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ABSTRACT 

Ageing is broadly defined as a time-dependent progressive decline in the functional 
and physiological integrity of organisms. Previous studies and evolutionary theories of ageing 
suggest that ageing is not a programmed process but reflects dynamic stochastic events. In 
this study, we test whether transcriptional noise shows an increase with age, which would be 
expected from stochastic theories. Using human brain transcriptome dataset, we analysed 
the heterogeneity in the transcriptome for individual genes and functional pathways, 
employing different analysis methods and pre-processing steps. We show that unlike 
expression level changes, changes in heterogeneity are highly dependent on the methodology 
and the underlying assumptions. Although the particular set of genes that can be 
characterized as differentially variable is highly dependent on the methods, we observe a 
consistent increase in heterogeneity at every level, independent of the method. In particular, 
we demonstrate a weak but reproducible transcriptome-wide shift towards an increase in 
heterogeneity, with twice as many genes significantly increasing as opposed to decreasing 
their heterogeneity. Furthermore, this pattern of increasing heterogeneity is not specific but 
is associated with a wide range of pathways.  

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted January 22, 2019. ; https://doi.org/10.1101/526491doi: bioRxiv preprint 

https://doi.org/10.1101/526491
http://creativecommons.org/licenses/by/4.0/


INTRODUCTION 
 

Ageing is commonly defined as a time-dependent decrease in the functional and structural 
integrity of an organism. Despite the ubiquity of ageing in all living organisms, the molecular 
mechanisms responsible still require further elucidation. According to recent studies, ageing 
differs phenotypically among individuals, including monozygotic twins [1,2] and within tissues 
from the same individuals [3]. Researchers have observed an age-related increase in 
variability in the epigenome [4,5] and transcriptome [6] of genetically identical samples, 
which may underlie the phenotypic differences. Age-related expression variability has been 
detected in many different cell and tissue types including mice stem cells, cardiomyocytes 
and immune cells [7–9], rat neural retina [10], fruit-fly, mice and human brain [6,11–14] as 
well as human pancreas, lung, blood, skin, fat and human fibroblasts in vitro [13,15–17]. 
Despite these reports, there is no agreement on the underlying mechanisms, extent and 
functional consequences. Suggested mechanisms include somatic [7,15] and germline 
mutations [11,17], changes in the DNA methylation [9,17,18] and chromatin modifications [5] 
and resulting  chromatin compaction [12] as well as global dysregulation, caused by the 
change in transcription factor or miRNA expression [19].  
 
Both genome-wide and hypothesis-driven approaches have been employed to explore the 
extent of expression variability with age. Among the former, some show a transcriptome-
wide increase [6,9,12,13,15], while others focus only on those genes showing significant 
changes in their variability. Brinkmeyer-Langford et al. [11] reports that an equal number of 
genes significantly increase or decrease their expression variability, whereas a recent study 
from Vinuela et al. [17] shows more genes decreasing rather than increasing their expression 
variability [17]. Hypothesis-driven studies mostly show an increase in variability for the genes 
measured [7,8,16], whereas Warren et al. [20] suggests this might be specific only to the non-
renewing tissues. Similarly, Ximerakis et al. [14] shows that change in transcription variability 
is in different directions in different cell types of mouse brain. The reports also vary in terms 
of the functional association of this variability. While some consider that increase in variability 
is widespread [6,12], others report that variability is concentrated in various cellular functions 
[10,11,18,21] – although these functions also differ between reports. 
 
Age-dependent change in the expression variability is difficult to address due to the inherent 
noise in expression and the influence of other factors on variability. Thus, the data pre-
processing steps to disentangle variability from the biological and technical confounders is of 
importance. Another technical aspect is the method to measure the change in the variability. 
Most studies tested for age-related change in the expression variability using either grouped 
(Bartlett’s test, Levene’s test, permutation test)[7,11,20] or regression-based tests (linear and 
loess regression)[6,10,17,18], with a few others using correlation-based approaches (gene co-
expression, intra-class correlations)[21,22]. However, to our best knowledge, the effects of 
different batch-correction strategies and different methods to measure variability have not 
been explored on the same data. 
 
