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Abstract 
It is often assumed that Hebbian synaptic plasticity forms a cell assembly, a mutually interacting 
group of neurons that encodes memory. However, in recurrently connected networks with pure 
Hebbian plasticity, cell assemblies typically diverge or fade under ongoing changes of synaptic 
strength. Previously assumed mechanisms that stabilize cell assemblies do not robustly 
reproduce the experimentally reported unimodal and long-tailed distribution of synaptic 
strengths. Here, we show that augmenting Hebbian plasticity with experimentally observed 
intrinsic spine dynamics can stabilize cell assemblies and reproduce the distribution of synaptic 
strengths. Moreover, we posit that strong intrinsic spine dynamics impair learning performance. 
Our theory explains how excessively strong spine dynamics, experimentally observed in several 
animal models of autism spectrum disorder, impair learning associations in the brain. 
 
Introduction 
The operation of a neural circuit is shaped by the strength of synapses that mediate signal 
transduction between neurons. Activity-dependent modification of synaptic strength, termed 
synaptic plasticity, is considered to be an underlying mechanism of learning and memory 
(Malenka and Bear 2004; Mongillo et al. 2017). A major form of synaptic plasticity is Hebbian 
plasticity (Hebb 1949). While there are multiple molecular mechanisms (Malinow and Malenka 
2002; Nicoll et al. 2006; Matsuzaki et al. 2004) underlying Hebbian plasticity and experimental 
protocols (Neves et al. 2008), it is commonly induced by coactivation of pre- and postsynaptic 
neurons within a particular time window. One prominent biological mechanism for Hebbian 
plasticity is activity-dependent spine volume change. Spine volume is known to be tightly 
correlated with synaptic strength (Matsuzaki et al. 2001; Smith et al. 2003; Noguchi et al. 2005; 
Béïque et al. 2006; Asrican et al. 2007; Holbro et al. 2009; Zito et al. 2009), and both long-term 
potentiation (LTP) and long-term depression (LTD) involve spine change (Lang et al. 2004; 
Matsuzaki et al. 2004; Otmakhov et al. 2004; Zhou et al. 2004; Kopec et al. 2006; Hayama et al. 
2013).  
 
It was previously proposed (S. I. Amari 1977; Hopfield 1982; Hebb 1949) that a memory can be 
represented by coherent activity in a cell assembly, i.e., a group of cells mutually exciting each 
other, and the memory can be stored in synaptic strengths between these neurons by Hebbian 
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plasticity. Consistently, recent experiments have shown that the activation of a coherently active 
group of cells is necessary and sufficient for the expression of learned behavior (Liu et al. 2012; 
Nabavi et al. 2014). However, how a neural circuit maintains cell assemblies stably is not well 
understood. In some models, cell assemblies are stable because synaptic strength is modified 
only during learning, and then fixed (Hopfield 1982; Vogels et al. 2011; S. Amari 1977). 
However, these models neglect changes in synaptic strength after learning and thus do not 
address the maintenance of an acquired memory. 
 
Several studies modeled ongoing Hebbian plasticity during spontaneous activity and found that 
Hebbian plasticity alone is likely not sufficient to maintain a cell assembly. In additive Hebbian 
plasticity models (Song et al. 2000; Gütig et al. 2003; Gerstner et al. 1996), in which the 
dependencies of the LTP and LTD amplitudes on synaptic strength are the same, memory 
tends to become unstable due to a positive feedback during spontaneous activity (Litwin-Kumar 
and Doiron 2014; Zenke et al. 2015; Fiete et al. 2010), namely, neurons that fire together are 
wired together, and then fire together more often. This kind of a positive feedback process 
typically fuses assemblies, and expands the largest existing cell assembly. Some forms of 
stabilizing mechanisms, such as inhibitory plasticity (Litwin-Kumar and Doiron 2014), 
homeostatic plasticity (Zenke et al. 2013), or heterosynaptic plasticity (Zenke et al. 2015) have 
been suggested to stabilize memory (Keck et al. 2017). However, even with these stabilizing 
mechanisms, the resulting distribution of synaptic strengths often becomes dissimilar to what 
has been experimentally observed (Toyoizumi et al. 2007). For example, while the models with 
positive feedback often produce a synaptic strength distribution that is bimodal, experiments 
have reported a unimodal and long-tailed distribution of synaptic strengths (Song et al. 2005; 
Cossell et al. 2015) and corresponding spine volumes (Yasumatsu et al. 2008; Loewenstein et 
al. 2011).  
 
An alternative proposal is multiplicative Hebbian plasticity (van Rossum et al. 2000; Morrison et 
al. 2007; Gütig et al. 2003), in which the LTP amplitude is less prominent than the LTD 
amplitude for large synapses, in agreement with experimental observations (Bi and Poo 1998; 
Tanaka et al. 2008; Hayama et al. 2013). This multiplicative form of Hebbian plasticity can avoid 
the above instability problem, and under spontaneous activity of neurons, synaptic strengths 
converge to a prefixed set point where LTP and LTD effects balance each other, regardless of 
the initial synaptic strengths (Morrison et al. 2007). This means that memories must degrade in 
the presence of spontaneous neural activity.  
 
Hence, in all the models described above, it is nontrivial to stably maintain cell assemblies and 
reproduce the experimentally observed distribution of synaptic strengths (or of spine volumes), 
which has a thick tail and a peak at a rather weak strength (Song et al. 2005; Yasumatsu et al. 
2008; Loewenstein et al. 2011; Cossell et al. 2015). Interestingly, a similar distribution of spine 
volumes is robustly observed even in animal models of mental disorders (Pathania et al. 2014) 
and with an LTD deficiency in calcineurin KO animals (Okazaki et al. 2018). In contrast, in the 
above mathematical models, the distribution of synaptic strengths is fragile and strongly 
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depends on the balance of LTP and LTD that is set by model parameters and input to neurons. 
Thus, conventional models have no mechanism to restore the distribution of synaptic strengths. 
 
Despite the common assumption that only synaptic plasticity changes spines, they also 
dynamically change in the absence of neural activity. Recent studies showed that spine 
turnover, i.e., generation and elimination of spines, continues even under the blockade of neural 
activity and calcium signaling in vivo (Kim and Nabekura 2011; Nagaoka et al. 2016). Further, 
spine volumes constitutively fluctuate in the absence of neural activity, calcium signaling, and 
activity-dependent plasticity in vitro (Yasumatsu et al. 2008). These intrinsic spine dynamics are 
characterized by a zero drift coefficient and a diffusion coefficient proportional to the square of 
spine volume, . Interestingly, this volume-dependent diffusion reproduces the experimentallyv2  
observed equilibrium distribution of spine volumes with a power-law tail of exponent v−2

(Yasumatsu et al. 2008; Ishii et al. 2018). This observation poses an important question: How 
do intrinsic spine dynamics affect the maintenance of cell assemblies?  
 
