2C11) 

                 Vmax
a                    Km

a Intrinsic Clearance (Vmax/Km)a 

Control CKD Control CKD Control CKD 
Day 0 17983±1210 17983±1210 14.2±4.56 14.2±4.56 1365±518.05 1365±518.05 
Day 3 25892±2353 15453±1195 21.8±8.28 13.8±5.13 1202±298.73 1123±357.65 
Day 7 41420±2488 27114±3431 14.3±4.09 23.5±12.17 2907±541.70 1206±607.94* 
Day 14 51824±2556 17521±2406* 16.9±3.75 18.6±11.18 3199±377.15 948±523.91* 
Day 28 72358±2064 16236±1548* 20.1±2.45 21.2±8.52 3679±548.84 797±273.19* 
Day 42 62571±3147 6658±513* 16.2±3.71 22.6±7.21 4005±570.00 312±179.33* 
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Table2. Multivariate OPLS-DA parameters R2 and Q2. R2 and Q2 values for plasma and liver 

metabolomics using RPLC and HILIC across all time points.  

 

 

  Rat Plasma 
RPLC HILIC 

D
ay

 4
2 Comp No. R2 Q2 R2/Q2 Comp No. R2 Q2 R2/Q2 

[1] 0.9859 0.9175 1.0745 [1] 0.9821 0.5936 1.6546 
[2] 0.9859 0.9493 1.0385 [2] 0.9821 0.8064 1.2180 

    [3] 0.9821 0.8677 1.1319 

D
ay

 2
8 Comp No. R2 Q2 R2/Q2 Comp No. R2 Q2 R2/Q2 

[1] 0.9982 0.6410 1.5572 [1] 0.9734 0.8402 1.1586 
[2] 0.9982 0.8176 1.2210 [2] 0.9734 0.9491 1.0255 

        

D
ay

 1
4 Comp No. R2 Q2 R2/Q2 Comp No. R2 Q2 R2/Q2 

[1] 0.8940 0.5438 1.6439 [1] 0.7248 0.2872 2.5240 
[2] 0.8940 0.5203 1.7181 [2] 0.7248 0.5121 1.4152 

        

D
ay

 7
 Comp No. R2 Q2 R2/Q2 Comp No. R2 Q2 R2/Q2 

[1] 0.9628 0.5418 1.7770 [1] 0.9169 0.5979 1.5336 
[2] 0.9628 0.7150 1.3466 [2] 0.9169 0.8431 1.0876 

        

D
ay

 3
 Comp No. R2 Q2 R2/Q2 Comp No. R2 Q2 R2/Q2 

[1] 0.8680 0.5969 1.4542 [1] 0.9873 0.2812 3.5112 
[2] 0.8680 0.5420 1.6016 [2] 0.9873 0.6354 1.5538 

    [3] 0.9873 0.7510 1.3146 
 Rat Liver 

RPLC HILIC 

D
ay

 4
2 Comp No. R2 Q2 R2/Q2 Comp No. R2 Q2 R2/Q2 

[1] 0.9753 0.7750 1.2585 [1] 0.9832 0.8722 1.1273 
[2] 0.9753 0.8708 1.1200 [2] 0.9832 0.9194 1.0694 
[3] 0.9753 0.9214 1.0585     

D
ay

 2
8 Comp No. R2 Q2 R2/Q2 Comp No. R2 Q2 R2/Q2 

[1] 0.9691 0.7830 1.2377 [1] 0.9900 0.9034 1.0958 
[2] 0.9691 0.9284 1.0438 [2] 0.9900 0.9286 1.0661 

        

D
ay

 1
4 Comp No. R2 Q2 R2/Q2 Comp No. R2 Q2 R2/Q2 

[1] 0.8357 0.0070 118.877 [1] 0.9712 0.4582 2.1194 
[2] 0.8357 0.2953 2.8298 [2] 0.9712 0.6679 1.4541 

    [3] 0.9712 0.7677 1.2651 

D
ay

 7
 Comp No. R2 Q2 R2/Q2 Comp No. R2 Q2 R2/Q2 

[1] 0.9973 0.3534 2.8218 [1] 0.9512 0.5142 1.8498 
[2] 0.9973 0.7233 1.3787 [2] 0.9512 0.7394 1.2864 
[3] 0.9973 0.8425 1.1837     

D
ay

 3
 Comp No. R2 Q2 R2/Q2 Comp No. R2 Q2 R2/Q2 

[1] 0.8938 0.5384 1.6601 [1] 0.9512 0.5142 1.8498 
[2] 0.8938 0.5749 1.5548 [2] 0.9512 0.7394 1.2864 

    [3] 0.9873 0.7510 1.3146 
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Figure Legends 

Figure 1. Assessment of CKD in Wistar rats orally administered 0.5% adenine over 42 days. (A) 

Plasma urea (mM) and (B) serum creatinine (µM) concentrations of control and CKD rats 

presented as mean ± SEM. *p < 0.05 when compared to matching day control; n ≥ 6. H&E 

stained rat kidney sections from day 0 control (C) and CKD days 3 (D), 7 (E), 14 (F), 28 (G) and 

42 (H). Arrows indicate enlarged nephron tubules and areas of fluid retention. Inflammation and 

atrophy are evident on days 14, 28 and 42.  