In this study, we undertook a comprehensive investigation of the ageing-related change in 
expression variability, using human brain expression dataset. We employed different pre-
processing and variability measures and analysed transcriptome-wide and gene-level changes 
in gene expression variability and the associated functions.  
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RESULTS 
 

 
Figure 1. Data characterization. (A) Age distribution of the samples used in the study. (B) Bar plot of the number 
of genes differentially expressed with ageing identified after regression and SVA correction and their overlap. 
The colour represents direction of change: yellow – genes upregulated and blue – downregulated with age.  
 
In order to study the change in gene expression variability during ageing, we used one of the 
biggest published human brain transcriptome datasets, generated using microarray 
technology [23]. We limited the age range to between 20 and 80 years (Figure 1A), resulting 
in RNA expression data for 147 prefrontal cortex samples. We excluded prenatal, infant and 
childhood samples (up to 20 years old), because their expression levels will be inherently 
coupled to developmental processes in the brain. We applied four batch correction strategies 
to account for technical and biological confounders (Supplemental Figure 1): i) only quantile 
normalization (QN), ii) QN followed by linear regression (regression), iii) QN followed by 
ComBat [24], and iv) QN followed by Surrogate Variable Analysis (SVA) [25]. Regression and 
ComBat are supervised approaches, i.e. known covariates should be supplied to the 
algorithm, whereas SVA estimates covariates from the data. We provide the results from 
Regression and SVA in the main text to include one supervised and one unsupervised 
approach. The results from other correction strategies are given in Supplemental Data in 
comparison with the Regression and SVA approaches (Supplemental Figures 2-8). 
 

Analysis of the differentially expressed genes 

First, we defined differentially expressed (DE) genes, based on the significance of the 
regression coefficients (FDR corrected p <= 0.05) for the linear model using the gene 
expression values as the dependent and age as the independent variable (see Methods). By 
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applying two different pre-processing approaches on the data prior to DE estimation the 
number of DE genes was very different. SVA correction yielded 3499 DE genes, compared 
with 881 DE genes found by regression (Figure 1B, Supplemental Table 1). Nevertheless, 854 
genes overlapped between the SVA and regression results, which constituted a quarter of 
genes found after SVA and 96% of the genes identified after regression correction. Quite high 
overlap was consistent with the strong correlation between the expression level changes for 
the regression and SVA corrected data (Spearman ρ = 0.85, Supplemental Figure 3A).  
 
To explore the biological processes affected by these changes in gene expression, gene set 
enrichment analysis was performed separately on the regression and SVA corrected data 
(Supplemental Table 2). It revealed 125 (out of 191 (regression) and 160 (SVA) categories) 
shared Gene Ontology Biological Process (GO BP) categories that were downregulated in the 
ageing brain. Cognitive-function related GO terms, such as modulation of synaptic 
transmission, learning or memory, constituted a substantial fraction of these GO terms. In 
contrast, the number of the upregulated GO terms was much smaller and only 8 GO terms 
overlapped (out of 22 (regression) and 12 (SVA) categories) between the correction 
approaches, including detoxification, stress response to metal ions and cilium organization 
GO categories (see Supplemental Table 2). 
 
Analysis of the differentially variable genes  
 
Two different strategies were employed to measure change in the gene expression variability 
with age, namely continuous and grouped approaches. The continuous approach detects 
continuous monotonic change in variation from 20 to 80 years of age. The grouped approach 
compares the gene expression variation between two age groups: young (20 - 40 years old, N 
= 53) and old (60 - 80 years old, N = 22). Figure 2 illustrates the principles of these approaches 
and shows that the change in variability can be combined with any dynamics in the mean 
gene expression (upregulation, downregulation, no change). We checked if the changes in 
gene expression variability is confounded by the changes in gene expression level, but did not 
observe any relationship (Supplemental Figure 10, Fisher’s test p = 0.11, Odds ratio = 1.05).  
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Figure 2. Changes in gene expression and its variability with age for some individual genes, using the different 
approaches. Example genes are chosen that increase (A), or decrease (B) expression variability with age, when 
the mean gene expression either increases, does not change or decreases. The types of change, for expression 
and variability respectively, is shown in the parenthesis following the gene name, for each row. Genes were 
selected to have the biggest absolute values of Dvar(r) and Dvar(IQR) as well as demonstrate significant increase, 
decrease or no change in the expression level with age. The first column to the left illustrates mean expression 
level (regression-corrected) plotted against individual’s age on the x0.25 – transformed scale. The regression line 
is colored in blue, with the β1 coefficient from the linear regression shown on the graph.  The middle column 
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illustrates the continuous approach to measure differential variability. Absolute values of the residuals (in red) 
from the regression line are plotted against age and the regression line between residuals and age (in blue) is 
drawn for illustrative purposes. The Spearman correlation estimates, Dvar(r)  between the residuals and age are 
displayed on the graph and used in the subsequent analysis. The last column on the right illustrates the grouped 
approach to calculate differential variability. Gene expression levels (regression-corrected) of the individuals 
from the “young” (20 – 40 years old) and “old” (60 – 80 years old) groups are represented in the corresponding 
boxplots. A small random deviation (jitter) from the x-axis is applied for better visualization. Dvar(IQR), the 
fractional change in the variability in the “old” group, as compared to the “young”, is displayed on the graph. 
 
