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Abstract 
 
Human genetics has informed the clinical development of new drugs, and is beginning to 
influence the selection of new drug targets. Large-scale DNA sequencing studies have created 
a catalogue of naturally occurring genetic variants predicted to cause loss of function in human 
genes, which in principle should provide powerful in vivo models of human genetic “knockouts” 
to complement model organism knockout studies and inform drug development. Here, we 
consider the use of predicted loss-of-function (pLoF) variation catalogued in the Genome 
Aggregation Database (gnomAD) for the evaluation of genes as potential drug targets. Many 
drug targets, including the targets of highly successful inhibitors such as aspirin and statins, are 
under natural selection at least as extreme as known haploinsufficient genes, with pLoF variants 
almost completely depleted from the population. Thus, metrics of gene essentiality should not 
be used to eliminate genes from consideration as potential targets. The identification of 
individual humans harboring “knockouts” (biallelic gene inactivation), followed by individual 
recall and deep phenotyping, is highly valuable to study gene function. In most genes, pLoF 
alleles are sufficiently rare that ascertainment will be largely limited to heterozygous individuals 
in outbred populations. Sampling of diverse bottlenecked populations and consanguineous 
individuals will aid in identification of total “knockouts”. Careful filtering and curation of pLoF 
variants in a gene of interest is necessary in order to identify true LoF individuals for follow-up, 
and the positional distribution or frequency of true LoF variants may reveal important disease 
biology. Our analysis suggests that the value of pLoF variant data for drug discovery lies in 
deep curation informed by the nature of the drug and its indication, as well as the biology of the 
gene, followed by recall-by-genotype studies in targeted populations. 
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Main Text 
 
Human genetics in drug discovery 
 
Human genetics has inspired clinical development pathways for new drugs and shows promise 
in guiding the selection of new targets for drug discovery1,2. The majority of drug candidates that 
enter clinical trials eventually fail for lack of efficacy3, and while in vitro, cell culture, and animal 
model systems can provide preclinical evidence that the compound engages its target, too often 
the target itself is not causally related to human disease1. Candidates that target genes with 
human genetic evidence for causality in disease are more likely to become approved drugs4,5. 
 
An oft-cited example is the development of monoclonal antibodies to PCSK9. PCSK9 binds and 
causes degradation of the low-density lipoprotein (LDL) receptor, thus raising serum LDL and 
cardiovascular disease (CVD) risk6. Naturally occurring genetic variation in the PCSK9 gene 
provided a full allelic series that correctly7,8 predicted that pharmacological inhibition of PCSK9 
would lower LDL and be protective against CVD. Gain-of-function variants in PCSK9 raise LDL 
and CVD risk9, whereas variants that reduce functionality lower LDL and CVD risk10, and 
variants that result in a total loss of function lower LDL and CVD risk more strongly11,12. A 
human lacking any PCSK9 due to compound heterozygous inactivating mutations has very low 
LDL and no discernible adverse phenotype13. 
 
This story illustrates the potential for human genetics to inform on the phenotypic impact — both 
efficacy and tolerability — of a target's modulation and inactivation, thus providing dose-
response and safety information even before any drug candidate has been identified1. This 
provides a powerful motivation to study human genetics when evaluating a potential drug target. 
At the same time, however, we will show in this article that the characteristics of PCSK9 cannot 
be taken as a one-size-fits-all standard for what criteria a gene must meet in order to be a 
promising drug target. In contrast to PCSK9, many highly successful drugs target genes where 
pLoF variants are depleted by intense natural selection and are extremely rare in the general 
population. For many of these genes, pLoF variants are too rare for ascertainment of multiple 
double-null human “knockouts” to be a realistic goal. Nevertheless, the study of pLoF variants 
and the individuals harboring them, even if limited to heterozygotes, can be deeply informative 
for drug discovery, but only in the context of deep curation undertaken with awareness of gene 
and disease biology and of the potential drug and its indication. 
 
Rationale and caveats for studying loss-of-function variants 
 
Variants annotated as nonsense, frameshift, or essential splice site-disrupting are categorized 
as protein-truncating variants. Provided that there is rigorous filtering of false positives14, such 
variants are generally expected to reduce gene function, and are referred to here as predicted 
loss-of-function (pLoF) variants. In the simplest case, a germline heterozygous loss-of-function 
allele may correspond to a 50% reduction in gene dosage compared to a wild-type individual, 
and germline double null (homozygous or compound heterozygous) genotypes may correspond 
to 0% of normal gene dosage, in all tissues, throughout life — though of course the reality may 
be more complex. While full dosage compensation appears to be rare, at least at the RNA 
level15, a variety of mechanisms may cause heterozygous or even homozygous LoF to be 
phenotypically muted: for instance, factors other than gene dosage may be rate-limiting for the 
protein’s function16, or paralogs may compensate14. In some cases, however, pLoF variants can 
phenocopy long-term pharmacological inhibition, and may be useful for predicting the effects of 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 15, 2019. ; https://doi.org/10.1101/530881doi: bioRxiv preprint 

https://doi.org/10.1101/530881
http://creativecommons.org/licenses/by/4.0/


Minikel et al – Drug target loss-of-function – 2019-01-28   

 

3 

3 

drugs that negatively impact their target’s function, such as inhibitors, antagonists, and 
suppressors. Such drugs comprise a significant fraction of approved medicines (see below). 
While the effects of genetic inactivation of potential drug targets have been studied for decades 
using knockout mice17, public databases of genetic variation such as the Genome Aggregation 
Database (gnomAD)18, containing a total of 141,456 human genomes and exomes, now provide 
an opportunity to study the effects of gene knockout in the organism of most direct interest: 
humans. 
 
As with any biological data, information from pLoF variants must be interpreted within a broader 
therapeutic context. Many drugs are not inhibitors, but rather confer neomorphic or 
hypermorphic gains of function on their targets19, and are thus not well-modeled by pLoF 
variants at all. Even for drugs that antagonize their target's function, it is important to recognize 
several ways in which genetic knockout and pharmacological inhibition may have divergent 
effects. For example: a chemical probe may inhibit only one of a protein's two or more functional 
domains20, may inhibit proteins encoded by two or more paralogous genes21, or it may inhibit a 
target only when a particular complex is formed22 or, alternatively, when a particular protein-
protein interaction is absent23. Gene knockouts normally affect every tissue in which a gene is 
expressed, although in some cases variants may occur on tissue-specific isoforms24–27, and 
meanwhile many drugs have tissue-restricted distribution. Genetic knockout is also lifelong, 
including embryonic phases, whereas pharmacological inhibition is generally temporary and 
age-restricted; this is important because dozens of approved drugs are known or suspected to 
cause fetal harm but are tolerated in adults28. Finally, as noted above, genetic knockout has a 
specific "dose", whereas the dosing of pharmacological inhibition can be titrated as needed. 
 
While these caveats are important, the PCSK9 example illustrates that pLoF variants can 
nonetheless be predictive of the phenotypic effects of drugging a target, and other examples of 
protective LoF variants modeling therapeutic intervention have subsequently arisen29–31. In 
addition, some drug adverse events may have been predictable in light of human genetic data32 
— for instance, inhibition of DGAT1 resulted in gastrointestinal side effects which may 
phenocopy biallelic DGAT1 loss-of-function mutations33,34. Currently, however, a systematic 
framework for applying human genetic data to the selection of drug targets and to the prediction 
of drug safety is lacking. In this article we lay the groundwork for such a framework, by 
analyzing the frequency, distribution, and signals of natural selection against pLoF variants in 
gnomAD, particularly in the targets of approved drugs. 
 
Measuring natural selection in human genes by pLoF constraint 
 
One natural question to ask of a gene is whether disruptive variants that arise in it are severely 
deleterious — that is, result in a severe disease state that would typically result in carriers 
having a high risk of being removed from the population by natural selection. In some cases 
such information is available directly from the observation of severe disease patients where 
pLoF mutations in that gene have been shown to be causal; however, for a substantial majority 
of human genes, no severe pLoF phenotype has yet been determined35. The lack of a known 
pLoF phenotype may arise for multiple reasons: (1) disruption of the gene may cause no 
discernible phenotype at all; (2) disruption may cause a phenotype that is evolutionarily 
deleterious but clinically mild, has effects only on reproductive fitness rather than individual 
health, or manifests only upon a certain environmental exposure; (3) the corresponding disease 
families may not yet have been sequenced or adequately analyzed, at least in sufficient 
numbers to convincingly demonstrate causation; or (4) pLoF variants may cause a phenotype 
so severe that human carriers are never observed (e.g. early embryonic lethality). Genes that 
fall in the latter three categories can be detected even if patients with the corresponding pLoF 
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mutations have not yet been observed, by identifying a depletion of unique pLoF variants in the 
general population – a state known as constraint36. 
 
Identifying constraint requires comparing the number of pLoF variants observed in a gene in a 
large population with the number expected in the absence of natural selection. Determining the 
number of expected pLoF variants in the population relies on a mutation rate model, many of 
which are based on the rate at which mutations spontaneously arise. The model used here 
determines the rate of mutation by incorporating the exact nucleotide change (e.g. C to T) and 
the immediate sequence context, among other factors18. Thus, in any given reference 
population, such as the 125,748 human exomes in gnomAD18, the expected number of unique 
genetic variants seen in at least one individual in a gene of interest, absent natural selection, is 
predicted based on mutation rates36–38. This expected number of variants can then be compared 
to the actual observed number of variants in the database in order to quantify the strength of 
purifying natural selection acting on that gene, for variants of each functional class — 
synonymous, missense, and pLoF36. Because true pLoF variants are very rare, annotation 
errors can account for a large fraction of apparent pLoF variants14, and pLoF constraint is best 
assessed using rigorous filtering for known error modes and with transcript expression-aware 
annotation18,24. 
 