We address this question by simulating a mathematical model of a recurrently connected neural 
network that implements both multiplicative spike-timing dependent plasticity (STDP) (van 
Rossum et al. 2000; Morrison et al. 2007) and experimentally observed intrinsic spine dynamics 
(Yasumatsu et al. 2008). We also study how spine turnover and the distribution of spine 
volumes are affected by these two processes. Despite a possible perception of intrinsic spine 
dynamics as noise, we show that they can help to maintain cell assemblies by preventing 
unnecessary spines from growing and sustaining the physiological spine volume distribution.  
 
Based on the model analysis, we hypothesize that intrinsic spine dynamics that are stronger 
than in wild type (WT) conditions can explain the abnormally high spine turnover rate observed 
in animal models of autism spectrum disorder (ASD) (Isshiki et al. 2014; Pan et al. 2010). By 
fitting model parameters to one ASD mouse model, fmr1KO (a model of fragile X syndrome) 
(Pfeiffer and Huber 2009), we show how excessively strong intrinsic spine dynamics may cause 
learning deficits in ASD animals (Silverman et al. 2010; Padmashri et al. 2013).  
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Figure 1: Recurrent network model with STDP and intrinsic spine dynamics. (A) A model of 
cortical circuitry. Excitatory and inhibitory neurons are modeled as leaky-integrate-and-fire units, 
which are sparsely connected. We assume that only the recurrent excitatory synapses are 
plastic. Excitatory neurons are aligned in a one-dimensional feature space, which is divided into 
4 neighborhood quarters. 40% of randomly chosen excitatory neurons in each group, and all 
inhibitory neurons, receive additional external input during stimulation. The externally stimulated 
excitatory neurons in each quarter are defined as a stimulated group. (B1) Potential connectivity 
peaks at around 10% and decays with the tuning-distance between two excitatory neurons in 
the feature space. Synapses can grow if two excitatory neurons are potentially connected. (B2) If 
two excitatory neurons have potential connectivity, the number of contact points is randomly 
drawn from a truncated Poisson distribution in the range of 1 to 10. Each contact point can 
accommodate one spine. (B3) Spiking activity and membrane potential dynamics of a sample 
set of neurons at baseline. (B4) Excitatory neurons have an adaptation current, which builds up 
with firing activity and suppresses firing rate. (C) During a learning period, one of the stimulated 
groups is randomly chosen with probability ¼ and receives elevated external input for 3 s. All 
inhibitory neurons receive external stimulation throughout the entire learning period. (D) Spine 
volumes are changed by the combination of STDP and intrinsic spine dynamics (except in Fig. 
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2, where only STDP is considered). Arrows indicate possible changes in spine volume and the 
size of the arrow represents the possible maximum change in spine volume. A threshold at 0.02 
µm3 separates spines and non-spines, and STDP only affects spines. (E) The multiplicative 
STDP rule used for changing spine volume. The LTD amplitude is proportional to spine volume. 
(F) The diffusion coefficient characterizing intrinsic spine dynamics, which is proportional to the 
square of spine volume.  

 
 
Results 
We study the dynamics of spine volumes using a model of a cortical circuit. We stimulate 
recurrently connected spiking neurons (Fig. 1; also see Methods) to explore if the network 
stores memories as cell assemblies. The cortical network consists of 1000 excitatory and 200 
inhibitory leaky-integrate-and-fire spiking neurons (Tuckwell 1988), where the excitatory and 
inhibitory neurons are randomly connected by a 10% connection probability (Fig. 1A). For 
simplicity, the excitatory neurons are embedded in a one-dimensional feature space that 
describes, for example, orientation selectivity in V1. We assume that synapses can be formed 
between a pair of excitatory neurons that have potential connectivity (Markram et al. 1997). 
Potential connectivity (either 0 or 1) from a neuron to another is randomly generated and set at 
the beginning of a simulation. Potential connectivity peaks at 10.4% (see Fig. 7 for a systematic 
exploration of this peak value) for neurons with similar selectivity and falls off with their 
tuning-distance (Fig. 1B1). If two neurons have potential connectivity, the number of synaptic 
contact points is drawn randomly from a truncated Poisson distribution (Fig. 1B2) (Hardingham 
et al. 2010). In the absence of elevated external input, excitatory neurons in this network exhibit 
a background firing rate of about 0.1 Hz (Fig. 1B3). Cortical excitatory neurons are generally 
adaptive and cannot continuously fire at their maximum firing rate. Hence, we model an 
adaptation current (Wang et al. 2003) that slowly builds up with the postsynaptic spiking activity 
and hyperpolarizes the neuron with its characteristic time constant of about 5 s (Fig. 1B4; see 
Methods). Finally, only the recurrent excitatory to excitatory synapses are subject to 
activity-dependent plasticity.  
 
To model activity-dependent plasticity, we assume that spine volume is proportional to synaptic 
strength (but we define a tiny protrusion of volume <0.02 µm3 as a “non-spine”) because the 
correlation between the synaptic strength and spine volume has been experimentally 
demonstrated (Matsuzaki et al. 2004; Harvey and Svoboda 2007; Bosch et al. 2014). The spine 
volume of an excitatory to excitatory synapse is modeled by multiplicative STDP (Fig. 1E) (van 
Rossum et al. 2000), and thus the LTP amplitude is independent of synaptic strength, while the 
LTD amplitude is proportional to synaptic strength. Therefore, with an increase in synaptic 
strength, the LTD amplitude increases at a steeper rate than the LTP amplitude, and this is 
consistent with experimental observations (Tanaka et al. 2008; Hayama et al. 2013; Bi and Poo 
1998). We let the network acquire cell assemblies by providing additional external input to 
subsets of neurons. We divide the feature space of the excitatory network into 4 equally sized 
neighboring quarters (Fig. 1A), and randomly select 40% of the neurons in each quarter as a 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 21, 2019. ; https://doi.org/10.1101/525980doi: bioRxiv preprint 

http://f1000.com/work/citation?ids=4906317&pre=&suf=&sa=0
http://f1000.com/work/citation?ids=137542&pre=&suf=&sa=0
http://f1000.com/work/citation?ids=142047&pre=&suf=&sa=0
http://f1000.com/work/citation?ids=142047&pre=&suf=&sa=0
http://f1000.com/work/citation?ids=376304&pre=&suf=&sa=0
http://f1000.com/work/citation?ids=55365,28511,34233&pre=&pre=&pre=&suf=&suf=&suf=&sa=0,0,0
http://f1000.com/work/citation?ids=141765&pre=&suf=&sa=0
http://f1000.com/work/citation?ids=141765&pre=&suf=&sa=0
http://f1000.com/work/citation?ids=94574,138219,137317&pre=&pre=&pre=&suf=&suf=&suf=&sa=0,0,0
http://f1000.com/work/citation?ids=94574,138219,137317&pre=&pre=&pre=&suf=&suf=&suf=&sa=0,0,0
https://doi.org/10.1101/525980
http://creativecommons.org/licenses/by-nc-nd/4.0/


stimulated group. We randomly select one of these four groups at a time during the learning 
period and stimulate it with an elevated rate of Poisson spikes for 3 s (Fig. 1C; see Methods). 
For simplicity, all inhibitory neurons are stimulated throughout the learning period. The spine 
volume, , of each spine is initially drawn randomly from a fixed distribution, proportional tov  