In the continuous approach, we first fit a linear model to explain age-dependent change in 
expression (Figure 2, first column) and then used the residuals from this model to represent 
the variability. To measure change in the expression variability with age, we calculated the 
Spearman correlation coefficient (Dvar(r)) between the absolute value of residuals and age 
(Figure 2, middle column). The Dvar(r) measures ranged between -0.32 and 0.36 and were 
normally distributed (Shapiro-Wilk test, p > 0.05, see Methods) (Figure 3A). The distributions 
were moderately, but significantly (Wilcoxon test, p < 2.2e-16), shifted towards positive 
values for both correction methods. Although the shift in the distribution was small, 57% to 
63% percent of the genes showed increase in variability with age. However, we noted that 
the changes in variability calculated for each gene, using regression- and SVA-corrected data, 
were only weakly correlated, r(Dvar(rregres), Dvar(rSVA)) = 0.35 (Figure 3C). 
 

 
Figure 3. Comparison of the change in the variability addressed using continuous and grouped approaches, 
regression and SVA correction. Distributions of the Dvar-measures for all the genes (n = 16675) obtained in the 
continuous (A) and grouped (B) approaches. Increase in the variability with age, Dvar > 0, is coloured in pink, 
while decrease in variability, Dvar < 0, is marked in blue. The black straight line depicts median of the distribution. 
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The Dvar(r) distributions are normal with their mean and median values equal to 0.03 and 0.02 for regression 
and SVA, respectively; The Dvar(IQR)  distributions are moderately skewed: skewness values are 0.66 and 0.68 
for regression and SVA, respectively. The mean and median values of the Dvar(IQR) distribution are 0.05 and 0.02 
for regression and 0.04 and 0.01 for SVA, respectively. Hexagonal heat maps illustrate relationship between 
regression and SVA-corrected measures of the variability for each gene, obtained in continuous - Dvar(r) (C) and   
grouped - Dvar(IQR) (D) approaches. The colour gradient represents the density of the data. The linear regression 
line and the Spearman correlation estimate, r, for the corresponding variables are shown on each graph.  
 
In the grouped approach, we first generated a distribution of expected variability in gene 
expression for the young individuals and treated it as a null distribution to compare with the 
variability from the old individuals. We used interquartile range (IQR) as a measure of 
variability, because it is robust to outliers. In order to calculate a distribution of expected 
variability in the young group, we randomly selected a subsample of 22 individuals (the 
number of samples in old group) from the 53 individuals in the young group 10 000 times and 
calculated IQR. The change in variability, Dvar (IQR), was measured as a fractional change in 
the IQR between old and young groups (see Methods). The p-value was determined by 
calculating how many times we observed a value as extreme as IQRold (see Methods). The 
distributions of change in variability, Dvar(IQR), were moderately skewed to the right and 
ranged from -0.70 up to 2.10 for the regression corrected data and from -0.78 up to 1.71 for 
the SVA corrected data (Figure 3B). The skew to the right was expected given that we calculate 
variability change as a fraction and, thus, it was more sensitive to increase in variability. In 
both cases the distributions demonstrated a significant deviation from zero (Wilcox test, p 
value < 2.2e-16 both for regression and SVA corrections). The data revealed that 6% and 2% 
more genes showed more variability in the old group, for regression and SVA approaches 
respectively. Similar to the continuous approach, the effect sizes calculated using regression 
and SVA corrected data correlated weakly r(Dvar(IQRregres), Dvar(IQRSVA)) = 0.24, Figure 3D). 
 