Constraint differs from evolutionary conservation in that constraint (1) informs on selection in 
humans, not other species; (2) primarily reflects selection against variants in a heterozygous 
state; and (3) can more finely discriminate strong versus weak selection signals39,40. In general, 
the degree of constraint observed across the genome varies dramatically between synonymous 
variants, which appear to be under almost no natural selection, missense variants, which show 
some weak selection, and pLoF variants, which show a strong signal of depletion genome-wide 
but with marked variation between genes (Figure 1). Various metrics have been developed to 
quantify constraint39; here, we focus on the ratio of observed to expected pLoF variants 
(obs/exp). 
 

 
Figure 1. Gene constraint by functional class in gnomAD. Each dot represents one gene, 
and its position on the plot represents the expected (x axis) and observed (y axis) number of 
variants in 125,748 human exomes in gnomAD. Black diagonals represent the expected 
relationship in the absence of natural selection; colored lines represent the actual best fit 
relationship. For synonymous variants, where we expect minimal natural selection, the 
correlation is excellent, with almost all dots lining up right on the diagonal. For missense 
variants, increased density below the diagonal indicates that some genes are intolerant of 
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missense variation. For pLoF variants, most of the density lies below the diagonal, because 
most genes are at least somewhat intolerant of LoF variation, and some genes extremely so. 
 
 
Comparison of pLoF constraint in drug targets versus other gene sets 
 
As explained above, constraint allows us to quantify the degree of natural selection against loss-
of-function variants in each gene in the human genome. One might expect that drug targets 
should be less constrained than other genes, since targeting genes that do not tolerate 
inactivation might result in more adverse events. Alternatively, however, one might expect that 
drug targets should be more constrained than other genes, since constraint partly reflects a 
gene’s dosage sensitivity, and effective drugs should target genes where a change in gene 
dosage affects phenotype. We used the obs/exp constraint metric described above to assess 
the degree of natural selection against loss-of-function variants in the targets of approved drugs 
(extracted from DrugBank41, N=383). The overall distribution of pLoF obs/exp values for drug 
targets was similar to that for all genes (Figure 2A). Drug targets include genes under no 
apparent natural selection against loss-of-function (obs/exp 100%) as well as genes under 
intense purifying selection (obs/exp 0%).  
 
We compared the mean obs/exp value for drug targets to that of other gene lists (Figure 2B). As 
previously reported18,42, the ranking of various gene lists aligns with expectation. Olfactory 
receptors, which are often dispensable in humans43, have nearly 100% of their expected pLoF 
variation, and genes that tolerate homozygous inactivation in humans also have a higher 
proportion of their expected pLoF variants than the average gene. Recessive disease genes are 
close to the genome-wide average, possessing 59% of the expected number of pLoF variants, 
likely reflecting weak selection against heterozygous carriers of inactivating mutations in these 
genes. Dominant disease genes are more depleted for pLoF, and genes known to be essential 
in cell culture or associated with diseases of haploinsufficiency are even more severely depleted. 
Targets of approved drugs are on average more depleted for pLoF variation than the average 
gene (P = 0.0003), with only 44% of the expected amount of pLoF variation, versus 52% for all 
genes. 
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Figure 2. pLoF constraint for drug targets and other gene sets. A) Histogram of pLoF 
obs/exp for all genes (black) versus drug targets (blue). B) Forest plot of means (dots) and 95% 
confidence intervals indicating our certainty about the mean (line segments), for pLoF obs/exp 
ratio in the indicated gene sets. Data sources for gene sets are listed in Methods. 
 
We then stratified by the drug's effect on its target: negative (inhibitors, antagonists, 
suppressors, etc., N=240), positive (activators, agonists, inducers, etc., N=142), and 
other/unknown (N=94). Although one might expect that targets of negative drugs would need to 
be more tolerant of pLoF variation, pLoF constraint did not differ significantly between these 
sets, and if anything, targets of negative drugs were more constrained than those of positive 
drugs (mean obs/exp 42% vs. 48%, P=0.31, Kolmogorov-Smirnov test, Figure 2B). We note that 
many drug targets are included in more than one of these three sets, and 50 genes are the 
targets of both positive and negative drugs. 

Overall 19% of drug targets (N=73), including 53 targets of inhibitors or other negative drugs, 
have a pLoF obs/exp value less than the average (12.8%) for genes known to cause severe 
diseases of haploinsufficiency44 (ClinGen Level 3). To determine whether this finding could be 
explained by particular class or subset of drugs, we examined constraint in several well-known 
example drug targets (Table 1). A few of the most heavily constrained drug targets are targets 
of cytotoxic chemotherapy agents such as topoisomerase inhibitors or cytoskeleton disruptors, a 
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set of drugs intuitively expected to target essential genes. However, several genes with 
apparently complete or near-complete selection against pLoF variants are targets of highly 
successful, chronically used inhibitors including statins and aspirin. 
 

drug class example gene obs/exp pLoF 

topoisomerase I inhibitors irinotecan TOP1 0% (0/50.5) 

M1-selective antimuscarinics pirenzepine CHRM1 0% (0/14.1) 

cytoskeleton disruptors paclitaxel TUBB 6% (1/16.4) 

non-steroidal anti-inflammatory drugs (NSAIDs) aspirin PTGS2 10% (3/29.7) 

statins atorvastatin HMGCR 13% (6/46.3) 

phosphodiesterase 5 inhibitors sildenafil PDE5A 33% (16/47.8) 

antifolates methotrexate DHFR 38% (4/10.5) 

proton pump inhibitors omeprazole ATP4A 52% (25/47.9) 

antiplatelets clopidogrel P2RY12 66% (5/7.6) 

H1 antihistamines cetirizine HRH1 76% (11/14.5) 

angiotensin converting enzyme (ACE) inhibitors benazepril ACE 87% (62/71.3) 

PCSK9 antibodies alirocumab PCSK9 98% (26/26.5) 

Table 1. Examples illustrating the variable degree of selection against pLoF variation in 
drug targets. 
 
These examples demonstrate that even strong pLoF constraint does not preclude a gene from 
being a viable drug target. This mirrors the lesson from animal models that a lethal mouse 
knockout phenotype, such as that reported for Hmgcr or Ptgs2, does not rule out successful 
drug targeting45–47. The fact that pharmacological inhibition is apparently well-tolerated even in 
some genes where loss-of-function appears to be evolutionarily deleterious might reflect any of 
the issues raised above, including differences in effective “dosage”, tissue distribution, or the 
importance of the gene in embryonic versus adult life stages. 
 
Potential confounding variables in the composition of drug targets 
 
As noted above, drug targets are on average more depleted for pLoF variation than other genes, 
possessing on average just 44% as much pLoF variation as expected, compared to 52% for all 
genes (Figure 2), and the effect is similar or stronger when the analysis is limited to drugs with a 
negative effect on their target's function. From an efficacy perspective, one could argue that this 
makes sense: constrained genes should be enriched for dosage-sensitive genes, such that a 
pharmacological agent with less than 100% target engagement can still bring about a change in 
phenotype. But from a safety perspective, this result is counterintuitive: one would instead have 
expected that agents targeting more strongly constrained genes are more likely to cause 
adverse events and so less likely to become approved drugs. Before drawing any conclusions 
about whether pLoF constraint is predictive of drug success, we sought to identify potential 
confounding variables that could impact this analysis. 

Drug targets are dominated by a few families or classes of proteins, including rhodopsin-like G-
protein coupled receptors (GPCRs), nuclear receptors, voltage- and ligand-gated ion channels, 
and enzymes48,49. We asked whether controlling for these classes might affect the results shown 
in Figure 2. These four classes of genes are collectively enriched by 9.5-fold (95%CI: 7.7-11.7, 
P < 1 × 10-50, Fisher exact test) among approved drug targets and, in total, account for 54% 
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(207/386) of targets in our dataset. Each class has a mean pLoF obs/exp value significantly 
different from the set of all genes, with rhodopsin-like GPCRs being less constrained and the 
other three classes being more constrained (Figure 3). After controlling for membership in these 
four target classes as well as an "other" category, approved drug targets are still more 
constrained than other genes, with a mean pLoF obs/exp ratio lower by 10.0% (P = 6 × 10-6, 
linear regression), mirroring the result in Figure 2. 

 

Figure 3. Drug target gene set confounding by target class. A) Four major classes of 
proteins that are considered canonically "druggable" have LoF obs/exp ratios significantly 
different from the set of all genes. Within each class, the genes that are drug targets have a 
lower mean obs/exp ratio (hollow circles) than the class overall. B) Each of these classes is 
enriched several-fold among the set of drug targets. C) These classes cumulatively account for 
over half of drug targets. 

A second potential confounder is that many genes were chosen as drug targets because of their 
presumed relevance to human disease — targets with human genetic validation are reported to 
be four-fold enriched among approved drugs versus clinical candidates4. Genes adjacent to 
genome-wide association study (GWAS) hits — a proxy for involvement in human disease — 
are more constrained than the average gene42 and are 2.2-fold enriched among drug targets (P 
= 2 × 10-14, Fisher exact test), collectively accounting for 52% (200/386) of drug targets. 
However, even after controlling for GWAS hit adjacency, drug targets were still more 
constrained than other genes with a pLoF obs/exp ratio on average 6% lower (P = 0.003, linear 
regression). 