 µm3 . This initial distribution approximates an experimentally observed spine volumev .05( + 0 )−2  
distribution (see Methods). As we will see below, changing synaptic strengths by multiplicative 
STDP alone fails to sustain cell assemblies in the presence of spontaneous activity.  
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Figure 2 
Network behavior in the absence of intrinsic spine dynamics. (A) Experimental protocol. External 
stimulus is provided during the learning period (blue bar) and the memory retention is studied in 
the maintenance period. The learning period finishes when one cell assembly becomes strong 
enough to sustain it’s activity. (B) Typical neural activity during (Left) and after (Right) the 
learning period. The panels show the firing rates of 1000 excitatory neurons in a 50 s time 
window. During the learning, neural activity is driven by external stimulus, which randomly 
activates one group at a time. After learning, one group of neurons is strongly active 
spontaneously. (C) Firing rates of the 3rd-quarter neurons in the entire simulation period. 
Neurons are sorted by the first time their firing rates exceed 15 Hz. The number of active 
neurons expands both during the learning and retention periods beyond the initial 40 % that are 
stimulated. (D) Mean firing rates of the four stimulated groups. (E) Spine volume distribution at 
the end of the simulation for intra-stimulated-group spines (Stimulated: pink) and other spines 
(Other: green). (F) Mean spine volume of intra-stimulated-group spines (pink) and other spines 
(green). (G) Individual volumes of a single intra-stimulated-group spine from each stimulated 
group and a single non-stimulated spine. The learning period is represented by a blue bar. 

 
 
Firstly, we consider the case where spine fluctuations are absent and spine volumes are only 
changed by multiplicative STDP. Figure 2 depicts the behavior of our network during and after 
the learning period. The learning period (Fig. 2A) is terminated when the mean intra-group spine 
volume of at least one stimulated group reaches 0.49 µm3. During the learning period, four≥  
groups of neurons were randomly stimulated one at a time (Fig. 2B, Left) with increased input, 
and after the learning period, only the 3rd-quarter’s neurons stayed active (Fig. 2B, Right). 
Figure 2C plots the firing rates of all neurons in the 3rd-quarter during the entire simulation 
period. This shows that the number of active neurons monotonically increased both during the 
learning period and during the maintenance period, indicating an unstable learning outcome. 
Specifically, the cell assembly initially formed among the group 3 neurons and spread to 
neighboring neurons that were not externally stimulated. This spreading of the cell assembly 
provided extra recurrent input from newly recruited neurons to other neighboring neurons. 
Figure 2D summarizes the population averaged firing rates of the four stimulated groups. All 
groups show elevated firing rates during the learning period due to external stimulations. After 
the learning period, physiological neural activity was maintained only for a day. After that, the 
mean firing rate of one group (i.e., group 3) exploded, and that of the other groups declined 
down to near zero values. The spine volume distribution at the end of the simulation included a 
non-physiological secondary peak at 0.5 µm3 (Fig. 2E). A small but non-negligible number of 
non-stimulated synapses also formed a peak at 0.5 µm3. These synapses contribute to the 
extremely high firing rate of the group 3 neurons and the recruitment of non-stimulated neurons 
toward the end of the simulation. During the learning period, the mean volume of the spines 
connecting neurons within each stimulated group increases due to LTP (Fig. 2F). Note that LTP 
is dominant over LTD for small spines because we assume that the LTP amplitude is fixed but 
the LTD amplitude is proportional to spine volume. After a few days of learning, mean spine 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 21, 2019. ; https://doi.org/10.1101/525980doi: bioRxiv preprint 

https://doi.org/10.1101/525980
http://creativecommons.org/licenses/by-nc-nd/4.0/


volumes plateaued at around 0.5 µm3, where LTP and LTD effects roughly balance. The mean 
spine volume of other spines (non-stimulated) exhibited a slow but steady increase (Fig. 2F), 
reflecting the formation of the secondary peak of non-stimulated spines seen in the spine 
volume distribution (Fig. 2E). The volumes of individual spines (Fig. 2G) are homogeneous 
within each group and their development mirrors the corresponding mean spine volume (Fig. 
2F).  
 
The spread of activity to non-stimulated neurons is slow in this simulation because of the lateral 
inhibition that tends to shut down spikes in non-stimulated neurons. However, the activity will 
eventually spread as long as they fire occasionally. Hence, as expected from previous studies 
(Morrison et al. 2007), a recurrently connected network with multiplicative STDP has difficulty 
preventing the expansion of a dominant cell assembly during spontaneous activity. Notably, the 
resulting spine volume distribution of this model is dissimilar to experimentally observed 
unimodal distributions.  
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Figure 3 
Network behavior in the presence of intrinsic spine dynamics. (A-G) Conventions are as in Fig. 
2. (H) Spine generation and elimination. 

 
 
Next, we add intrinsic spine dynamics previously observed in hippocampal slices (Yasumatsu et 
al. 2008). Spine volumes fluctuate every day, and the amplitude of these fluctuations is spine 
volume dependent (Fig. 1F). Importantly, these intrinsic spine dynamics were largely intact in 
the absence of neural activity and synaptic plasticity, i.e., under the pharmacological blockade 
of sodium channels, NMDA, and voltage-dependent calcium channels in cells. In the absence of 
neural activity and plasticity, the amplitude of spine volume fluctuations is roughly proportional 
to spine volume, , where  is spine volume with parameters  day-½ and v~ α + β v .2α = 0 .01β = 0  
µm3 day-½ (Yasumatsu et al. 2008). In other words, the effect of intrinsic spine dynamics is 
summarized by the volume-dependent diffusion coefficient  with zero drift(v) (αv ) /2D =  + β 2  
coefficient (Yasumatsu et al. 2008) (see also Methods). Therefore, the Fokker-Planck equation 
(Risken 1989) for describing the evolution of the spine volume distribution  is(v)P  

. It indicates that the equilibrium is reached when the diffusion intensity− [D(v)P (v, )]dt
dP (v,t) = ∂2

∂v2 t  
 becomes volume-independent. This gives the equilibrium spine volume distribution(v)P (v)D eq  

, which has a power-law tail. Note that there are two mathematical(v) /D(v)P eq ∝ 1 ~ v−2  
conventions for interpreting the above equation (Gardiner 1985), which lead to different 
semantic meanings of fluctuation. Here, we take the Itô interpretation, in which the intrinsic 
spine dynamics are interpreted as spine volume fluctuations (but see Methods for an alternative 
interpretation). We regard that spines smaller than 0.02 µm3 are non-spines and do not exhibit 
multiplicative STDP, whereas intrinsic spine dynamics are still present even for these small 
protrusions (c.f. Fig. 1D). This assumption is consistent with the experimental observations that 
the baseline spine turnover is largely activity-independent (Kim and Nabekura 2011; Nagaoka et 
al. 2016).  
 