Gene-level differential variability 
 
We then asked if we could detect any genes with a significant change in variability. Using the 
continuous approach, we did not detect any significant change in variability with age after the 
multiple testing correction (Supplemental Table 3). The grouped approach leads to 741 and 
746 differentially variable (DV) genes (FDR corrected p ≤ 0.05) using the regression and SVA 
correction, respectively (Figure 4A, Supplemental Table 4). However, the two sets of DV genes 
identified only have 83 genes in common (Figure 4A), one of which shows an opposite 
direction of change in the two sets. The correlation between Dvar (IQR) for regression and 
SVA corrected data is weak (r = 0.24), but correlation increases when we select only the 
common DV genes (r = 0.44) (Figure 4B). In agreement with our overview analysis above, we 
find twice as many DV genes with an increase in variability as those that decrease variability, 
using both correction methods: i) 533 genes increase and 208 decrease their variability in the 
regression correction, ii) 505 genes increase and 241 decrease their variability in the SVA 
correction (Figure 4A).  
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Figure 4. Differentially variable genes (grouped approach). (A) A bar plot of the differentially variable genes in 
ageing identified using the grouped approach (regression, SVA correction and their overlap), direction of the 
change in the variability is shown in colour: red - increase in variability in ageing, blue – decrease in variability 
(The single common gene, which shows inconsistency between approaches, is not displayed on the graph). (B) 
The relationship between the variability measures calculated using the grouped approach, Dvar (IQR), for 
regression and SVA-corrected data. Differentially variable (DV) genes identified in both corrections are 
highlighted in red (Spearman r = 0.44); DV genes identified in either regression, or SVA - in blue (Spearman r = 
0.20); genes, that were not found to be differentially variable in any of the approaches – in grey (Spearman r = 
0.20). 

Differential variability of functional groups 
 
Following the individual gene analysis, we explored whether genes that tend to increase or 
decrease variability with age are localized in particular functional groups. We performed 
multiple gene set enrichment analyses (GSEA) using the change in the variability with age 
(Dvar) measures obtained in the continuous and grouped approaches on the gene sets from 
KEGG and Biological Process GO categories (Supplemental Tables 5-6). We observed no 
genome-level significant enrichment in particular functional groups on the data either from 
the continuous (SVA correction), or the grouped approach (Regression and SVA corrections). 
However, we found that 4 pathways, namely beta-Alanine metabolism, Ras signalling 
pathway, Phosphatidylinositol signalling system, Bacterial invasion of epithelial cells (FDR 
corrected p ≤ 0.05) were enriched among the genes showing more variability of expression in 
the continuous approach (Regression correction).  These pathways had positive normalized 
enrichment scores (NES) i.e. enrichment for the genes that increase variability with age. 
Moreover, these pathways also had positive NES for other approaches, even though they 
were not significant (Supplemental Table 5). 
 
Distribution of the DV genes in the pathways  
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The gene set enrichment analysis shows if there are particular gene sets that include the 
genes with the highest increase or decrease. Failing to detect such functional categories, we 
asked how the variability measures for the genes were distributed in the different functional 
groups of genes. For each of 310 KEGG pathways, encompassing 5922 unique genes, we 
analysed the distributions of  Dvar measures (Supplemental Table 7), focusing on the median 
value for the change in variability (Figure 5A, B). In line with the overall tendencies we 
observed (Figure 3A, B), the majority of pathways contained a larger number of genes that 
become more variable with age, irrespective of the approach or correction method used. 
Although the increase in variability is ubiquitous and is observed across the majority of the 
pathways (74-94%), the increase is small – in accordance with the small, but significant 
increase observed in the distribution for all genes. Since the pathways are not mutually 
exclusive, we checked if there are particular genes that are present in many different 
pathways and cause the shift. However, no significant correlation between the pathway 
membership of gene and its variability measure (Dvar) was detected (Supplemental Figure 
11). We repeated the analysis using GO Biological Process categories and observed a similar 
trend (see Supplemental Information, Supplemental Table 7). 
 