A third confounder is the number of adult human tissues in which each gene is expressed 
(thresholding at a median of 1 transcript per million in GTEx v7)50. Broader expression across 
tissues is associated with more severe constraint, meaning inversely correlated with obs/exp 
(Spearman's correlation r = -0.31, P < 1 × 10-50), and drug targets are on average expressed in 
fewer tissues than all genes (mean 32/53 vs. 37/53 tissues, P = 1 × 10-12, Kolmogorov-Smirnov 
test). After controlling for this effect, however, drug targets are still more constrained than the 
average gene, with pLoF obs/exp 11% lower (P = 2 × 10-8, linear regression). 

All three observed variables considered above — protein family, disease association, and tissue 
expression — are confounded with a gene’s status as drug target. This suggests that many 
unobserved variables are likely to differ between drug target and non-drug target genes as well. 
Thus, although drug targets are more constrained than the average gene even after controlling 
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for the variables considered here, it would not necessarily be appropriate to conclude that 
stronger pLoF constraint is associated with increased likelihood of drug target success. Instead, 
given the wide spectrum of constraint values observed in drug targets (Figure 2A) and the 
diverse examples form that spectrum (Table 1), the salient conclusion is that genes from the 
strongly constrained to the not at all constrained can make viable drug targets. 

This analysis is limited in crucial ways by available annotations and gene lists. For instance, we 
only compared targets of successful drug candidates (those that reach approval) to all genes, 
whereas to gain insight into safety signals it might be more instructive to compare to the targets 
of drug candidates that failed early in development due to on-target toxicity; however, to our 
knowledge, no sufficiently large dataset of such targets currently exists. It is also possible that 
different trends would emerge if analysis could be limited to drugs taken chronically and 
systemically (as opposed to transiently and/or locally) and/or stratified by the severity of the 
indicated condition, as a proxy for the severity of side effects that can be tolerated. Such 
annotations exist but would require extensive manual curation, a direction for future research. 
Finally, as noted above, expression patterns during embryonic development may explain some 
differences between the phenotypic effects of genetic disruption and pharmacological inhibition, 
but data on human embryonic gene expression are lacking. 

Prospects for ascertainment of heterozygous or homozygous “knockout” humans for 
target validation 

The analyses above suggest that a simple statistical approach based solely on quantifying a 
gene’s constraint will not be sufficient to nominate or exclude good drug targets. Where humans 
with loss-of-function variants in a potential target can be ascertained and studied, however, their 
phenotypes are expected to be extremely valuable for predicting the phenotypic effects — both 
desired and undesired — of a drug against that target. The PCSK9 example illustrates the 
potential value of such “genotype-first” ascertainment, and has inspired many efforts to do the 
same for other potential targets of interest51–54. To date, however, it has generally been unclear, 
for any particular gene of interest, how best to go about finding null individuals. Likewise, in 
genes for which double null humans have not yet been identified, it is often unclear whether this 
is due to chance, or due to lethality of this genotype. 
 
To explore these questions, we computed the cumulative allele frequency18 (CAF, or p) of pLoF 
variants in each gene in gnomAD in order to assess how often heterozygous or homozygous 
null individuals might be identified for any given gene of interest. We first considered a random 
mating model, under which the expected frequency of pLoF heterozygotes is 2p(1-p) and the 
expected frequency of double null or total “knockout” individuals is p2. Whereas gnomAD is now 
large enough to include at least one pLoF heterozygote for the majority of genes, ascertainment 
of total “knockout” individuals in outbred populations will require multiple orders of magnitude 
larger sample sizes for most genes (Figure 4A). For instance, consider a sample size of 14 
million individuals from outbred populations, 100 times larger than gnomAD today. In this 
sample size, 75% of genes (N=14,340) would still be expected to have <1 double null individual, 
and 91% of genes (N=17,546) — including 92% of existing approved drug targets (N=357) —
would have sufficiently few expected “knockouts” that observing zero of them would not 
represent a statistically significant departure from expectation. Indeed, for 38% of genes 
(N=7,546), even if all humans on Earth were sequenced, observing zero “knockouts” would still 
not be a statistically significant anomaly. Thus, for the vast majority of genes for the foreseeable 
future, examining outbred populations alone will not provide statistical evidence that a double 
null genotype is not tolerated in humans. 
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Figure 4. Expected frequency of individuals with one or two null alleles for every protein-
coding gene. Each panel shows a histogram where the y axis is number of genes and the x 
axis shows the theoretically expected population frequency of heterozygotes (orange), versus 
homozygotes and compound heterozygotes (purple). Zero indicates the number of genes where 
no pLoF variants have been observed. A) Outbred populations, under random mating. B) 
Finnish individuals, an example of a bottlenecked population. C) Consanguineous individuals 
with 5.8% of their genome autozygous. See Methods for details.  
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Some human populations, however, have demographic properties that render them 
substantially more likely to produce “knockout” individuals. One such category is bottlenecked 
populations, such as Finnish or Ashkenazi Jewish individuals, which are descended relatively 
recently (<100 generations) from a small number of historical founders that subsequently 
expanded rapidly in size to create large modern populations. This demographic history means 
that very rare LoF variants present in a founder — including both neutral and relatively 
deleterious variants — can rise to an unusually high allele frequency in the resulting 
population51. Thus, it is possible for a gene where LoF variants are ultra-rare in an outbred 
population, either due to chance or due to natural selection, to harbor relatively common LoF 
variants in a bottlenecked population. Examination of the full distribution of cumulative LoF allele 
frequencies for different genes (Figure 4B), however, reveals the double-edged sword of pLoF 
analysis in bottlenecked populations. In any given bottlenecked population, only a handful of 
genes have common pLoF variants, and meanwhile, rare pLoF variants that did not pass 
through the bottleneck have been effectively removed from these populations, resulting in a 
greater proportion of genes with few or no pLoF variants. If one’s gene of interest happens to be 
present at high frequency in such a population, then a large number of pLoF individuals can be 
ascertained, enabling association studies that would have been difficult or underpowered in a 
larger, outbred population51,55. But if one begins with a pre-determined gene or list of genes to 
study, any specific bottlenecked population is less likely to reveal interesting pLoF variants than 
are outbred populations. As such, any effort to use such populations for genome-wide target 
validation studies would be well-advised to draw samples from as diverse a set of bottlenecked 
populations as possible to maximize the probability of any specific gene being knocked out in at 
least one group.  
 
The study of consanguineous individuals, by contrast, is much more likely to identify 
homozygous pLoF genotypes for a pre-determined gene of interest. The East London Genes & 
Health (ELGH) initiative56 has recruited ~35,000 British Pakistani and Bangladeshi individuals, 
about 20% of whom report that their parents are related. On average, the N=2,912 individuals 
who reported that their parents were second cousins or closer had 5.8% (about 1/17th) of their 
genome in runs of autozygosity, meaning that both chromosomes are identical, inherited from 
the same recent ancestor. Consider, for example, a gene with pLoF allele frequency 1 in 3,000. 
This gene would be expected to have homozygous or compound heterozygous pLoF variants in 
(1/3,000)2 = 1 in 9 million individuals in an outbred population, but 0.058 * 1/3,000 = 1 in 52,000 
consanguineous individuals. Unlike in bottlenecked populations, where certain pLoF variants 
can be very common, the allele frequency of pLoF variants is not shifted in populations with 
elevated rates of consanguinity; only the homozygote frequency is dramatically shifted to the 
right (Figure 4C). These properties explain why the study of these populations has been highly 
fruitful to date53,57,58 and justify ambitious plans to expand these cohorts in the coming years56,59. 
However, it is worth emphasizing that because the underlying variants are still rare, studying 
these populations may only identify a handful of individuals with a homozygous pLoF genotype 
in a specific gene of interest; such data may be adequate to address safety questions and 
identify stark phenotypic effects53, but will often be highly underpowered for the study of subtle 
clinical phenotypes or the direct validation of disease-protective effects. 
 
Ascertainment of double null “knockout” humans remains a desirable goal for establishing the 
phenotype associated with complete loss of the target gene. However, the data above 
demonstrate that discovery of substantial numbers of such individuals may be infeasible for 
many genes of interest in outbred populations. Even in consanguineous cohorts, for most genes, 
observing homozygous individuals will require orders of magnitude larger sample sizes than are 
available today (Figure 4C). At present, for most genes, we believe that well-powered studies of 
the phenotypic impact of human LoF alleles will be limited to heterozygous individuals, which 
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often will provide valuable models of partial gene inhibition, as we describe in an accompanying 
manuscript exploring individuals heterozygous for LRRK2 LoF54.  
 
Regardless of the study design, moving from pLoF genotypes to information about specific 
clinical outcomes will depend critically on the accuracy of pLoF identification. We thus next turn 
our attention to the careful curation required to filter for true LoF variants before embarking upon 
any genotype-based ascertainment effort. 
 
 
Curation of pLoF variants in six neurodegenerative disease genes 
 
To illustrate both the opportunities and the challenges associated with identifying true LoF 
individuals for further study, we manually curated the data from gnomAD as well as the scientific 
literature for six genes associated with gain-of-function (GoF) neurodegenerative diseases, for 
which inhibitors or suppressors are presently under development60–68: HTT (Huntington disease), 
MAPT (tauopathies), PRNP (prion disease), SOD1 (amyotrophic lateral sclerosis), and LRRK2 
and SNCA (Parkinson disease). The results (Table 2 and Figure 5) illustrate four points about 
pLoF variant curation. 
 
