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ABSTRACT 

 

Feedback mechanisms play a critical role in the maintenance of cell homeostasis in the presence 

of disturbances and uncertainties. Motivated by the need to tune the dynamics and improve the 

robustness of synthetic gene circuits, biological engineers have proposed various designs that 
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mimic natural molecular feedback control mechanisms. However, practical and predictable 

implementations have proved challenging because of the complexity of synthesis and analysis of 

complex biomolecular networks. Here, we analyze and experimentally validate a first synthetic 

biomolecular controller executed in vitro. The controller is based on the interaction between a 

sigma and an anti-sigma factor, which ensures that gene expression tracks an externally imposed 

reference level, and achieves this goal even in the presence of disturbances. Our design relies 

upon an analog of the well-known principle of integral feedback in control theory. We 

implement the controller in an Escherichia coli cell-free transcription-translation (TXTL) 

system, a platform that allows rapid prototyping and implementation. Modeling and theory guide 

experimental implementation of the controller with well-defined operational predictability. 

 

INTRODUCTION 

 

Robustness against perturbations and uncertainties is fundamental to biological systems that 

continuously sense and respond to their environment. At the cellular level, it is often desired to 

maintain precise control over a variety of molecular components and pathways to achieve 

complex behaviors that require the interaction of intracellular or extracellular biomolecules.1,2 

This is often achieved by tightly regulating gene expression in such a way that it follows a 

desired set point independent of exogenous or endogenous disturbances. Feedback is a 

mechanism that enables organisms to achieve reliable and robust functionality.3-7 Feedback 

mechanisms underlie homeostasis, a phenomenon in which physiological variables are 

continuously monitored and adjusted so as to maintain a desired equilibrium value which is 

defined by a set point (also known as a reference signal), in the presence of biological noise that 
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may perturb the natural state of the system.8-10  

 

Reference tracking in the presence of disturbances, a classical objective in electrical and 

mechanical systems, is often solved by incorporating integral feedback to control a process (also 

known as a plant).11 In such a scheme, one wants a variable of interest (called the output) to track 

a signal (called the reference). This is achieved by incorporating in the controller the 

mathematical integration of the difference between the reference and the output (the error 

signal). The “internal model principle” in control theory states, in essence, that the existence of 

an integrator in the control loop is necessary for the tight regulation of the concentration of an 

output species in the presence of disturbances or stimuli.12 Inspired by these ideas from 

engineering and control theory, there have been several recent designs13-16 and 

implementations17-18 of biomolecular integral feedback controllers. These implementations are 

not completely satisfactory in that it is very difficult to make quantitative predictive models of 

their behaviors, in large part due to the biological noise which is found in cellular systems, which 

makes it hard to achieve precise control over model parameters, thereby complicating the design 

and feasibility of the system.19-21 Plasmid copy number is also limited by the origin of 

replication, decreasing the adjustability of experiments.22  

 

In this work, we exploit the versatility of an all E. coli TXTL platform to prototype a biological 

controller circuit. TXTL reactions contain the native transcription, translation, and metabolic 

machineries23,24 required to achieve gene expression over at least ten hours. As opposed to a 

living host, in a TXTL reaction one can precisely set the concentrations and stoichiometries of 

DNA parts, and thus finely tune gene circuits easily. TXTL reactions are typically performed at 
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the microliter scale or above, far from any biological noise, thus allowing flexibility in designing 

and optimizing the genetic network.25 Experimental disturbances, such as those perturbing the 

amount of DNA or other reaction components, can be carried out at any time. TXTL reactions 

are executed in high-throughput, facilitating the rapid characterization of dynamic circuits. By 

virtue of such advantages, several synthetic gene circuits have been implemented in TXTL with 

a successful modeling framework.26-29  

 

In this article, we constructed a synthetic biomolecular integral controller that precisely controls 

the expression of a target gene. Our strategy relies on a molecular sequestration reaction that 

enables error computation between the reference and the output signal while exploiting the 

natural interaction between the E. coli sigma factor σ28 and the anti-σ28, FlgM.30 We demonstrate 

that the output is linearly proportional to the input, in other words, it tracks the reference signal, 

and this happens for a large dynamic range of input only in the closed-loop configuration (when 

the sequestration reaction is active). We develop an ordinary differential equation (ODE) model 

and perform systematic TXTL experiments to parameterize and validate the model. We then 

successfully predict the controller response in various reaction conditions using the 

parameterized model. When disturbances are added, only the closed-loop controller enables the 

output to reject the disturbances. Our results demonstrate that our synthetic biomolecular 

controller is capable of regulating gene expression robustly in an E. coli TXTL toolbox. We 

anticipate that such an approach could be useful for diagnostics applications,31 for constructing 

dynamical systems in vitro32 or for programming synthetic cell systems.33,34  
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RESULTS 