 
Figure 5. Distributions of the variability measures (Dvar) obtained using a combination of continuous (A) and 
grouped (B) approaches with regression and SVA-correction for the individual pathways in KEGG database. 
The distribution of the variability measures (Dvar) for the genes within each pathway is represented as a box, 
encapsulating part of the distribution between 1st and 3rd quantile, median of the box is coloured in black. 
Pathways on Y-axis and corresponding them boxes are ordered by increasing median. Boxes are coloured in red, 
if the corresponding pathways have median Dvar > 0, and in blue, if median Dvar < 0. Text label on the plot shows 
percentage of pathways with median Dvar > 0. Red dashed line marks Dvar = 0, while black straight-line marks 
median across all the pathways.  
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DISCUSSION 
 

Using one of the largest publicly available human brain expression datasets, we have 
investigated the change in the variability of the gene expression with age. We applied and 
compared different approaches to identify differentially variable genes and correction 
strategies to adjust for the confounders. Our comparison showed that the correction strategy 
plays a pivotal role in identifying the specific set of differentially variable (DV) genes. 
However, irrespective of the approach and correction method used, we observed a 
transcriptome-wide increase in the gene expression variability, i.e. more genes showed a 
tendency to increase than to decrease expression variability with age. We also showed that 
most of the functional processes (as defined in KEGG and GO) were susceptible to the ageing-
related increase in the expression variability.  
 
The difference between the continuous and grouped approaches can be explained by the 
power and initial assumptions of each method. While the continuous approach assumes a 
linear change in expression with age0.25 (see Supplemental Figure 4 for the results showing 
high concordance between models using age vs. age0.25 – correlation coefficient (r) ranges 
between 0.995 to 0.997), the grouped approach analyses each age-group within itself and is 
not sensitive to different dynamics of gene expression change. However, the grouped 
approach requires expression levels to be similar within the young and old groups. The 
continuous approach is well suited to detect monotonic changes in variability, whereas the 
grouped approach can detect switch-like changes, e.g. when variability stays the same 
throughout the lifespan but changes abruptly at the age of 60. In contrast, the continuous 
approach focuses on the whole ageing period, while the grouped approach overlooks the 
middle-age group (40-60). Finally, both methods are vulnerable to power issues as the 
continuous approach uses Spearman correlation, a non-parametric method, and the grouped 
approach analyses only a subset of the data. Thus, we compared the variability measure of 
each gene, calculated using these two approaches. The variability measures are moderately 
correlated (r = 0.43) for the regression correction and strongly correlated (r = 0.71) for the 
SVA correction (Supplemental Figure 9). Overall, the differences in the results using these two 
approaches create a challenge in interpretation, but they are not surprising given inherent 
differences in methodology and the small changes in variability we are investigating. 
 
Another technical aspect we considered was the effect of pre-processing steps. While 
applying regression and SVA corrections, we showed that significantly DV genes hardly 
overlap between the corrections, with only 6% being in common (Jaccard similarity) (Figure 
4A). Unfortunately, current approaches for handling transcriptome data are designed only to 
remove the confounding factors on the expression level and not on the expression variability. 
Thus, SVA and regression demonstrated much higher agreement in the differentially 
expressed (DE) genes (24% in common, Jaccard similarity) (Figure 1B). That raises a question: 
which set includes the genuine DV genes? The different correction strategies are quite distinct 
and might be accounting for different aspects, which is evident from the weak correlation 
between them (Spearman r  between regression and SVA-corrected data for continuous 
approach – 0.35, grouped approach - 0.24, Supplemental Figure 6-7). In this case, the union 
may capture the full aspects of differential variability, whereas the overlap can provide the 
gene list in which we are most confident. 
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Independent of the correction strategy, two thirds of the DV genes showed a significant 
increase in variability. These results agree with the reports of Li et al. [10] on mice neural 
retina, but disagree with findings of Brinkmeyer-Langford et al. [11] on the human brain and 
Vinuela et al. [17] on the multiple human tissues which show either equal amount of genes 
increase and decrease in variability or more decrease than increase. The small overlap of our 
DV gene set with Brinkmeyer-Langford et al. [11] (see Supplemental Information) could be 
explained by the technical aspects that we presented, i.e. variability measure and data pre-
processing, as well as use of different experimental setups and different age-ranges.  
 