We used the same stimulation protocol as in Fig. 2 to study cell assembly learning when both 
multiplicative STDP and intrinsic spine dynamics are involved (Fig. 3A-H). Cell assembly 
learning was similar at the beginning of the simulation to the case without intrinsic spine 
dynamics: Firing rates increased (Fig. 3D) and the intra-group spines enlarged (Fig. 3F). In 
contrast to the previous case, a physiological neural activity level was maintained throughout 
(Fig. 3D), and none of the cell assemblies aggressively spread to neighboring non-stimulated 
spines (Fig. 3C) during the maintenance period. The activity-dependent formation of cell 
assemblies is evident from the coherent reactivation of stimulated groups (Fig. 3B) during the 
maintenance period at much lower spontaneous firing rates than during the learning period. 
These memory patterns can be successfully maintained even if neural activity is blocked for a 
whole day (e.g., by tetrodotoxin; Fig. S1). Notably, while individual spines' volumes fluctuated 
throughout the simulation (Fig. 3G), the mean volume of the intra-group spines was stably 
maintained (Fig. 3F). In contrast to the previous case without intrinsic spine dynamics (c.f. Fig. 
2E), the spine volume distribution remained unimodal after learning, with no secondary peak 
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around 0.5 µm3 (Fig. 3E). This is because large spine fluctuations smear large spines along the 
tail. Despite this smearing, the memory patterns were still stored by enlarged spines located 
around the fat tail of the distribution. Finally, spine generation was increased during the learning 
period, as often seen experimentally (Yang et al. 2009; Hofer et al. 2009) (Fig. 3H). The 
contribution of each model mechanism assumption is further explored in Fig. S2. 
 
 

 
Figure 4 
Decomposition of spine volume change by STDP and intrinsic spine dynamics. We separately 
measured changes in mean spine volume induced by either STDP (orange line) or intrinsic 
spine dynamics (brown line), by systematically initializing all intra-group spine volumes of one 
group to a fixed value, and measuring any subsequent changes. The net change is separately 
plotted (black line). Arrows of corresponding color mark the flow of mean spine volume change 
due to each mechanism, or the combination of both, at the top. STDP and intrinsic spine 
dynamics change the mean spine volume toward 0.57 µm3 and 0.15 µm3, respectively. When 
the two mechanisms are combined, the net dynamics have bistability: There are two stable fixed 
points at 0.55 µm3 and 0.15 µm3, and a separation point at roughly 0.50 µm3, which divides the 
two basins of attraction. The shaded interval indicates the standard deviation of the intra-group 
spines’ change in the initialized group. 

 
 
To elucidate how intrinsic spine dynamics stabilize our network learning and enable the storing 
of memories, we examined the effects of STDP and intrinsic spine dynamics separately (Fig. 4). 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 21, 2019. ; https://doi.org/10.1101/525980doi: bioRxiv preprint 

http://f1000.com/work/citation?ids=92959,347380&pre=&pre=&suf=&suf=&sa=0,0
https://doi.org/10.1101/525980
http://creativecommons.org/licenses/by-nc-nd/4.0/


We initialized spine volumes randomly as described above except for the intra-group spines of 
one group, whose volumes were all set identically and changed systematically. While we 
simulated the spontaneous activity of neurons, we monitored how multiplicative STDP and spine 
fluctuations changed the mean intra-group spine volume. Multiplicative STDP leads to an overall 
potentiation of the intra-group spines (Fig. 4; orange line) if they are small (roughly <0.57 µm3) 
and a depression of the spines if they are large (roughly >0.57 µm3). This transition is observed 
for large spines because the LTD amplitude, which is proportional to spine volume, dominates 
over the amplitude of LTP, which is independent of spine volume. LTP dramatically increases 
for spines greater than 0.30 µm3 because strong intra-group connections serve as positive 
feedback on coincident firing between the neurons within the group, increasing the frequency of 
both LTP and LTD events. Therefore, STDP on its own, leads to one fixed point of mean spine 
volume at a non-physiologically high value at around 0.57 µm3. This fixed point is controlled by 
the parameter setting the relative amplitude of LTD (Morrison et al. 2007). Intrinsic spine 
dynamics on the other hand normalize the spine volume distribution, restoring the distribution 
toward the equilibrium distribution  with a mean spine volume of roughly 0.15(v) /D(v)P eq ∝ 1  
µm3 (Fig. 4; brown line).  
 
When the contributions from STDP and intrinsic spine dynamics are added together with an 
appropriate balance (Fig. 4; black line), the combination permits a bi-stability in the mean spine 
volume of a population of spines. In this case, changes in the mean spine volume are 
dominated by the intrinsic spine dynamics when small (roughly <0.30 µm3), so that the spine 
volumes fluctuate around 0.15 µm3. Conversely, changes in the mean spine volume are 
significantly affected by STDP when large (roughly >0.30 µm3), creating a larger-volume fixed 
point at approximately <0.55 µm3. In between these stable fixed points, there is a separation 
point (unstable fixed point) at around 0.50 µm3, which prevents the mean spine volume from 
moving in between these two stable fixed points. It is important to note that in the case with 
intrinsic spine dynamics, while single spines are largely fluctuating and sporadically moving 
around the small and large mean spine-volume fixed points, a cell assembly is stably 
maintained by the ensemble property of intra-group spines: here quantified as the mean 
intra-group spine volume. 
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Figure 5 
Spine turnover in our WT and fmr1KO models with two different levels of intrinsic spine 
dynamics. 

 
 
These results suggest that intrinsic spine dynamics can normalize the synaptic strength 
distribution to a stereotypical shape in the presence of ongoing Hebbian plasticity, and at the 
same time, enable the circuit to stably retain memory patterns in the form of cell assemblies with 
a bi-stable mean intra-cell assembly spine volume. The relative amplitudes of STDP and 
intrinsic spine dynamics are key parameters to achieving this bi-stability. For example, if STDP 
is too strong, relative to intrinsic spine dynamics, the small mean spine volume fixed point at 
0.15 µm3 would disappear. We have already seen in our model that in the absence of intrinsic 
spine dynamics, the spine volume distribution sharply peaks at around the large mean spine 
volume fixed point and activity becomes too high (Fig. 1). Instead, if STDP is too weak, relative 
to intrinsic spine dynamics, the large mean spine volume fixed point around 0.55 µm3 could 
disappear. Below, we explore more generally what might go wrong with excessively strong 
intrinsic spine dynamics. 
 