 

Designing an integral feedback controller 

 

Our primary goal is to construct a genetic network which can accurately regulate the expression 

of a target gene in such a manner that the concentration of a desired (“output”) protein follows a 

“reference” or input signal linearly, for a large dynamic range of input values. The output should 

remain at the same concentration when an unknown disturbance affects the system. These 

desired characteristics of the network should be maintained independently of changes in 

reference or input values.  

 

In electrical and mechanical control systems, “integral feedback” controllers are routinely used 

in order to achieve reference tracking in the presence of perturbations and uncertainties. 

Motivated by this analogy, various possible designs of such controllers have been discussed 

substantially in the context of biological systems.13-16, 26 The present work is inspired by our 

previous work,26 in which we introduced a computational design based on RNA based 

controllers; no experimental validation was provided. Here, we start from that design, modifying 

it to allow for direct genetic regulation and provide an experimental validation. In this approach, 

the goal of the controller is to ensure that the intermediate output Z follows the reference signal, 

which is a scaled value of input PX (Fig. 1a). To determine the deviation of the output from the 

reference signal, a comparison between both is required without affecting their activity. For that, 

PX and Z are sensed internally using biochemical reactions such that X and Y represent the input 

signal and the output signal, respectively. When the output is smaller than the reference signal, 
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the error signal XFREE (X-Y) is detected, and this signal is used in order to correct deviations of 

the output from the reference signal. For a case when the output is larger than the reference 

signal, free Y sequesters X to reduce the output. One of the key reasons that this controller is 

able to improve substantially upon that in26 is that it implements an effective error computation 

through protein interactions; in contrast, RNA-based designs suffer from the fact that RNAs 

degrade much faster than proteins, making an effective error computation very hard to 

implement experimentally.35 In contrast, the degradation of the proteins used in this work can be 

ignored.  

 

Our biomolecular implementation of an integral feedback controller requires three genes: an 

input gene x, under the promoter PX, an output gene z, under the promoter PZtot (the target gene) 

and a proxy gene y, under the promoter PYtot for the target gene (Fig. 1b). Genes x, y and z 

encode for respective proteins X, Y, and Z. Note that x, y and z have the same concentrations and 

correspond to the same biochemical species as PX, PYtot and PZtot respectively. The protein X acts 

as a transcriptional activator for promoters PYtot and PZtot. For Y to truly represent Z, it is 

necessary that the same promoter must be used to express Y and Z, therefore PYtot and PZtot are 

identical. An error computation is achieved through a molecular sequestration between X and Y 

such that when X binds to Y or vice versa, both proteins become biologically inactive (a 

phenomenon, also known as annihilation).13 Only free X (XFREE, not bound to Y) can activate 

transcription. It is also required that the synthesis of Y and Z should be overall regulated by 

XFREE. For that, basal expression from the genes y and z should be negligible so that in the 

absence of XFREE, the production of Y and Z is negligible. Here and elsewhere, the term “closed-

loop configuration” means that the feedback is present through the sequestration reaction; 
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otherwise, when the feedback mechanism is not present, the controller is referred to as in the 

“open-loop configuration”. We establish that reference tracking is only possible in the closed-

loop case, where the output linearly depends on the concentration of PX (Fig. 1c). In the open-

loop case, the output depends nonlinearly on the concentration of PX and PZtot. Because the error 

signal (XFREE) is mathematically integrated over time in the closed-loop case, the output should 

be able to follow the reference signal even when disturbances are added to the plant (Fig. 1a and 

c).  

 

To test the controller experimentally in TXTL, we employed three plasmids (Fig. 1d): P70a-S28, 

expressing E. coli sigma factor 28 from a sigma 70 promoter; P28a-FlgM, expressing the anti-

sigma 28 (FlgM) from a σ28 promoter; and P28a-deGFP, expressing the reporter deGFP from a 

σ28 promoter. In the open-loop controller, FlgM is replaced by mSA (same protein size), which is 

not sequestered by σ28, nor does it directly interact with any reaction rates. Here and elsewhere, 

for simplification, σ28, FlgM and immature deGFP are denoted as X, Y and Z, while promoters 

P70a and P28a are denoted as PX and PYtot (same as PZtot) respectively, and the mSA control gene is 

denoted as yc and the respective promoter as PYCtot.  