 

   cumulative pLoF 
allele frequency 

  

gene 
length 
(bp) 

pLoF 
obs/exp 

before 
filtering & 
curation 

after 
filtering & 
curation 

pLoF 
heterozygote 

frequency 

GoF disease genetic 
prevalence 

HTT 9,426 8.2% 6.2% 0.013% 1 in 3,800 1 in 2,400-4,40069–71 

LRRK2 7,581 41% 0.23% 0.09% 1 in 500 1 in 3,30072,73 

MAPT 2,328 0%* 14% 0% not observed 1 in 5,000 – 31,00074,75 

PRNP 759 99%** 0.0035% 0.0021% 1 in 18,000 1 in 50,00076 

SNCA 420 0% 0.0012% 0% not observed 1 in 360,00072,77 

SOD1 462 18% 0.0060% 0.0038% 1 in 26,000 1 in 27,000-83,00078–80 

Table 2. Curation of pLoF variation in six neurodegenerative disease genes. Shown are 
the coding sequence length (base pairs, bp), constraint value (pLoF obs/exp) after filtering and 
curation, cumulative allele frequency before and after filtering and manual curation, estimated 
frequency of true pLoF heterozygotes in the population, and genetic prevalence (population 
frequency including pre-symptomatic individuals) of the gain-of-function (GoF) disease 
associated with the gene. Curation details and genetic prevalence calculations are included in 
the Supplement, except for LRRK2 which is described in detail in Whiffin et al54. *Constitutive 
brain-expressed exons only. **PRNP codons 1-144, see Figure 5C for rationale. 
 
First, other things being equal, genes with longer coding sequences have more opportunity for 
LoF variants to arise, and so are likely to have a higher cumulative frequency of LoF variants, 
unless they are heavily constrained. Thus, shorter and/or more constrained genes are more 
difficult targets for the follow-up of LoF individuals, even though constraint in and of itself does 
not rule out a gene being a good drug target (Table 1).  
 
Second, many variants annotated as pLoF are in fact false positives, and this is particularly true 
of pLoF variants with higher allele frequencies, such that the true cumulative allele frequency of 
LoF is often much lower after manual curation than before. As such, studies of human pLoF 
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variants that do not apply extremely stringent curation to their candidate variants can easily 
dilute their clinical studies with large numbers of false pLoF carriers or homozygotes, rendering 
the resulting data challenging or impossible to interpret. In the long term, we anticipate that 
high-throughput direct functional validation of candidate pLoF variants will become the standard 
for such studies in humans.  
 
Third, even after careful curation, the cumulative frequency of LoF variants is sometimes 
sufficiently high to place certain bounds on what heterozygote phenotype might exist. For 
example, in HTT, LRRK2, PRNP, and SOD1, individuals with high-confidence heterozygous 
LoF variants are equally or more common in the population than people with gain-of-function 
variants that cause neurodegenerative disease. In each case, the gain-of-function disease has 
been well-characterized for decades. Thus, it seems unlikely that a comparably severe and 
penetrant heterozygous loss-of-function syndrome associated with the same gene could have 
gone unnoticed to the present day. Of course, this does not rule out the possibility that 
heterozygous loss-of-function could be associated with a less severe or less penetrant 
phenotype. 
 
Finally, the positional distribution of pLoF variants often appears non-random, and careful 
curation of variants in such genes can often reveal a reason for the observed distribution, with 
resulting dramatic changes in the gene’s constraint and/or cumulative LoF allele frequency. 
Three genes in our curation set — HTT, MAPT, and PRNP — are good examples of how 
different non-random positional distributions of pLoF variants in a gene’s coding sequence can 
correspond to different error modes or disease biology (Figure 5). 
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Figure 5. Non-random positional distributions of pLoF variants across a gene’s coding 
sequence can reflect specific error modes or reveal disease biology. A) HTT, B) MAPT, 
with exon numbering and annotation from Andreadis81 and brain expression data from GTEx50,  
and C) PRNP, a single protein-coding exon with domains removed by post-translational 
modification in gray, showing previously reported variants52 as well as those newly identified in 
gnomAD and in the literature82,83. See text for interpretation and Supplement for detailed 
curation results. 
 
HTT, the gene encoding huntingtin, the cause of Huntington disease, appears at first glance to 
harbor several common LoF variants, with a cumulative allele frequency of 6%. This is 
surprising in view of this gene’s strong constraint in humans (Table 2) and the known embryonic 
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lethal phenotype of homozygous knockout in mice84. Inspection (Figure 5A) reveals that all of 
the common pLoF variants in HTT are sequencing read alignment artifacts within the 
polyglutamine and polyproline tracts of exon 1, some of which are removed by the automated 
annotation tool LOFTEE18, and the rest of which can be identified quickly by visual inspection. 
True LoF variants in HTT are in fact rare, consisting mostly of singletons (variants seen only 
once in gnomAD’s database of 141,456 individuals). Nonetheless, a total of 37 apparently real 
LoF alleles are observed in HTT, and these variants are positionally random and include 
nonsense, splice, and frameshift mutations. This suggests that ~1 in 3,800 people in the general 
population are heterozygous for genuine LoF of HTT, making this genotype about as common 
as the HTT CAG repeat expansion that causes Huntington’s disease. While heterozygous HTT 
LoF variants do appear to be under negative selective pressure given the clear depletion of 
such variants in the population, the prevalence of this genotype makes it unlikely that such 
variants result in a penetrant, severe, syndromic illness. This conclusion is consistent with the 
lack of reported phenotype in a human with a heterozygous translocation disrupting HTT85 and 
the heterozygous parents of children with a neurodevelopmental disorder due to compound 
heterozygous hypomorphic mutations in HTT86,87. Heterozygous knockout mice are likewise 
reported to have no obvious abnormality84, although reduced body weight has been noted88. 
Functional studies to confirm that the observed variants in HTT are true LoF, and recall-by-
genotype efforts to identify any phenotype in these individuals remain important future research 
directions. At present, the balance of evidence suggests that heterozygous HTT loss-of-function 
does not cause a severe, penetrant disease in humans. 
 
MAPT, the gene encoding tau, the cause of tauopathies and an important protein in Alzheimer 
disease, appears at first glance to harbor a large number of LoF variants, some of which are 
common, leading to a cumulative LoF allele frequency of 14%. The positional distribution of 
variants is suspiciously non-random, however, with LoFs concentrated in a few exons. Plotting 
the variant data against brain RNA expression data24 reveal the reason for this pattern (Figure 
5B): almost all of the pLoF variants in MAPT, including all those with appreciable allele 
frequency, fall in exons that are not expressed in the brain. The few remaining pLoF variants 
that do fall in brain-expressed exons were all determined to be sequencing or annotation errors 
upon closer inspection, meaning that no true LoF variants are observed in MAPT. Heterozygous 
MAPT deletions in humans have been reported: a partial deletion of exons 6-9 is believed to 
result in pathogenic gain of function89, while the 17q21.31 microdeletion syndrome90 spanning 
MAPT and four other genes is associated with a neurodevelopmental disorder that has since 
been causally attributed to the loss of KANSL191. Homozygous Mapt knockout mice are grossly 
normal92,93. Our data would be consistent with MAPT loss-of-function having some fitness effect 
in humans, but our sample size is insufficient to prove that MAPT loss-of-function is not 
tolerated (see Supplement). Even if heterozygous MAPT loss-of-function is pathogenic, this 
does not imply that MAPT is not a viable drug target, for the reasons explained above. However, 
this would mean that ascertaining and studying MAPT LoF individuals in order to determine 
whether reduced gene dosage is protective against tauopathies may prove difficult or 
impossible. 
 
PRNP, the gene encoding prion protein, the cause of prion disease, is a single-exon gene, so 
truncating variants do not trigger nonsense-mediated decay and instead result in shortened 
proteins. PRNP appears at first glance to be modestly depleted for LoF variants, particularly in 
its C terminus. As previously reported52, comparing gnomAD data to reported pathogenic 
variants in the literature (Figure 5C) reveals that truncating variants at codon 145 or higher are 
associated with a pathogenic gain-of-function leading to prion disease, apparently through 
removal of the protein’s GPI anchor. All of the variants seen in non-dementia cohorts in 
gnomAD occur prior to codon 145 and appear to correspond to true LoF. An individual with a 
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G131X mutation was found to be neurologically healthy at age 77 with no family history of 
neurodegeneration (see Supplement), suggesting that stop codons up through at least codon 
131 are benign. The sole C-terminal truncating variant observed in gnomAD, a frameshift at 
codon 234, at the beginning of the GPI signal, turns out to be an individual with dementia 
diagnosed clinically as Alzheimer disease (see Supplement). This is consistent with the slowly 
progressive dementia reported for some PRNP late truncating mutations94, although we cannot 
exclude the possibility that this variant is benign and that the Alzheimer diagnosis is a 
coincidence. When only codons 1-144 are considered, PRNP is not constrained at all (Table 2). 
Because the gene is short, the cumulative frequency of LoF variants is still low: ~1 in 18,000 
individuals are heterozygous for PRNP LoF, a frequency that has enabled phenotypic 
characterization of a small number of individuals (Supplement), although ascertainment of 
homozygotes will likely only ever be possible in consanguineous individuals. 
 