Interestingly, experimental results suggest that intrinsic spine dynamics are abnormally high in a 
mouse model of fragile X syndrome, fmr1KO (Nagaoka et al. 2016; Pan et al. 2010). Below, we 
constrain the parameters  and  of the diffusion coefficient  to characterizeα β (v) αv ) /2D = ( + β 2  
intrinsic spine dynamics in fmr1KO mice based on reported observations. Spine turnover is 
about twice as high in fmr1KO mice as in WT mice (Pan et al. 2010). Remarkably, this elevated 
spine turnover largely remains even when calcium activity is pharmacologically blocked, 
suggesting that this is due to abnormal intrinsic spine dynamics (Nagaoka et al. 2016). Another 
constraint is the spine volume distribution. Experimental reports comparing the spine volume 
distribution in fmr1KO and WT mice have mixed observations -- some studies detected more 
immature spines in fmr1KO but others detected no significant difference (He and 
Portera-Cailliau 2013). For simplicity, we assume that any differences in the spine volume 
distribution between fmr1KO and WT mice are negligible. Based on the numerical fitting to the 
observed spine turnover, these two constraints specify the parameters  day-½ and.43α = 0  

 µm3 day-½ for fmr1 KO mice (Fig. 5; see also Fig. S3 for a systematic parameter.021β = 0  
search). Intuitively speaking,  and  are twice as high as the corresponding WT values. Thisα β  
is because, despite the presence of STDP, the spine volume distribution is largely set by the 
equilibrium distribution of the intrinsic spine dynamics, . It suggests that the(v) /(v /α)P eq ∝ 1 + β 2  
ratio  should be similar between WT and fmr1KO to have similar spine volume distributions,/αβ  
and  in fmr1KO is twice as large as WT to account for the doubled spine turnover rate.β   
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Figure 6 
Network behavior in the presence of predicted fmr1KO intrinsic spine dynamics. (A-H) 
Conventions are as in Fig. 3.  

 
 
Learning and memory deficits have been reported in fmr1KO mice (Padmashri et al. 2013). We 
investigated whether these learning and memory deficits could potentially be explained by the 
abnormal intrinsic spine dynamics modeled above. Consistent with the experimental 
observations, storing memory patterns was impaired in our fmr1KO model (Fig. 6A-H), where 
coherent spontaneous activation of cell assemblies rapidly faded after learning (Fig. 6B-D). This 
is because the mean spine volumes of the stimulated groups decreased during the maintenance 
period (Fig. 6F). This effect can be intuitively understood from the result in Fig. 4 -- memory 
cannot be stably stored in a cell assembly if intrinsic spine dynamics are too strong, relative to 
multiplicative STDP, because the stable fixed point of the mean intra-group spine volume 
around 0.55 µm3 disappears. Individual spines fluctuated as in the WT model but with a greater 
amount per unit time (Fig. 6G). As a result of excessively strong intrinsic spine dynamics and 
the decay of mean intra-group spine volume for the stimulated groups, the stimulated spines 
scattered around the spine volume distribution (Fig. 6E). This result is in contrast to the WT 
result, where stimulated spines are localized nearer the tail of the spine volume distribution (c.f. 
Fig. 3E). Similarly to the WT model, the external stimulation at the onset of learning increased 
the spine generation rate by about 2.5% without significantly altering the elimination rate. Note 
that the baseline turnover in this fmr1KO model was about twice as high as the WT model, 
consistent with the experimental observation (Nagaoka et al. 2016).  
 
 
 

 
Figure 7 
Varying the probability of recurrent excitatory to excitatory connections in the WT model (Left) 
and the fmr1KO model (Right) permits an increased chance of cell assembly fade or explosion 
at different connectivity levels. We hypothesize that fmr1KO mice may have a compensatory 
increase in potential connectivity (red line) to partially rescue stable cell assemblies. 
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The learning and memory deficits reproduced above are however potentially more severe than 
observed experimentally because fmr1KO mice have some learning capability, albeit limited. 
Therefore, we considered whether there may be some compensating mechanism, via which 
animals with excessively strong intrinsic spine dynamics rescue some learning and memory 
performance. We consider the regulation of potential connectivity as one candidate mechanism. 
Figure 7 explores how the stability of cell assemblies changes in our WT and frm1KO models 
(i.e. the simulations of Figs. 3 and 6) if the peak potential connectivity (Fig. 1B1) is systematically 
altered. A cell assembly in either the WT or fmr1KO model can exhibit one of the following three 
scenarios: its mean firing rate either (1) explodes (≥100 Hz) due to unstable learning, (2) fades 
(≤1 Hz), or (3) is stably maintained within a physiological range (>1 Hz and <100 Hz) during the 
maintenance period. The peak potential connectivity of 10.4% was already optimized for the WT 
model, such that nearly all cell assemblies are stable. The frequency of fading assemblies 
increased if potential connectivity was too low and that of exploding assemblies increased if 
potential connectivity was too high. However, the WT model stably maintained cell assemblies 
over a range of the peak potential connectivity from 9.4% to 10.8%. In contrast, the 
maintenance of cell assemblies in the fmr1KO model was much more sensitive to potential 
connectivity. As indicated in Fig. 7, most of the assemblies fade with the WT peak connectivity 
of 10.4%. The stability in the fmr1KO model first improved up to ~50% maintenance rate, but 
soon started to decline again due to exploding assemblies as potential connectivity increases. 
Given this result, it is an interesting possibility that fmr1KO mice with excessively strong intrinsic 
spine dynamics may locally up-regulate potential connectivity, relative to WT mice, to avoid 
catastrophic forgetting (Fig. 7 Right; marked as compensation). This hypothesis, which predicts 
an elevated frequency of exploding assemblies in fmr1KO mice, is consistent with the 
experimentally observed hyper neural activity and synchrony in fmr1KO mice (Gonçalves et al. 
2013).  
 
 
Discussion 
In previous models of synaptic plasticity, changes in synaptic strengths are assumed to be 
activity-dependent (Poo et al. 2016; Mongillo et al. 2017). Recent experimental observations 
suggest that this is not the case. In this work, we modeled how activity-independent intrinsic 
spine dynamics (Yasumatsu et al. 2008; Nagaoka et al. 2016) affect learning and memory in 
recurrent circuit models. For simplicity, we assumed that spine volume is proportional to 
synaptic strength (Matsuzaki et al. 2004; Harvey and Svoboda 2007; Bosch et al. 2014). 
Contrary to a view that noisy synaptic changes are harmful to memory, intrinsic spine dynamics 
in our model play a positive role in preventing Hebbian-plasticity-driven non-specific growth of 
synapses. Specifically, as a result of the interaction between STDP and intrinsic spine dynamics 
in our model, the mean volume of a cell assembly’s spines exhibits bistability, which is suitable 
to sustain memory. STDP keeps spines within a cell assembly due to the coherent spontaneous 
activity of the membership neurons (e.g. (Wei and Koulakov 2014; Diekelmann and Born 2010; 
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Kenet et al. 2003), and intrinsic spine dynamics constitutively normalize all spines toward a 
physiological distribution.  
 