 

 

The output tracks the input linearly in the closed-loop configuration 

 

Our first goal was to establish that when the controller operates in the closed loop configuration, 

the output follows linearly the changes in the concentration of input PX, thus tracking the 

reference signal. A nonlinear dependence of the output on PX would suggest otherwise. To test 
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this in TXTL reactions, we added 0.1-0.7 nM PX and 1 nM each of PZtot and either PYCtot for the 

open-loop operation (Fig 2a) or PYtot for the closed-loop operation (Fig 2b). In the open-loop 

case, we found that changes in the deGFP concentrations depend nonlinearly on the changes in 

the input concentration of PX (Fig. 2c), suggesting that the output is unable to track the reference 

signal over the tested range. In contrast, the closed-loop endpoint deGFP concentrations were 

linearly proportional to the concentration of PX (Fig.2d), suggesting reference tracking.  

 

The output of the closed-loop controller should be able to follow the changes in input signal 

linearly independent of the time when it is modified. To test this capability, we performed a step 

change in the input PX concentration during the course of the reaction. For that, we added 

different amounts of PX to TXTL reactions in the open-loop (Fig. 2e) and closed-loop (Fig. 2f) 

system after four hours of incubation with 1 nM each of PZtot and either PYCtot or PYtot, 

respectively. As mentioned earlier, we observed that the controller’s output follows linearly the 

input only when operated in the closed-loop configuration (Fig. 2g and h). Note that the deGFP 

produced in the closed-loop configuration is much smaller than that produced in the open-loop 

configuration because the activator needed to express the deGFP is sequestered. As a control, we 

also tested that changes in the concentration of PYCtot have no effect on the output (Fig. S1), 

confirming that the different version of Y that is expressed by yc gene does not interact with X. 

We also found that in the absence of PX, deGFP is not produced (Fig. S2), confirming that the 

production of Y and Z are completely governed by X through the activation reaction.  

 

These experimental observations agree with the expected controller operation. When X is larger 

than Y, (i.e. the output is lagging behind the reference), XFREE increases the production of Y and 
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Z. As more Y is available in the reaction to sequester with X, X and Y converge to specific 

values that would allow Z to follow the reference signal. In the absence of the sequestration 

reaction, error computation is absent (no feedback) and so X directly regulates Z production 

without comparing with the reference signal.  

 

Mathematical model and parameterization 

 

To understand the controller operation, we developed a simple coarse-grained model that 

captures the dynamic response of the controller in both open and closed-loop configurations (Fig. 

3a). For that, we consider the synthesis of each protein as a two-step reaction: a transcription 

reaction for mRNA synthesis and then a translation reaction for the corresponding protein 

synthesis. The parameters α and β are transcription and translation rates, respectively. Here and 

elsewhere, subscripts to the parameters indicate the corresponding species. Each mRNA species 

(U, V and W) has a degradation rate denoted as δ while we ignore the protein degradation rate.35 

The parameter κ is the sequestration rate. Transcriptional activation is modeled as a one-step 

reaction, where X binds to the promoters PY and PZ separately at a rate of ω and dissociates at a 

rate of ν. In the activated state, these genes produce Y and Z proteins at an increased 

transcription rate, denoted as α+. Considering the mass-conservation, we assume that PYtot = PY + 

PY+ and PZtot = PZ + PZ+ at all times. An additional reaction is added into the model to account for 

the maturation of newly synthesized deGFP (Z) into a fluorescent deGFP (G),24,32 which is the 

read-out signal (Fig. 3a). Here onwards, fluorescent deGFP is referred as deGFP. From chemical 

reactions, we built an ODE model (shown in Fig. 3b) to determine the response of the controller 

over time.  
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An accurate representation of a system model requires determining specific parameter values at 

which the model quantitatively follows the system dynamics. However, parameter estimation can 

be nontrivial, as there can be multiple sets of parameter values that may vary by several orders of 

magnitude and could still fit the measured data. Therefore, to simplify the problem, we isolated 

the measured responses into two sets, in such a manner that we required fewer parameters to fit a 

particular set of experimental data. For this, we first found the model parameter values that 

provided the best fit to the measured open-loop response, since the number of parameters 

involved in the open loop case are less than in the closed-loop case (see Methods). We then used 

these parameter values to fit the closed-loop response while allowing only the remaining 

parameters to vary (see Methods). Moreover, we started the model fitting manually with an 

initial guess of parameters derived from the literature.23-29,35 Once we found the possible values 

that provide a qualitative agreement between the model and the measured response, we used an 

iterative least-squares fitting procedure to find a range of parameter values that gave us the best 

fit (see Methods). The means of the resulting parameters (Table 1) were then used along with the 

ODE model (Fig. 3b) to calculate the mean trajectories with 95% confidence intervals (Fig. 3c 

and d). Histograms of the input and estimated parameter distributions are shown in Fig. 3e.  