The above examples illustrate only a few of the types of positional patterns and error modes 
that may appear upon manual curation. Additional examples have been reported previously95,96, 
and a companion paper further illustrates the importance of transcript expression-aware 
annotation24. For anyone considering developing a drug against a target, the types of analyses 
described above are only a first step. Variants that appear to be true LoF after filtering and 
curation still occasionally turn out not to disrupt gene function, so RNA and/or protein studies 
are essential. Once true pLoF variants are identified, recontact efforts can be initiated where 
consents allow, and even when deep phenotype information is not available, examining the age 
distribution, study cohorts, and case/control status of pLoF individuals can be highly valuable. 
For an example of such a deeper analysis of one gene of interest, see our companion paper on 
pLoF variants in LRRK254. 
 
Suggestions for assessing pLoF variation in potential drug targets 
 
While there are many caveats, and pLoF variants in a gene will never be a perfect model of 
pharmacological inhibition of that gene’s product, there are now many examples to illustrate that 
pLoF variants can have enormous predictive value for the phenotypic impact of drugging a 
target1,2. We therefore expect that many more sequencing, functional studies, recontact efforts, 
and association studies will be undertaken with the intent of characterizing the impact of pLoF 
variants on genes under consideration as potential drug targets. In view of the above analyses 
and findings, we suggest guidelines for how such approaches can be undertaken (Box 1). 
 

• Carefully filter and curate pLoF variants. False positive pLoF variants abound, and are 
particularly enriched among common pLoF variants. Filtering using annotation tools such as 
LOFTEE18, RNA expression data24, and deep manual curation are critical before interpreting 
variants or initiating expensive downstream recontact or phenotyping efforts. 

• Consider the positional distribution of pLoF variants. A non-random distribution of pLoF 
variants throughout a gene’s coding sequence can reflect sequencing or annotation pitfalls, 
or can point to disease biology. Interpreting such patterns often requires careful analysis 
both of error modes and of gene-specific biology including transcript structure and 
expression. 

• Calculate cumulative allele frequency. The sum of the frequency of all pLoF variants in a 
gene will predict how realistic it is to identify a sufficient number of heterozygous and double 
null individuals for follow-up studies, and can often be informative in itself. Identify any 
populations with higher pLoF frequencies, as these may be the most fruitful for follow-up 
studies. If ascertainment of homozygotes is desired, sequencing of populations with higher 
rates of consanguinity will often be the most realistic route. 
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• Where possible, experimentally validate loss of function. Even after careful filtering and 
curation, RNA or protein studies will sometimes reveal that a pLoF variant does not in fact 
disrupt gene function. For high-value target genes, developing high-throughput functional 
assays and using these to test all candidate pLoF variants will often be worthwhile before 
embarking on clinical follow-up studies. 

• Do not eliminate genes from consideration based solely on a lack of pLoF individuals. 
Some genes, whether because they are short, and thus have few mutations expected a 
priori, or because they are under intense natural selection, have very few pLoF variants. 
Many successful approved drugs target such genes. Even when pLoF heterozygotes can be 
observed, double null individuals should not be expected for most genes at present sample 
sizes. While pLoF variation is valuable, lack thereof should not preclude a target from 
consideration. 

Box 1. Suggested guidelines for studying pLoF variation in a candidate drug target. 
 
Above all, we suggest that the study of pLoF variation should be informed by a full view of the 
biology of the gene, drug, and indication. Nothing about developing a drug is trivial, and that 
includes applying lessons from human genetics. But given the scale and expense of drug 
development, it is worth the effort to carefully read out, through human genetics, the valuable 
data from experiments that nature has already done. 
 
 
 
 

Methods 
 
Data sources 
 
pLoF analyses used the gnomAD dataset of 141,456 individuals18. For data consistency, all 
genome-wide constraint and CAF analyses (Figures 1-4) used only the 125,748 gnomAD 
exomes. Curated analyses of individual genes used all 141,456 individuals including 15,708 
whole genomes. 
 
Gene lists used in this study were extracted from public data sources between September and 
December 2018 as shown in Table 3.  
 

List N Description 

All 19,194 HGNC protein-coding genes97. 

Olfactory receptors 371 As reported by Mainland et al98. 

Homozygous LoF 
tolerant 

330 Genes with at least two different high-confidence pLoF 
variants found in a homozygous state in at least one 
individual in gnomAD exomes. 

Autosomal recessive 527 OMIM disease genes deemed to follow autosomal recessive 
inheritance according to extensive manual curation by the 
Przeworski group99. 

Autosomal dominant 307 OMIM disease genes deemed to follow autosomal dominant 
inheritance according to extensive manual curation by the 
Przeworski group99. 

Essential in culture 683 Genes deemed essential in cultured cell lines based on 
CRISPR screens100. 
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ClinGen 
haploinsufficient 

294 Genes with sufficient evidence for dosage pathogenicity 
(level 3) as determined by the ClinGen Dosage Sensitivity 
Map44 

Approved drug targets 386 Genes listed as the top-ranked mechanistic target of 
approved drugs in the DrugBank 5.0 XML release41. Includes 
products approved by a variety of agencies including FDA, 
EMA, and Health Canada. Genes were extracted from the 
XML file using a custom python script with the criteria 
target.attrib[‘position’] == '1', known-action==’yes’, and 
group==’approved’. 

Positive targets 143 Action listed in DrugBank as: activator, agonist, chaperone, 
cofactor, gene replacement, inducer, partial agonist, positive 
allosteric modulator, positive modulator, potentiator, or 
stimulator 

Negative targets 243 Action listed in DrugBank as: antagonist, blocker, 
degradation, inhibitor, inverse agonist, negative modulator, 
neutralizer, or suppressor 

Other targets 94 Action not listed in DrugBank, or any action other than those 
listed above for positive and negative targets. 

Rhodopsin-like GPCRs 689 HGNC gene set 140: “G protein-coupled receptors, Class A 
rhodopsin-like”97. 

Ion channels 326 HGNC gene set 177: “Ion channels”97. 

Nuclear receptors 48 IUPHAR/BPS Guide to Pharmacology “Nuclear receptors” 
list101 . 

Enzymes 1,178 IUPHAR/BPS Guide to Pharmacology “Enzymes” list101. 

Genes adjacent GWAS 
hits 

6,336 Closest gene to GWAS hits with P < 5-e8 in the EBI GWAS 
catalog (MAPPED_GENE column)102. 

Table 3. Data sources for gene lists used in this study. For analysis all lists were subsetted 
to protein-coding genes with unambiguous mapping to current approved gene symbols; 
numbers in the table reflect this. Note that the gene counts here reflect totals from the full 
universe of 19,194 genes; some numbers quoted in the main text reflect only the subset of 
genes with non-missing constraint values. 
 
Calculation of pLoF constraint 
 
The calculation of constraint values for genes has been described in general elsewhere36,42 and 
for this dataset specifically by Karczewski et al18. Constraint calculations were limited to single-
nucleotide variants (which for pLoF means nonsense and essential splice site mutations) found 
in gnomAD exomes with minor allele frequency < 0.1% and categorized as high-confidence LoF 
by LOFTEE. Only unique canonical transcripts for protein-coding genes were considered, 
yielding 17,604 genes with available constraint values. For curated genes (Table 2), the number 
of observed variants passing curation was divided by the expected number of variants to yield a 
curated constraint value. For PRNP, the expected number of variants was adjusted by 
multiplying by the ratio of the sum of mutation frequencies for all possible pLoF variants in 
codons 1-144 to the sum of mutation frequencies for all possible pLoF variants in the entire 
transcript, yielding 6 observed out of 6.06 expected. For MAPT, the expected number of 
variants was taken from Ensembl transcript ENST00000334239, which includes only the exons 
identified as constitutively brain-expressed in Figure 5B. 
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Calculation of pLoF heterozygote and homozygote/compound heterozygote frequencies 
 
Cumulative pLoF allele frequency (CAF) was calculated as reported18. Briefly, LOFTEE-filtered 
high-confidence pLoF variants with minor allele frequency <5% in 125,748 gnomAD exomes 
were used to compute the proportion of individuals without a loss-of-function variant (q); the 
CAF was computed as p = 1-sqrt(q). This approach conservatively assumes that, if an individual 
has two different pLoF variants, they are in cis to each other and count as only one pLoF allele. 
 
For outbred populations (Figure 4A), we used the value of p from all 125,748 gnomAD exomes, 
as this allows the largest possible sample size. This includes some individuals from 
bottlenecked populations, for which the distribution of p does differ from outbred populations, 
but these individuals are a small proportion of gnomAD exomes (12.6%). This also includes 
some consanguineous individuals, but these are an even smaller proportion of gnomAD exomes 
(2.3%), and any difference in the value of p between consanguineous and outbred populations 
is expected to be very small. Heterozygote frequency was calculated as 2p(1-p) and 
homozygote and compound heterozygote frequency was calculated as p2. Lines indicate the 
size of gnomAD (141,456 individuals) and the world populaton (6.69 billion). 
 
For bottlenecked populations (Figure 4B), we used the value of p from the 10,824 Finnish 
exomes only. Lines indicate the number of Finns in gnomAD (12,526) and the population of 
Finland (5.5 million). 
 