Figure 2. Relative mRNA expression, protein expression and enzymatic activity levels of 

CYP3A2 and CYP2C11. CYP3A2 (A) and CYP2C11 (B) mRNA expression and protein 

expression, CYP3A2 (C) and CYP2C11 (D), with representative western blots. Values were 

relative to β-actin represented as the mean ± SEM, normalized to control day 0 and arbitrarily 

defined as 100%. Enzymatic activity of CYP3A2 (D) and CYP2C11 (E) in control and CKD rats 

represented as the mean intrinsic clearance Vmax/Km [(ml/min/mg protein)] of testosterone 

metabolite ± SEM. *p < 0.05 when compared to matching day control; n ≥ 6. 

Figure 3. Unsupervised principal component analysis (PCA) plots of rat plasma (A) and liver (B) 

metabolome separated by RPLC. PCA of plasma (C) and liver (D) metabolome separated by 

HILIC. Each point is either control (¢), early stage CKD defined by day 3, 7 and 14 (¢), or late 

stage CKD defined by days 28 and 42 (¢). Each axis is either the first [1], second [2] or third [3] 

principal component showing the two components representing the largest variation between 

groups. Placement of each sample is determined by the metabolite composition within each 

sample and clustered samples share similar compositions. Data is centered and Pareto-scaled. 

Select rat samples were removed as outliers (A) no outliers, (B) a day 28 CKD sample, (C) a day 

3 and day 42 control, and (D) a day 7 control sample. 

Figure 4. Quantitative analysis of metabolites indoxyl sulfate, phenyl sulfate and 4-ethylphenyl 

Sulfate. Plasma indoxyl sulfate (A), phenyl sulfate (C), 4-ethylphenyl sulfate (E) (µM) and liver 

indoxyl sulfate (B), phenyl sulfate (D) and 4-ethylphenyl sulfate (F) (pmol/mg liver tissue) 

concentrations obtained via untargeted metabolomics. Results are presented as mean ± SEM, *p 

< 0.0001 when compared to same day control; n≥6. 
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Figure 5. A) The effect of select uremic toxins on CYP3A4 expression in Huh7 cells. B) 

Concentration dependent effect of indoxyl sulfate on CYP3A4 expression in Huh7 cells. C) Cell 

viability in the presence of increasing indoxyl sulfate concentrations. Results are represented as 

mean ± SEM, *p < 0.05; n ≥ 3. 

Figure 6. Unsupervised principal component analysis (PCA) of control and CKD rat caecum 

bacterial sequences coloured by (A) day 0 (¢) 3 (¢), 14 (¢), 28 (¢) and 42 (¢) or by (B) 

treatment, CKD (¢) or control (¢). Data is centered without scaling. 

Figure 7. Mean relative abundance of genus Turicibacter (A) and genus Parabacteroides (B) 

displayed as the CLR-transformed values of the OTUs ± 95% confidence interval using R v3.2.3 

package ALDEx2 v1.2.0. *Absolute effect size ≥ 1.5 and overlap < 6.5% compared to same day 

control; n ≥ 6. 

Figure 8. Temporal associations of uremia and dysbiosis with CYP3A2 and CYP2C11 

expression over CKD progression. Days (3 through 42) refer to rat study time points carried out 

in this thesis. CKD was characterized by urea and creatinine beginning on day 14 and correlating 

with the decrease in CYP3A2 expression. CYP2C11 expression decreased as early as day 7. 

Although plasma uremia may be involved as early as day 7 indicated by untargeted multivariate 

analysis, quantified uremic toxins were significantly increased only on days 28 and 42. Similarly, 

gut bacterial dysbiosis was detectable on days 28 and 42 supporting the hypothesis of a positive-

feedback cycle involving uremia and the gut microbiota. This study suggests there are likely 

other factors influencing CYPs in early stages of CKD. Images were modified from Servier 

Medical Art (http://www.servier.co.uk/medical-art-gallery). 
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