In our model, memory is maintained by the total strength of synapses that connect neurons 
within an assembly. Individual synapses fluctuate and exhibit constant turnover, but this does 
not degrade the memory as long as the net strength is kept. However, one property of the 
current model is that, given the innate Hebbian instability of cell assemblies in spontaneously 
active recurrent networks, highly overlapping cell assemblies likely merge during maintenance, 
even in the presence of intrinsic spine dynamics. In this sense, either a preprocessing 
mechanism that decorrelates memory patterns (Perez-Orive et al. 2002; Leutgeb et al. 2007) or 
a more elaborate additional mechanism that stabilizes individual synapses (Frey and Morris 
1997; Ziegler et al. 2015; Benna and Fusi 2016) is helpful for improving the memory capacity 
(Hopfield 1982).  
 
There are several experimental observations that support the role of intrinsic spine dynamics in 
shaping the spine volume distribution. First, the spine volume distribution in the absence of 
neural activity and plasticity was well predicted by intrinsic spine dynamics (Yasumatsu et al. 
2008), and the distribution is similar in the presence of neural activity. Second, the spine volume 
distribution was robust to experimental manipulations to synaptic plasticity. Remarkably, 
calcineurin KO mice with little LTD (Okazaki et al. 2018) exhibited a spine volume distribution 
that was similar to WT mice. This raises an argument against the hypothesis that the spine 
volume distribution is set by the balance between LTP and LTD. We suggest that previous 
computational models that do not include intrinsic spine dynamics miss an important component 
underlying synaptic organization.  
 
We studied the interplay between activity-dependent synaptic plasticity and intrinsic spine 
dynamics in the formation and maintenance of cell assemblies in recurrent networks. 
Conventional studies of intrinsic spine dynamics often focus on independent synapses 
(Yasumatsu et al. 2008) or learning in a local feedforward network (Matsubara and Uehara 
2016) instead of learning in a recurrently connected network. Another study explored the 
consequence of volatile synaptic strengths in recurrently connected networks without studying 
how such volatility affects activity-dependent plasticity (Mongillo et al. 2018). Other studies 
model stochastic changes of synaptic strength (Loewenstein et al. 2011) or connectivity (Deger 
et al. 2012; Fauth et al. 2015) without distinguishing activity-dependent and -independent parts. 
Hence, these works do not distinguish their separate roles in memory and synaptic 
normalization. Another line of studies (Zenke et al. 2015; Litwin-Kumar and Doiron 2014) model 
activity-dependent synaptic plasticity to account for the formation and maintenance of cell 
assemblies in a recurrent network. However, because these models do not include intrinsic 
spine dynamics, their synaptic strength distributions are typically sensitive to the fine balance 
between LTP and LTD and counter to the experimental observations described above. Thus, 
the proposed model postulates how synaptic normalization, by intrinsic spine dynamics, 
maintains most synapses that are not participating in a cell assembly weak. In addition, intrinsic 
spine dynamics in our model work as a homeostatic mechanism that stabilizes Hebbian 
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plasticity, although they are activity independent and an explicit sensing-and-control (Shah and 
Crair 2008; Davis 2006) mechanism is absent. For this to work, the relative magnitude of 
Hebbian plasticity and intrinsic spine dynamics is important; For example, this stabilization fails 
if Hebbian plasticity is too fast (see Fig. 4). While we conjecture that intrinsic spine dynamics 
can stabilize slow Hebbian plasticity in adults, other fast forms of homeostatic plasticity, such as 
inhibitory plasticity (Vogels et al. 2011; Litwin-Kumar and Doiron 2014), might be helpful in the 
young, or once neural activity deviates beyond the level that intrinsic spine dynamics can 
compensate for. 
 
Another main contribution of this study is the relation between intrinsic spine dynamics and 
ASD. The observation that baseline spine turnover is abnormally high in various ASD mouse 
models (Isshiki et al. 2014), including a model animal for fragile X syndrome (fmr1KO) (Pan et 
al. 2010) suggests abnormal intrinsic spine dynamics could be one candidate substrate of ASD. 
Indeed, a recent experiment has confirmed that high baseline spine turnover in fmr1KO mice is 
activity-independent (Nagaoka et al. 2016), and intrinsic spine dynamics are stronger in fmr1KO 
(Ishii et al. 2018). Based on these experimental observations, we fitted parameters 
characterizing intrinsic spine dynamics in fmr1KO mice and found that they explain the learning 
deficit observed in fmr1KO mice (Padmashri et al. 2013). Interestingly, when we included a 
compensatory increase in recurrent excitatory connectivity to rescue some memory, the model 
reproduced epileptic-like neural activity that has been reported experimentally in fmr1KO mice 
(Musumeci et al. 2000). More generally, the disrupted cortical connectivity theory of ASD 
(Courchesne and Pierce 2005; Kana et al. 2011) argues that deficiency of cortical long-range 
connections and compensatory strengthening of local connections is a general feature of ASD. 
We contend that because there are typically fewer long-range connections, which therefore 
limits the positive feedback effect of Hebbian plasticity that is required for maintaining cell 
assemblies, they are especially susceptible to degradation due to excessively strong intrinsic 
spine dynamics, such as in our fmr1KO model. Furthermore, the learning deficiency in our 
proposed local cortical circuit model of fmr1KO, and its rescue by a compensatory increase in 
the local connectivity (Fig. 7), is consistent with this theory. Hence, it is an intriguing possibility 
that pharmacological manipulations (Nagaoka et al. 2016), or a future neurofeedback 
technology (Ganguly and Poo 2013; Yahata et al. 2016), could be used to rescue memory and 
learning, and long-range neural association, by reducing intrinsic spine dynamics or producing 
network motifs (Watanabe and Rees 2015) efficiently connecting target brain areas. 
 
A similar concept to intrinsic spine dynamics that has been used to describe ASD is intrinsic 
forgetting (Davis and Zhong 2017). These two mechanisms are both related to chronic 
molecular signaling, which slowly degrades synapses and therefore memories. However, 
important differences between the two are how they are regulated in ASD animals and how they 
could possibly be involved in producing flexible behavior. A decrease in intrinsic forgetting has 
been argued to disable flexible behavior by maintaining conflicting memories (Davis and Zhong 
2017; Reaume et al. 2011). In contrast, the excessively strong intrinsic spine dynamics found in 
ASD animals (Isshiki et al. 2014; Nagaoka et al. 2016; Pan et al. 2010) would work in the 
opposite manner, by facilitating forgetting. Namely, stable cell assemblies in our fmr1KO model, 
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typically require more neurons than the WT model to counter excess synaptic normalization. 
Hence, given a hypothesis that the number of total neurons is roughly the same between 
fmr 1KO and WT mice, fmr1 KO mice may afford a smaller number of cell assemblies in the 
brain, possibly reducing the number of behavioral repertoires.  
 