For consanguineous individuals (Figure 4C), we again used the value of p from all gnomAD 
exomes, because p is not expected to differ greatly in consanguineous versus outbred 
populations. We used the mean proportion of the genome in runs of autozygosity (a) from 
individuals self-reporting second cousin or closer parents in East London Genes & Health, a = 
0.05766 (rounded to 5.8%). Heterozygote frequency was calculated as 2p(1-p) and homozygote 
and compound heterozygote frequency was calculated as (1-a)p2 + ap. Lines indicate the 
number of consanguineous South Asian individuals in gnomAD (N=2,912, by coincidence the 
same number as report second cousin or closer parents in ELGH) based on F > 0.05 (a 
conservative estimate, since second cousin parents are expected to yield F = 0.015625), and 
the estimated number of individuals in the world with second cousin or closer parents (10.4% of 
the world population)103. 
 
Several caveats apply to our CAF analysis. Our approach naively treats genes with no pLoFs 
observed as having p=0, even though pLoFs might be discovered at a larger sample size. It 
also naively treats genes with one pLoF allele observed as having p=1/(2*125748), even though 
on average singleton variants have a true allele frequency lower than their nominal allele 
frequency42. We naively group all populations together, even though the distribution of 
populations sampled in gnomAD does not reflect the world population18; we believe this is 
reasonable because CAF for many genes is driven by singletons and other ultra-rare variants 
for which frequency is not expected to differ appreciably by continental population42. It is 
important to note that the histograms shown in Figure 4 reflect the expected frequency of 
heterozygotes and homozygotes/compound heterozygotes, based on gnomAD allele frequency, 
rather than the actual observed frequency of individuals with these genotypes in gnomAD. 
Finally, the sample size for all gnomAD exomes (Figures 4A and 4C) is larger than for only 
Finnish exomes (Figure 4B). For a version of Figure 4 with the global gnomAD population 
downsampled to the same sample size as the gnomAD Finnish population, see Figure S1. 
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Genetic prevalence estimation 

 
Here, we define “genetic prevalence” for a given gene as the proportion of individuals in the 
general population at birth who harbor a pathogenic variant in that gene that will cause them to 
later develop disease. Genetic prevalence has not been well-studied or estimated for most 
disease genes. 
 
In principle, it should be possible to estimate genetic prevalence simply by examining the allele 
frequency of reported pathogenic variants in gnomAD. In practice, three considerations usually 
preclude this approach. First, the present gnomAD sample size of 141,456 exomes and 
genomes is still too small to permit accurate estimates for very rare diseases. Second, the mean 
age of gnomAD individuals is ~55, above the age of onset for many rare genetic diseases, and 
individuals with known Mendelian disease are deliberately excluded, so pathogenic variants will 
be depleted in this sample relative to the whole birth population. Third and most importantly, a 
large fraction of reported pathogenic variants lack strong evidence for pathogenicity and are 
either benign or low penetrance42,52, so without careful curation of pathogenicity assertions, 
summing the frequency of reported pathogenic variants in gnomAD will in most cases vastly 
overestimate the true genetic prevalence of a disease. 
 
Instead, we searched the literature and very roughly estimated genetic prevalence based on 
available data. In most cases, we took disease incidence (new cases per year per population), 
multiplied by proportion of cases due to variants in a gene of interest, multiplied by average age 
at death in cases. In some cases, estimates of at-risk population or direct measures of genetic 
prevalence were available. Details of the calculations undertaken for each gene are provided in 
the Supplement. 
 
Data and source code availability 
 
Analyses utilized Python 2.7.10 and R 3.5.1. Data and code sufficient to produce the plots and 
analyses in this paper are available at https://github.com/ericminikel/drug_target_lof 
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Supplement 
 
Downsampling of cumulative allele frequency analysis 
 

 
Figure S1. Expected frequency of individuals with one or two null alleles for every 
protein-coding gene across different population models, with sample size held constant. 
This is identical to Figure 4 except for the differences described in the text below. 
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As noted in Methods, one caveat about Figure 4 is that the sample size is larger for the plots 
using all gnomAD exomes (Figure 4A and 4C) than for Finnish exomes (Figure 4B). Figure S1 
shows the same analysis as Figure 4, but with the global gnomAD population downsampled to 
10,824 randomly chosen exomes so that the same size is identical to that of Finnish exomes. 
Computation of p = 1-sqrt(q) as described in Methods is computationally expensive for 
downsampled datasets because it requires individual-level genotypes. Instead, this analysis 
uses classic CAF, which is simply the sum of allele frequencies of all high-confidence pLoF 
variants each at allele frequency <5%, capped at a total of 100%, for both global and Finnish 
exomes. The results show that even when sample size is held constant, the number of genes 
with zero pLoF variants observed is higher in a bottlenecked population than in a mostly outbred 
population. We also used a constant y axis with no axis breaks in Figure S1 to make this 
difference more clearly visible. 
 
HTT 
 
We considered several approaches to estimating the genetic prevalence of Huntington’s 
disease (HD). A reported HD incidence of 0.38 cases per 100,000 per year based on meta-
analysis69 multiplied by an average age at death of ~60 for the most common CAG lengths104 
gives a genetic prevalence of 1 in 4,386. One exhaustively ascertained study of HD70 found a 
prevalence of 13.7 per 100,000 symptomatic plus 81.6 per 100,000 at 25-50% risk. Assuming 
there are twice as many individuals at 25% risk as at 50% risk, then on average 33.3% of the 
81.6, or 27.1 per 100,000 have the mutation. Thus, 13.7 + 27.1 = 40.8 per 100,000 individuals 
have an HTT CAG expansion, equal to 1 in 2,451. Finally, a genetic screen of a general 
population sample71 found ≥40 CAG repeat alleles, which are presumed to be fully penetrant, in 
3 individuals out of 7,315, for a genetic prevalence of 1 in 2,438.  
 
LRRK2 
 
Based on meta-analysis72, Parkinson’s disease (PD) has an estimated prevalence of 1,903 per 
100,000 at age ≥80, meaning the general population’s lifetime risk of PD is ~1.9%. It is 
generally stated that about 10% of PD cases are “familial” and the remainder sporadic; in a 
diverse worldwide case series, LRRK2 mutations were found in 179/14,253 (1.3%) sporadic 
cases and 201/5,123 (3.9%) familial cases73, implying that LRRK2 mutations are present in 
~1.6% of all PD cases. Thus, LRRK2 mutations account for a 1.6% * 1.9% = ~0.030% lifetime 
risk of PD in the general population, or 1 in 3,300. 
 
It is important to consider for a moment how this figure relates to the penetrance of LRRK2 
mutations, as LRRK2 variants appear to occupy a spectrum of penetrance105. some variants 
exhibit Mendelian segregation with disease106,107, implying high risk; the G2019S variant is 
estimated to have ~32% penetrance108; and other common variants are risk factors with odds 
ratios of only ~1.2 estimated through genome-wide association studies (GWAS)109. The GWAS-
implicated common variants were not included in the case series on which our estimate is 
based73, but G2019S does account for the majority of cases in that series. Because the 0.03% 
estimate here is based on counting symptomatic cases rather than asymptomatic individuals, it 
will appropriately underestimate the number of G2019S carriers. In essence, in this calculation 
each G2019S carrier in the population only counts as 1/3 of a person, because they have only a 
1/3 probability of developing a disease. It is therefore appropriate that our estimate of genetic 
prevalence (0.03%) is actually lower than double the allele frequency of G2019S in gnomAD 
(0.1%). 
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MAPT 
 
Estimation of the genetic prevalence of MAPT gain-of-function mutations is difficult because 
pathogenic MAPT mutations can present with a variety of clinical phenotypes, and common 
MAPT haplotypes are associated with risk for a variety of different neurodegenerative disorders. 
We were unable to identify any studies of genetic prevalence nor any large case series for any 
MAPT-associated phenotype. As a crude estimate, we considered that frontotemporal dementia 
has a reported incidence of 2.7-4.1 per 100,000 per year74 with typical age at death of perhaps 
60, and MAPT mutations accounting for 5-20% of familial cases, and familial cases accounting 
for 40% of all cases75. Multiplying all these figures results in range of 0.0032% to 0.020%, or 1 
in 5,000 – 31,000. 
  
As noted in the main text, our sample size is not sufficient to prove that MAPT loss-of-function is 
not tolerated. When we restrict to constitutive, brain-expressed exons (Ensembl transcript 
ENST00000334239), we expect 12.6 pLoF variants and observe 0. The 95% confidence interval 
on MAPT constraint is thus (0%, 23.7%). The upper bound of 23.7% implies that our data do not 
rule out a true pLoF obs/exp value of up to 3.0/12.6, or in other words, we cannot rule out that 
another population sample as large as gnomAD might yield up to 3 genuine pLoF variants. 
 
PRNP 
 
We have recently considered the lifetime risk of genetic prion disease in detail76. All forms of 
prion disease (sporadic, genetic, and acquired) appear to be the cause of death of ~1 in 5,000 
people based on either death certificate analysis or division of disease incidence by the overall 
death rate. ~10% of cases are attributable to PRNP variants with evidence for Mendelian 
segregation (although additional cases harbor lower-penetrance variants). Thus, we expect a 
genetic prevalence of 1 in 50,000. On the order of ~1 in 100,000 people in gnomAD and 
23andMe harbor high-penetrance PRNP variants52,76, although as noted above, we expect 
these datasets to be depleted compared to the population at birth, because prion disease is 
rapidly fatal and many individuals in these databases are above the typical age of onset. 
 