We further asked if there is a shift towards an increase or decrease in variability (above or 
below zero) across the whole transcriptome, irrespective of the values and significance. In 
accordance with the previous findings on the human, rat and fruit fly [6,12,15], we found as 
many as 63% of genes showed increase in variability, whereas the value was lower for the 
grouped approach, i.e. 51%. Functional investigation of the differential variability showed 
that it is ubiquitous and was not concentrated in specific functional groups. That was further 
supported by the fact that as many as 74% to 94% of KEGG pathways included more genes 
with an increase in variability (Figure 5 A, B).  
 
Most studies consider the accumulation of cellular damage, such as somatic mutations, with 
age as a main factor, causing increase in the gene expression variability with age. Indeed, 
Lodato et al [26] shows increase in the number of single nucleotide variants in human brain 
with age, while Lee et al [27] documented somatic recombination of APP gene in human 
neurons and its increase with age. However, the causal link between the accumulation of 
mutations and increase in variability was not proven and Enge et al. [15] provides an evidence 
that somatic mutations are not enough to explain gene expression variability. Moreover, 
because brain is a post-mitotic tissue, it may demonstrate a different damage profile, as it is 
not as prone to replication-associated mutations as other tissues but associated with other 
types of damage, such as free radicals or loss of proteostasis. Since we analyse expression 
values from different individuals, we should consider the effect of genotype. A few studies 
have identified a small set of genetic variants that could change gene expression during 
ageing (genotype-by-age interaction) [11,17,28]. However, these specific differences in 
genotype are not likely on their own to explain the transcriptome-wide shift that we 
observed. The environmental factors influencing the epigenome, as well as stochastic effects 
driving an epigenetic drift [9,17,18,29] seems to be a likely explanation in this case. The 
change in variability could also stem from the change in gene expression levels. Although not 
replicated in mouse brain [14], Davie et al.[12] shows that ageing leads to an overall decrease 
in the RNA content, which could also be the reason for such a global increase in the expression 
variability. However, we apply log2 transformation, which attempts to correct the mean-
variability dependence. Indeed, we do not observe any significant association between the 
changes in expression level and variability (Odds ratio = 1.05, Fisher’s test p = 0.11, 
Supplemental Figure 10). 
   
Although we used one of the largest, well-characterized datasets, it is important to note that 
the sample size, the unequal coverage of ages and the high technical and biological variation 
all posed a challenge for the analysis. Moreover, this data was generated using microarray 
technology, which does not measure the expression of all genes and is not as quantitative as 
RNA-seq. Future studies addressing variability in gene expression may consider use of scRNA-
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seq data to distinguish unique changes within a cell from the coordinated changes within cell 
population or changes in the cell composition.  
 
Providing a systematic analysis of the same dataset at multiple levels and considering multiple 
technical challenges, we showed a slight but significant shift towards an age-related increase 
in variability that was not clustered in certain functions but distributed across all pathways. It 
has been recently suggested that an increase in expression variability is linked with the 
genetic risk for schizophrenia in males [30]. However, future experiments are crucial to 
understand whether all genes, functions and organs are equally tolerant to the variability we 
observed and whether this variability has any causal relationship with the ageing processes. 
 