Overall, our spine dynamics model provides a novel path relating spine statistics, memory, and 
ASD. Notably, it is currently difficult to block intrinsic spine dynamics experimentally in vivo 
without affecting plasticity, because they are thought to be caused by the thermal agitation of 
molecules. This underscores the importance of a modeling study. Selective manipulations of 
intrinsic spine dynamics are an intriguing candidate direction to influence memory and learning, 
and the current model serves as a guide. 
 
 
Methods 
 
Network and neurons 
A local network of  excitatory and  inhibitory leaky-integrate-and-fire neurons (Fig. 1A;NE N I  
see e.g., (Tuckwell 1988)) is considered. We simulate a network with . The, ) 1000, 00)(NE N I = ( 2  
dynamics of membrane potential  of neuron  is described byV i i  

(t) V (t) ) (t) (t) (t )S (t )dt (t)I (t)τm dt
dV i =  − ( i − V 0 − Ai + Ri ∑

 

j,k
wij (k) ∫

t

−∞
f − t′ j ′ − Δij ′ + Ri i

ext  

with membrane time constant  ms, resting potential  mV, adaptation ,0τm = 2 0V 0 =  − 7 Ai  
refractory coefficient , th ( ), synaptic strength  from neuron  to neuron ,Ri k , , ..k = 1 2 . wij (k) j i  

spike train  of neuron  composed of th ( ) spike time , random(t) (t )Sj = ∑
 

n
δ − tj

(n) j n , , ..n = 1 2 . tj
(n)  

axonal delay  from neuron  to neuron  uniformly sampled from interval [0.5, 5.0] ms, andΔij j i  
external input  to neuron  (see below). Note that  is the Dirac delta function. The timeI i

ext i δ  
course of postsynaptic input is modeled using the alpha function (Gerstner et al. 2014), 

(t) 0mV (t)f = 2 · τ r
τ −τf r

(e )−t/τ f − e−t/τ r Θ  

with rise time  ms, fall time  ms, and the Heaviside step function  that takes.5τ r = 0 .0τ f = 2 (t)Θ  
1 for  and 0 for . The peak value of  is about 0.39 mV. A spike is emitted when t ≥ 0 t < 0 (t)f V i  
reaches a spiking threshold at  mV and then  is reset to . Excitatory neurons receive0− 5 V i V 0  
adaptation input  that reflects a slow Na +-activated K+ current (Wang et al. 2003) (Fig. 1B4),Ai  
with dynamics described by 

(t) .0017[20 mV (t)]S (t)dt
dAi =  − τA

A (t)i + 0 − Ai i   

with time constant  s. In contrast, we assume no adaptation ( ) in inhibitory3τA = 1 Ai = 0  
neurons. Refractoriness is imposed by .  is fixed at 0 after each spike of neuron  for 1 msRi Ri i  
(absolute refractoriness), and then recovers toward 1 following 

(t) (t)τR dt
dRi = 1 − Ri  
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with time constant  ms (relative refractoriness). The differential equations are.5τR = 3  
numerically solved using the Euler method with bin size  ms.t .1Δ = 0  
 
Network topology 
In the network model of Fig. 1A, excitatory neurons, , and inhibitory neurons, , are sparselyE I  
connected. The connections from excitatory to inhibitory neurons ( ) and those fromE → I  
inhibitory to excitatory neurons ( ) are randomly generated with 10% connectionI → E  
probability. Each of these directed connections is mediated by a single synapse, whose strength 
is randomly drawn from a uniform distribution in the range [0, 31] mV for  and [-31, 0] mVE → I  
for , respectively. According to our neuron model described above, a typical  orI → E E → I  

 synapse produces a postsynaptic potential of 6 mV. For simplicity, we assume no directI → E  
connections between inhibitory neurons. Excitatory neurons are equidistantly placed on a 
one-dimensional ring of circumference 1 a.u. that represents the feature space. Note that the 
tuning distance in feature space  does not necessarily correspond to the physical location ofdf s  
a neuron, or the distance between any two neurons. The potential connections from excitatory 
to excitatory neurons ( ) are randomly generated according to the Gaussian probabilityE → E  
profile ( , Fig. 1B1), which peaks at 10.4% for similarly tuned0.4% [− .5 d /0.1) ]1 * exp 0 * ( f s

2  
neurons , and decays toward 0 with a length-constant of 0.1 as  increases. Althoughd )( f s ≈ 0 df s  
this  peak connection probability is optimized for memory retention, simulation outcomesE → E  
are robust with this parameter in our model (see, Fig. 7, WT model). Effectively, this allows 
excitatory neurons closer in the feature space to be more interconnected, and those farther 
apart to be less so. If there is a potential connection from one neuron to another, we randomly 
assign a fixed number  of spines from a Poisson distributionK K , , 0)( = 1 2 · · · , 1  

 with parameter  (Fig. 1B2).λ /K!)/ (λ /K !)( K ∑
10

K =1′

K ′ ′ λ = 3  

 
Stimulation 
In addition to the recurrent input, neuron  also receives spike train  as external inputi (t )Si

ext ′  
(dashed connection in Fig. 1A). At baseline,  is generated by a Poisson process with(t )Si

ext ′  
firing intensity 60 Hz. Input neurons are not modeled explicitly here. The external input to each 

neuron is given by . This sets the baseline membrane potential and(t) (t )S (t )dtI i
ext = ∫

t

−∞
f − t′ i

ext ′ ′  

firing rate of neurons to -58.6 ± 2.4 mV and 0.13 ± 0.08 Hz, respectively.  
 