Figure 5C displays variants from gnomAD plus the literature, including those previously 
reported52, and Table S1 shows details for each variant. Allele count for variants from the 
literature in Figure 5C is the total number of definite or probable cases with sequencing 
performed in the studies cited in Table S1. The L234Pfs7X variant changes PrP’s C-terminal 
GPI signal from SMVLFSSPPVILLISFLIFLIVGX to SMVPSPLHLX. This novel sequence does 
not adhere to the known rules of GPI anchor attachment110: GPI signals must contain a 5-10 
polar residue spacer followed by 15-20 hydrophobic residues. Thus, this frameshifted PrP would 
be predicted to be secreted and thus may be pathogenic, explaining the Alzheimer disease 
diagnosis in this individual. However, it is also possible that the novel C-terminal sequence 
found here interferes with prion formation, and/or that this variant is incompletely penetrant, and 
that the diagnosis of Alzheimer’s disease in this individual is merely a coincidence. 
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Table S1. Details of PRNP truncating variants. 
 

variant 
allele 
count 

neurological 
phenotype 

comments reference 

G20Gfs84X 1 healthy As previously reported. 52 

R37X 2 healthy, unknown One previously reported, one new. 52 

Q41X 1 unknown  this work 

H69 
frameshifts 

2 N/A 
False variant calls in gnomAD, apparent 

alignment artifact due to octapeptide 
repeat region. 

this work 

Q75X 1 healthy As previously reported 52 

W81X 1 unknown  this work 

W99X 1 unknown  this work 

G131X 1 healthy 

The presence of this variant in the ExAC 
database was previously reported, but 

without phenotype information. We now 
report that this individual is a 77-year-old 

male, cognitively well with no family 
history of dementia. Ascertained as a 

case in a study of coronary artery 
disease, this individual has hypertension 
and well-controlled dyslipidemia and has 
undergone one bypass surgery. He has 

two adult children. 

52, this work 

Y145X 1 dementia  111 

Q160X 5 dementia  112–114 

Y162X 1 dementia  82 

Y163X 7 dementia  83,115 

Y169X 2 dementia  83 

D178Efs25X 1 dementia  116 

Q186X 1 dementia  52 

Y226X 1 dementia  
 

117 

Q227X 1 dementia  117 

L234Pfs7X 1 dementia 

Ascertained as a female case in the 
Finnish twins Alzheimer disease cohort. 

Died at age >90 of proximal cause 
pneumonia, ultimate cause diagnosed as 

Alzheimer disease based on clinical 
examination only. Had a dizygotic twin not 

included in gnomAD. 

this work 

 
 
SNCA 
 
As explained above for LRRK2, we assumed a 1.9% lifetime risk of Parkinson’s disease (PD) in 
the general population, with 10% of cases being familial. SNCA point mutations, duplications, 
and triplications all appear to be highly penetrant, and in a familial PD case series these 
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accounted for 103/709 = 15% of individuals77. Thus, we estimate that SNCA mutations account 
for a 1.9% * 10% * 15% = 0.00028% risk of PD in the general population, or 1 in 360,000. 
 
SOD1 
 
SOD1 mutations are believed to account for ~12% to 24% of familial ALS78,79 and 1% of 
sporadic ALS78,118. One a meta-analysis found that ~4.6% of ALS is familial80, although a figure 
of 10% is also often used119. These figures imply that ~1.5 – 3.3% of all ALS is attributable to 
SOD1. The overall incidence of ALS is reported at ~1.6 – 2.2 per 100,000 per year120,121, so the 
incidence of SOD1 ALS might be estimated at ~0.024 – 0.073 per 100,000 per year. Age at 
death of ~50 is around average for many SOD1 mutations79, implying a 1.2 – 3.7 per 100,000 
population prevalence of pathogenic SOD1 mutations, or a range of 1 in 27,000-83,000. 
 
We note that frameshift mutations in SOD1 at codons 126 or 127 have been reported to cause a 
pathogenic gain-of-function leading to ALS122,123. Both of these codons occur in the gene’s fifth 
and final exon; all of the variants curated as leading to loss-of-function here are in exons 1-4. 
 
Table S2. Details of curated variants in neurodegenerative disease genes. LRRK2 is not 
included here as curation is reported in detail in a separate publication54. 
 
gene variant allele 

count 
status LOFTEE 

flags 
manual 
curation 
result 

comments 

HTT 4-003076620-AGC-
A 

14 loftee lcr 
  

HTT 4-003076623-
AGCAG-A 

14 loftee lcr 
  

HTT 4-003076631-CAG-
C 

1 loftee lcr 
  

HTT 4-003076632-AGC-
A 

11 loftee lcr 
  

HTT 4-003076632-
AGCAGCAGCAGC
AGCAGCAGCAG-A 

1 loftee lcr 
  

HTT 4-003076635-
AGCAGCAGCAGC
AGCAGCAG-A 

10 loftee lcr 
  

HTT 4-003076635-
AGCAGCAGCAGC
AGCAGCAGCAGC
AGCAACAG-A 

1 loftee lcr 
  

HTT 4-003076638-
AGCAGCAGCAGC
AGCAGCAG-A 

1 loftee lcr 
  

HTT 4-003076638-AGC-
A 

54 loftee lcr 
  

HTT 4-003076640-CAG-
C 

116 loftee lcr 
  

HTT 4-003076641-AGC-
A 

32 loftee lcr 
  

HTT 4-003076641-
AGCAGCAGCAGC
AG-A 

55 loftee lcr 
  

HTT 4-003076644-AGC-
A 

31 loftee lcr 
  

HTT 4-003076644-
AGCAGCAGCAGC
AG-A 

1 loftee lcr 
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HTT 4-003076644-
AGCAGCAGCAG-A 

31 loftee lcr 
  

HTT 4-003076644-
AGCAGCAGCAGC
AGCAGCAACAG-A 

110 loftee lcr 
  

HTT 4-003076646-CAG-
C 

2 loftee lcr 
  

HTT 4-003076647-AGC-
A 

161 loftee lcr 
  

HTT 4-003076647-
AGCAGCAGCAGC
AGCAACAG-A 

3 loftee lcr 
  

HTT 4-003076647-
AGCAGCAGCAG-A 

6 loftee lcr 
  

HTT 4-003076649-CAG-
C 

8 loftee lcr 
  

HTT 4-003076650-AGC-
A 

2673 loftee lcr 
  

HTT 4-003076650-
AGCAG-A 

128 loftee lcr 
  

HTT 4-003076650-
AGCAGCAG-A 

26 loftee lcr 
  

HTT 4-003076650-
AGCAGCAGCAGC
AACAG-A 

2 loftee lcr 
  

HTT 4-003076653-AGC-
A 

80 loftee lcr 
  

HTT 4-003076653-AG-A 1594 loftee lcr 
  

HTT 4-003076653-
AGCAG-A 

1078 loftee lcr 
  

HTT 4-003076654-G-
GCCGC 

2 loftee lcr 
  

HTT 4-003076655-
CAGCAGCAACA-C 

2 loftee lcr 
  

HTT 4-003076655-CAG-
C 

20 loftee lcr 
  

HTT 4-003076656-AG-A 84 loftee lcr 
  

HTT 4-003076656-A-
ACC 

2 loftee lcr 
  

HTT 4-003076656-
AGCAGCAACAG-A 

4 loftee lcr 
  

HTT 4-003076658-CAG-
C 

287 loftee lcr 
  

HTT 4-003076658-
CAGCAACA-C 

2 loftee lcr 
  

HTT 4-003076658-CA-C 1 loftee lcr 
  

HTT 4-003076659-AG-A 1 loftee lcr 
  

HTT 4-003076659-
AGCAACAG-A 

14 loftee lcr 
  

HTT 4-003076659-A-
ACC 

2 loftee lcr 
  

HTT 4-003076661-
CAACA-C 

8 loftee lcr 
  

HTT 4-003076662-
AACAG-A 

251 curated 
 

not_LoF CAG repeat artifact 

HTT 4-003076663-A-
AGCAGCAGCAGC
AGCAGCAG 

2 loftee lcr 
  

HTT 4-003076663-A-
AGCAGCAGCAGC

1 loftee lcr 
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AGCAGCAGCAGC
AG 

HTT 4-003076663-A-
AGCAGCAGCAG 

1 loftee lcr 
  

HTT 4-003076663-A-
AGCAGCAGCAGC
AGCAG 

2 loftee lcr 
  

HTT 4-003076665-A-
ACCGCC 

49 loftee lcr 
  

HTT 4-003076669-GC-G 2 loftee lcr 
  

HTT 4-003076670-C-
CAGCAGCAG 

1 loftee lcr 
  

HTT 4-003076670-C-
CAGCAGCAGCAG 

1 loftee lcr 
  

HTT 4-003076672-ACC-
A 

79 loftee lcr 
  

HTT 4-003076680-CG-C 3 loftee lcr 
  

HTT 4-003076682-CCG-
C 

3 loftee lcr 
  

HTT 4-003076703-
CTTCCT-C 

1 curated 
 

not_LoF repeat region 

HTT 4-003076704-T-TCC 3 curated 
 

likely_not_L
oF 

repeat region, nearby SNP 

HTT 4-003076710-AG-A 1 curated 
  

repeat region 

HTT 4-003088708-
TTGTC-T 

1 true 
 

LoF true 4bp deletion 

HTT 4-003088729-CAT-C 1 true 
 

LoF true 2bp deletion 

HTT 4-003107083-G-A 1 true 
 

LoF essential splice acceptor lost. 
possible downstream rescue site is 
out-of-frame 