METHODS   

Data processing steps:  
Dataset Selection: We utilized one of the largest age-series human brain expression datasets, 
featuring 269 prefrontal cortex samples from healthy individuals and spanning the whole 
lifespan from development (prenatal samples) through ageing (80 years) [23]. These data 
were collected using microarray technology from people of both sexes and 4 races, namely 
African American (AA), Caucasian (CAUC), Hispanic (HISP) and Asian (AS). In the current 
analysis we excluded foetal, childhood and early adulthood samples before the age of 20, 
thus limiting our sample size to 147. This was to exclude developmental processes taking 
place in the brain until the end of early adulthood, which exhibit discontinuous expression 
changes between early adulthood and ageing [31]. Our main motivation was to study changes 
in gene expression variability during ageing, considering 20 years old as a starting point.  
Data Characterization: The pre-processed data (loess normalization was applied on the 
background corrected log2 intensity ratios (sample/reference)[23]); sample and gene (probe 
set to Entrez gene mapping) annotations were obtained from the NCBI Gene Expression 
Omnibus (GEO) at accession number GSE30272. Samples were processed in 19 batches, had 
different quality measurements, namely pH and RNA integrity number (RIN), and differed in 
the time of collection after death (post-mortem interval (PMI)). Using a PCA, we found no 
sample outliers as judged by visual inspection of the first two principal components 
(Supplemental Figure 2). However, the relationship analysis between the above-mentioned 
factors (i.e. batch, RIN, PMI and others) and age yielded significant correlations for sex, post-
mortem interval and RNA integrity, pointing to potential confounders in the data 
(Supplemental Figure 1). We further checked the overlap between significantly differentially 
variable genes in our analysis and previously reported genes that are affected by PMI and 
detected only a limited overlap (see Supplemental Information).   
Probe set to Gene summarization: If one probe-set was mapped to several genes, it was 
deleted to avoid duplication. Conversely, when one gene had several probe-set expression 
values, they were averaged to obtain a unique gene expression value. In total 16675 genes 
were measured on the array.  
Batch correction: To compensate for technical variation between samples, quantile 
normalisation (QN) was performed using the ‘normalise.quantiles’ function from the 
‘preprocessCore’ R library. To differentiate between the age effect and the effect of the 
unwanted technical and biological variability, we have applied different expression correction 
strategies: linear regression of the known covariates, unsupervised estimation of covariates 
using surrogate variable analysis (SVA) [25,32], and ComBat, a parametric empirical Bayesian 
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framework for covariate adjustment [24]. As a result, we analyzed the same data four times, 
corrected using QN, QN+regression, QN+SVA, QN+ComBat. Different corrections work by 
adjusting for the different covariates in the linear model that explains the gene expression, 
namely: i) QN – no covariates were added; ii) QN+regression – 25 covariates considered: 
technical batches (N = 19), sex (N=2), race (N=4), post-mortem interval, RNA integrity 
number,pH; iii) QN + SVA – 20 surrogate variables (SV) were inferred from the expression data 
using the ‘sva’ function from “SVA” R library; iv) QN+ComBat: the 6 confounding factors: batch 
(N = 19), sex (N=2), race(N=4), pmi, RIN and pH were adjusted for, one at the time, by 
repeatedly applying the ComBat function from the “SVA” R library to the expression data.   
 
Differential expression  
A least squares linear regression model was used to model gene expression level change with 
age. Age0.25 was used as an independent variable instead of age to account for the difference 
in rate of gene expression changes between young (fast) and old (slow) as well as different 
density of the samples across ages. Nevertheless, the β1- coefficients from the linear model, 
that uses age0.25 correlate well with the one, that employs age (Supplemental Figure 4). 
Coefficients for the age covariate were used as a measure of the differential expression. P 
values for coefficients were adjusted using the FDR method with a threshold p ≤ 0.05 to 
account for multiple testing.  Depending on the correction method applied, the linear model 
also accounted for different measured or unmeasured covariates (see Data processing steps) 
of the following general form:  
 

𝑌" = 	𝛽"& + 𝛽"( ∗ 𝑎𝑔𝑒&../ + 𝑐𝑜𝑣𝑎𝑟𝑖𝑎𝑡𝑒𝑠 +	𝜀", 
 
where 𝑌"  is the normalized log-expression level of a gene with i = 1,…,n, 𝛽"&- intercept,  
𝛽"(- slope term and 𝜀"  - residual (or error) term. 
 
Differential variability 
The continuous approach: First, a linear model to fit gene expression during ageing, using 
age0.25 and potential confounders, was constructed. Next, the Spearman correlation was 
calculated between the absolute values of the residuals, |εi| from the linear model and age. 
Consequently, Spearman correlation estimates were used as a measure of the change in 
variability, referred as Dvari(r). P values for the Spearman correlation estimates were 
corrected for multiple testing using FDR. FDR adjusted p ≤ 0.05 was used as a threshold to 
define significantly DV genes. 
 