We divide the feature space of excitatory neurons into 4 equally-sized consecutive parts and 
randomly select 40% of the neurons from each part as a stimulated neuron group (Fig. 1A). 
During the learning period (indicated by blue horizontal bars below the time axes in Figs. 2, 3, 
and 6), one of the 4 stimulated neuron groups is randomly selected with probability ¼ and 
receives additional Poisson spikes at 750 Hz for 3 s. During the learning period, all inhibitory 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 21, 2019. ; https://doi.org/10.1101/525980doi: bioRxiv preprint 

https://doi.org/10.1101/525980
http://creativecommons.org/licenses/by-nc-nd/4.0/


neurons also receive additional Poisson spikes at 300 Hz. The learning period starts at t = 0  
and ends when at least one group's mean intra-group spine volume reaches µm3..49≥ 0   
  
Spine dynamics 
Unlike  and  synapses, which have fixed weights,  synapses (orange andE → I I → E E → E  
brown dashed in Fig. 1A) change in time via two independent mechanisms: STDP and intrinsic 
spine dynamics. We assume that synaptic strengths for  synapses are essentiallyE → E  
proportional to their spine volumes and therefore model their spine volume dynamics as 
changes in synaptic strengths. Changes in the th  spine volume  onk k , , .., )( = 1 2 . K ij vij (k)  
neuron , receiving signal from neuron , is modeled byi j   

(t) a (v (t) ) (αv (t) )ξ(t)  dt
dvij

(k)

= T S (t)S (t) S (t)S (t)( i
ˉ
j − vLTD

v (t)ij
(k)

j
ˉ
i )Θ ij

(k) − vθ + √T ij
(k) + β   

where the first and second terms on the right hand side describe changes by multiplicative 
STDP (van Rossum et al. 2000) and intrinsic spine dynamics (Yasumatsu et al. 2008) 
respectively. is a speed-up factor that we describe below, µm3 is the amplitude ofT .6 0a = 7 · 1 −9  
STDP,  is the running average of past spiking activity of neuron , i.e.,S̄i i  

(t) (t)dt
dS̄ i =  − S (t)ˉ

i
τ STDP

+ Si  

with averaging time constant  ms, and  µm3 is the scaling factor for0τ STDP = 2 .5vLTD = 0  
volume-dependent LTD (van Rossum et al. 2000). STDP is assumed to be absent for small 
spines of  µm3. Slope parameter  day-½ and offset parameter .02vij (k) < vθ = 0 .2α = 0 .01β = 0  
µm3 day-½ for intrinsic spine dynamics are set as previously experimentally observed 
(Yasumatsu et al. 2008).  is white noise with the autocorrelation function .ξ (t)ξ(t ) = (t )< ξ ′ > δ − t′  
The above Langevin equation is numerically solved by the Euler method with bin size t .1Δ = 0  
ms. In addition, we set reflecting boundaries for spine volume to enforce µm3 for.00 ≤ vij (k) ≤ 1  
all spines. One problem is that it is too time consuming to directly simulate the 10-day learning 
period studied with the fine time resolution required to simulate STDP and intrinsic spine 
dynamics. We therefore run  times shorter simulations by speeding up both STDP.3 0T = 3 · 1 4  
and intrinsic spine dynamics by factors  and , respectively. (Note that volume changesT √T  

 by intrinsic spine dynamics are diffusive and scale with the square root of time(t t) (t)v + Δ − v  
duration .) This way, we can extrapolate spine volume changes happening during 10 days√Δt  
based on shorter simulations up to 3000 s. We display the time before this conversion in panels 
describing neural activity in seconds, but display the time after this conversion in panels 
describing learning in days. We initially set  spine volumes by randomly sampling fromE → E  
the equilibrium distribution  , which is set by the intrinsic spine dynamics.(v) αv )P ss ∝ ( + β −2  
Synaptic strength of a spine with volume  is then assumed to bew v   

43/μm )vw = ( 3  
for  (a functional spine) and 0 for  (a non-functional spine, e.g., filopodia). Thev ≥ vθ v < vθ  
median spine volume of  is 0.047 µm3 and such a spine produces 0.8 mV of excitatory(v)P ss  
postsynaptic potential. We set  to be a threshold volume typically used in experiments tovθ  
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detect spines (Yasumatsu et al. 2008). We define spine gain and loss by a fraction of spines 
passing this threshold from below and above per day, respectively. The exact value of  doesvθ  
not matter for our results as long as it is sufficiently small.  
 
Itô vs Stratonovich interpretation 
The meaning of fluctuation is different under the Itô and Stratonovich interpretations of intrinsic 
spine dynamics (Gardiner 1985). The intrinsic spine dynamics under the Itô interpretation that 
we study in the main text are described by 

(αv ) P (v, )∂t
∂P (v,t) = 2

1 ∂2

∂v2 + β 2 t  
In this view, changes in spine volume distribution are purely produced by the volume-dependent 
fluctuation with amplitude . In contrast, the Stratonovich interpretation represents thevα + β  
same equation in a different way: 

−  ∂t
∂P (v,t) = ∂

∂v − P (v, )[ 2
α(αv+β) t ] + 2

1 ∂
∂v (αv ){ + β ∂

∂v (αv )P (v, )[ + β t ]}  

In this view, changes in spine volume distribution are described by two terms: the first term is 
the drift term produced by apparent force  and the second term is produced by the(αv )/2α + β  
volume-dependent fluctuation . Hence, while the above two equations are identical, therevα + β  
is a semantic difference regarding what fluctuation means. According to the Itô interpretation, 
only the fluctuation drives spine volume changes and this fluctuation preserves mean spine 
volume (i.e., martingale (Øksendal 2000)) except for a boundary effect. According to the 
Stratonovich interpretation, the apparent force shrinks and the fluctuation enlarges mean spine 
volume respectively, and the two effects are cancelled. These two interpretations become the 
same in the special case of , namely, when the fluctuation is volume independent.α = 0  
 
Simulation environment 
Simulations were performed in custom written C code with the forward Euler-integration method 
and a step size of 0.1 ms. Post-simulation analysis was undertaken with MATLAB. Source code 
is available upon request. 
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Figure S1 
Network behavior in the presence of intrinsic spine dynamics, similar to Fig 3, but with 1 day 
blockade of neural activity during the maintenance period. The activity blockade does not 
change the results. (A-H) Conventions are as in Fig. 3. 

 
 

 
Figure S2 
Description of different mechanisms in the model. (A) With inhibition, adaptation, and axonal 
delays all functioning, the network retains all cell assemblies where each assembly is rehearsed 
for several seconds during spontaneous activity. (B) When the inhibitory neurons are removed 
all excitatory neurons continuously fire a saturated rate >150 Hz. (C) When adaptation is 
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removed from excitatory neurons, only one assembly dominates. (D) When axonal delays are 
removed, the four memories are somewhat maintained, albeit with very fast noisy switching and 
a much lower firing rate. The removal of a mechanism was done after learning and at the onset 
of  the maintenance period, with all other mechanisms, including STDP and intrinsic spine 
dynamics, functionally preserved. 

 
 
 

Figure S3 
Systematic exploration of intrinsic spine dynamics’ parameters  and . (A) The 3rd quantile ofα β  
the equilibrium spine volume distribution is shown in color as a function of  and . The entireα β  
distribution roughly scales with the ratio  as expected based on the theoretical consideration./βα  
The blue solid line (and dashed lines) indicates the experimentally observed 3rd quantile (and 
±10% range). (B) Spine turnover is shown in color as a function of parameters  and .α β  
Increases in either  or  result in increases in spine turnover. The two solid black lines (andα β  
dashed lines) indicate experimentally observed spine turnover for WT and fmr1KO animals (and 
±10% range). We therefore used the two parameter combinations of  and at the cross pointsα β  
of the black and blue solid lines in our WT and fmr1KO models. 
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