HTT 4-003117118-C-T 3 true 
 

LoF true stop codon 

HTT 4-003131650-G-A 1 true 
 

LoF true essential splice acceptor lost. 2 
downstream splice rescue sites but 
both out of frame 

HTT 4-003133110-CA-C 1 true 
 

LoF true 1bp deletion 

HTT 4-003133110-CAG-
C 

7 true 
 

LoF true 2bp deletion 

HTT 4-003136141-GTC-
G 

1 true 
 

LoF true 2bp deletion 

HTT 4-003136269-T-G 1 curated 
 

uncertain_L
oF 

raw reads not available. would be a 
true splice donor loss 

HTT 4-003138025-C-T 3 true 
 

likely_LoF likely stop codon, though there is an 
outside chance it creates a splice 
donor that preserves frame 

HTT 4-003156065-C-T 2 true 
 

LoF true stop codon 

HTT 4-003158859-G-GT 1 true 
 

LoF true 1bp insertion 

HTT 4-003174671-C-T 1 true 
 

LoF true stop codon 

HTT 4-003174707-C-T 1 true 
 

LoF true stop codon 

HTT 4-003176464-C-T 1 true 
 

LoF true stop codon 

HTT 4-003176787-C-T 1 true 
 

LoF true stop codon 

HTT 4-003176796-C-T 1 true 
 

LoF true stop codon 

HTT 4-003184144-C-T 1 true 
 

LoF true stop codon 

HTT 4-003189579-
CAAAT-C 

1 true 
 

LoF true 4bp deletion 
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HTT 4-003205754-CAA-
C 

1 curated 
 

uncertain_L
oF 

raw reads not available 

HTT 4-003205876-G-A 1 curated 
 

likely_not_L
oF 

potential in-frame rescue site 3bp 
upstream 

HTT 4-003209047-A-AT 1 true 
 

LoF true 1bp insertion 

HTT 4-003211578-TC-T 1 curated 
 

likely_not_L
oF 

1bp deletion could be avoided by 
using potential splice acceptor at 
subsequent codon 

HTT 4-003211677-G-T 1 true 
 

likely_LoF MNP - D-1 and +1 site are both 
mutated to T. appears would still be 
true splice disruptor though 

HTT 4-003215736-C-T 1 true 
 

LoF true stop codon 

HTT 4-003216836-G-A 1 curated 
 

likely_not_L
oF 

potential in-frame donor rescue 6bp 
downstream 

HTT 4-003221937-CG-C 1 true 
 

LoF true 1bp deletion 

HTT 4-003222036-G-A 1 true 
 

LoF true essential splice donor loss 

HTT 4-003224113-G-T 1 true 
 

LoF true essential splice acceptor lost 

HTT 4-003225261-CA-C 1 true 
 

LoF true 1bp deletion 

HTT 4-003237874-A-T 1 true 
 

LoF true essential splice acceptor lost 

HTT 4-003240172-A-G 1 curated 
 

uncertain_L
oF 

raw reads not available 

HTT 4-003240338-T-C 1 curated 
 

likely_not_L
oF 

GC splice donor might still function, 
also alternate in-frame GT donor 9 bp 
upstream 

HTT 4-003241749-C-CT 1 loftee lc_lof 
  

HTT 4-003241757-C-T 1 loftee lc_lof 
  

MAPT 17-044039722-G-T 1 curated 
 

not_LoF rescued by alternate start codon M11, 
with good Kozak context 

MAPT 17-044049312-G-T 1 curated 
 

not_LoF non-constitutive exon 

MAPT 17-044049312-G-A 2 curated 
 

not_LoF non-constitutive exon 

MAPT 17-044049445-G-A 1 curated 
 

not_LoF not a real exon 

MAPT 17-044051838-G-A 5 loftee lc_lof 
  

MAPT 17-044051839-T-C 1 loftee lc_lof 
  

MAPT 17-044055646-TA-T 1 loftee lof_flag 
  

MAPT 17-044055647-A-T 39690 loftee lc_lof,lof_flag 
 

MAPT 17-044055710-A-AC 2 loftee lof_flag 
  

MAPT 17-044055746-G-A 1 loftee lof_flag 
  

MAPT 17-044060543-G-C 5 curated 
 

not_LoF non-constitutive exon 

MAPT 17-044060582-C-T 25 loftee lof_flag 
  

MAPT 17-044060652-A-AG 1 loftee lof_flag 
  

MAPT 17-044060675-C-T 5 loftee lof_flag 
  

MAPT 17-044060703-CAG-
C 

2 loftee lof_flag 
  

MAPT 17-044060717-C-CA 1 loftee lof_flag 
  

MAPT 17-044060724-CT-C 6 loftee lof_flag 
  

MAPT 17-044060788-AG-A 3 loftee lof_flag 
  

MAPT 17-044060842-CG-
C 

2 loftee lof_flag 
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MAPT 17-044060877-A-
AGGCCTCCCCAG
CCCAAGATGGGC 

1 loftee lof_flag 
  

MAPT 17-044060877-
AGGCCTCCCCAG
CCCAAGATGGGC-
A 

1 loftee lof_flag 
  

MAPT 17-044060917-C-
CGCCAGAG 

1 loftee lof_flag 
  

MAPT 17-044061006-T-
TCCCA 

1 loftee lof_flag 
  

MAPT 17-044061053-C-T 1 loftee lof_flag 
  

MAPT 17-044061059-GC-
G 

4 loftee lof_flag 
  

MAPT 17-044061065-CT-C 1 loftee lof_flag 
  

MAPT 17-044061078-
TTCACGTGGAAA-T 

1 loftee lof_flag 
  

MAPT 17-044061153-
CAGGGGCCCCTG
GAGAGGGGCCAG-
C 

2 loftee lof_flag 
  

MAPT 17-044061154-
AGGGGCCCCTGG
AGAGGGGCCAGA
GGCCC-A 

3 loftee lof_flag 
  

MAPT 17-044061182-
CGG-C 

1 loftee lof_flag 
  

MAPT 17-044061223-TC-T 3 loftee lof_flag 
  

MAPT 17-044061247-TG-T 1 loftee lof_flag 
  

MAPT 17-044067273-G-
GA 

1 loftee lof_flag 
  

MAPT 17-044067384-C-G 3 loftee lof_flag 
  

MAPT 17-044067395-TC-T 1 loftee lof_flag 
  

MAPT 17-044067403-C-T 26 loftee lof_flag 
  

MAPT 17-044067438-C-CA 1 loftee lof_flag 
  

MAPT 17-044071327-
GCC-G 

1 curated 
 

not_LoF non-constitutive exon 

MAPT 17-044071329-C-
CGGGTA 

1 curated 
 

not_LoF non-constitutive exon 

MAPT 17-044073963-A-
ACC 

1 curated 
 

uncertain_L
oF 

raw reads not available 

MAPT 17-044096026-
AGGACAGAGTCCA
GTCGAAG-A 

2 curated 
 

not_LoF actually in-frame. starting at K682 it 
becomes AAATGGT preserving 
frame  

MAPT 17-044096047-
TTGGGTCCCTGGA
CAATATCACCCAC
GTCCCTGGCGGA
GGAAATAAAAAGG
TAAAGGG-T 

2 curated 
 

not_LoF actually in-frame. this is the same 
exact variant as the previous one 

PRNP 20-004679975-C-T 2 true 
  

R37X 

PRNP 20-004679987-C-T 1 true 
  

Q41X 

PRNP 20-004680069-CT-C 1 curated 
 

not_LoF false variant call, apparent alignment 
artifact at octapeptide repeat region 

PRNP 20-004680071-
CATGGTGGTGGCT
GGGGGCAGCCCC

1 curated 
 

not_LoF false variant call, apparent alignment 
artifact at octapeptide repeat region 
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45 

45 

ATGGTGGTGGCTG
GGGACAGCCT-C 

PRNP 20-004680089-C-T 1 true 
  

Q75X 

PRNP 20-004680108-G-A 1 true 
  

W81X 

PRNP 20-004680162-G-A 1 true 
  

W99X 

PRNP 20-004680257-G-T 1 true 
  

G131X 

PRNP 20-004680566-CT-C 1 curated 
 

not_LoF L234Pfs7X; possible pathogenic gain-
of-function in dementia case. see 
Table S1 for details 

SNCA 4-090743391-C-
TRUE 

3 loftee lc_lof 
  

SOD1 21-033032095-GC-
G 

1 true 
 

LoF true early frameshift, no rescue 

SOD1 21-033036098-
TAAAGG-T 

1 true 
 

likely_LoF true 5bp frameshift deletion, splice 
site may be rescued by downstream 
AG but resulting frame is shifted. 

SOD1 21-033036178-GA-
G 

4 true 
 

LoF 
 

SOD1 21-033038788-
AATCCTCT-A 

2 true 
 

LoF 
 

SOD1 21-033038833-T-C 1 true 
 

LoF 
 

SOD1 21-033039619-CG-
C 

2 true 
 

LoF 
 

SOD1 21-033039689-G-T 2 curated 
 

not_LoF alternative GT donor 3 bases 
upstream, in-frame 

SOD1 21-033039689-G-GT 2 curated 
 

not_LoF splice donor D +1 site G->GT 
insertion creates its own new splice 
donor 
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