Δ𝑣𝑎𝑟"	(𝜌) = 	𝑆𝑝𝑒𝑎𝑟𝑚𝑎𝑛	𝜌	(|𝜀"|, 𝑎𝑔𝑒) 
 
The grouped approach: First, a corrected expression matrix was obtained by removing the 
effect of covariates (see data processing steps) from the data using the residuals from a linear 
regression model (Yi = bi0 + covariates + e). The ‘grouped approach’ is a custom resampling-
based test designed to compare gene expression variability between young (20 – 40 years 
old) and old (60-80 years old) groups using an interquartile range (IQR). IQR corresponds to 
the difference between the 75th and 25th percentiles of the distribution and is considered to 
be a robust measure of variability, meaning it is not susceptible to outliers and departure 
from normality in the data. In order to adjust for the unequal sample size of the young (N = 
53) and old (N = 22) groups, we, first, calculated a null distribution of the IQR values for the 
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young group by resampling it 10 000 times with the size of the old group. Next, we calculated 
significance as a percentage of samples where IQRold was more extreme than IQRyoung and 
corrected it for multiple testing using FDR correction, q ≤ 0.05. The ‘grouped’ measure of 
change in the variability, Dvari(IQR), for the gene 𝑖,	corresponds to the difference between 
IQR value for the old, 𝐼𝑄𝑅"	EFG  , and 𝐼𝑄𝑅H	IEJKLMMMMMMMMMMMMM (i.e. mean IQR value from the young 
distribution), which is then divided by the latter, see formula:  
 

Δ𝑣𝑎𝑟"	(𝐼𝑄𝑅) = 	 N𝐼𝑄𝑅"	EFG −	𝐼𝑄𝑅H	IEJKLMMMMMMMMMMMMMP 𝐼𝑄𝑅H	IEJKLMMMMMMMMMMMMMQ  

 
Gene Set Enrichment Analysis for KEGG pathways and GO categories  
β1 coefficients from the differential expression and Dvar measures from the differential 
variability analyses were used to perform gene set enrichment analysis, GSEA [33] using the 
“clusterProfiler” R library. KEGG pathways (N = 315) and BP GO terms (Biological processes 
Gene Ontology, N = 5822) with the size of between 10 and 500 genes were considered as 
gene sets for the GSEA.  
 
Pathway Distribution Study  
KEGG pathway to gene mapping was obtained from “KEGGREST” R library and pathways were 
pre-filtered to contain between 5 and 500 genes. As a result, 310 KEGG pathways that 
comprise 5922 unique genes were used for the subsequent analysis. The boxplots illustrated 
distributions of the Dvar measure for genes in each pathway. Pathways were sorted according 
to their median Dvar measure in ascending order. The percentage of pathways that have their 
median Dvar above zero was calculated. The analysis was replicated using BP GO terms (N = 
5919) of a size between 10 and 500 genes, which in total contained 12538 unique genes. 
Mapping of GO terms to genes was obtained from “org.Hs.eg.db” R library. 
 
Distributions tests  
Distributions of the Dvar - measures for all the genes were tested for normality using the 
Shapiro-Wilk test in R (‘Shapiro.test’ function) on the multiple subsamples, consisting of 5000 
measures. Skewness of the distributions was calculated using the ‘fBasics’ function from 
“BasicStatistics” R library.  
 
Mean-variability relationship testing  
To visualise and test if the change in gene expression variability is associated with the change 
in gene expression level, we plotted the difference in the means between the young and old 
groups against difference in the interquartile range (IQR) between the young and old groups. 
Mean and IQR for the old group were calculated once, while mean and IQR for the young 
group were calculated 10,000 times for the subsamples (see Grouped approach) and then 
means of the distributions of the corresponding values (mean and IQR) were used in the 
analysis. Fisher’s exact test was performed on the values used for the plotting.  
 
Software 
 
R version 3.5.0 and “data.table” were used to perform the analyses, while “ggplot2” and 
“ggpubr” R libraries were used to create visualizations of the data. 
 
ABBREVIATIONS 
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BP GO – Biological Process Gene Ontology,  
DE – differentially expressed genes,  
DV – differentially variable genes,  
Dvar – measure of change in the expression variability with age,  
GO – Gene Ontology,  
GSEA – Gene Set Enrichment Analysis,  
IQR – interquartile range,  
KEGG – Kyoto Encyclopedia of Genes and Genomes,  
PMI – post-mortem interval,  
QN – quantile normalization, 
RIN – RNA integrity number,  
Rho – Spearman correlation estimate, 
SVA – Surrogate Variable Analysis  
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