 

To cross-validate the parameterized model, we predicted the deGFP response for two different 

settings of input conditions. In the first setting, the concentration of PX was increased from 0 nM 

to 0.1-0.7 nM (in a step manner) after 2 hours of incubation in the presence of initial 0.7 nM of 

PYtot and PZtot each (Fig. 4a, 4b and Fig. S3). In the second setting, the concentration of PY was 

varied from 0.2 nM to 1 nM at the beginning of the reaction while keeping the initial 
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concentration of PX and PZ at 0.7 nM each (Fig. S4). In all the cases, the predicted responses 

followed the measured responses closely. 

 

Model simplification  

 

To get a better insight into the controller response, further simplification of the proposed model 

is required. Based on the extracted parameter values, we sought to minimize the number of 

variables in the model while still capturing the essential dynamics of the controller. From the 

extracted parameter values, we observed that the basal expression of y and z genes is almost 

negligible; therefore we set αV and αW to zero in the simplified model. As the transcriptional 

activation reaction is much faster than the other reactions involved in the reaction network, we 

used a quasi-steady state approximation to replace the ODEs of PY+ and PZ+ by their steady-state 

expressions (see SI Note 1). As the transcription reaction is much faster than the translation 

reaction, a similar approximation was used to model the synthesis of X and Z using single 

reactions for each, while keeping the two-step synthesis of Y to ensure that we consider an 

appropriate delay in the overall system dynamics. This leads to a simplified model (shown in Fig 

4c), which can produce dynamic response similar to that of the original model (Fig. 4d, e, and 

Fig. S5).  

 

We can now use the simplified model to determine analytically how the output depends on the 

reaction parameters and the input. In our implementation of the controller, the reporter protein 

deGFP (G) has no degradation tag, consequently we cannot observe a steady state behavior in the 

measured response. However, a linear dependence of the time derivative of G on Z (see Fig. 4c), 
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suggests that when Z reaches a steady-state, G should increase at a constant rate over time (see 

Fig. S6). To determine this constant rate, we first used the simplified model to determine the 

steady state value of Z (see SI Note S1) and then we calculated the analytical solution of G over 

time, as shown in Fig. 4f. The output G increases at a constant rate that is the scaled value of the 

input PX and used as a reference signal. 

 

Note that because of the quasi-steady state approximation (see SI Note S1), the analytical 

solution can only be used to determine the closed-loop controller response when all other 

reactions reached a steady-state. We then used the extracted parameters to calculate this constant 

rate and found that it closely matches the observed response shown in Fig. 2d, confirming that 

the controller output tracks the reference signal in the closed-loop configuration. Further insight 

into the controller operation can be gained by analyzing the simplified model to determine how 

the error signal is processed in the closed loop configuration of the controller. The analytical 

equation of XFREE clearly shows that the error signal (which is X-Y) is integrated mathematically 

by the controller (see SI Note S1).  

 

 

Closed loop control enables disturbance rejection 

 

One of the main theoretical advantages of integral feedback controllers is their ability to 

minimize the effect on the output of disturbances on the system.9 This is due to the effective 

error computation with an integral operation that allows the controller to maintain the desired 

output even when a disturbance affects the system. In the aforementioned section, we showed 
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that the implemented controller can be interpreted as an integral feedback mechanism (see SI 

Note S1). Therefore, we expect that the closed-loop system is able to reject disturbances in an 

appropriate sense. To test this, we introduced disturbances in the concentration of the 

biochemical species PYtot and PZtot. In practical settings, variation in the DNA concentration is 

one of the most biologically relevant parameters. This is because in vivo gene concentration can 

vary significantly due to fluctuations in plasmid copy number,36 and several designs have been 

proposed in order to ameliorate the effect of copy number variation.37,38 Notably, the TXTL 

reaction platform allows us to design such an experiment, where DNA template concentrations 

can be changed at any time during the course of a reaction due to the TXTL reaction settings. 

 

In this design, the reference signal is independent of the amount of y and z genes (in Fig. 4f) so 

that any disturbances in these species should not perturb the deGFP response when the controller 

is operating in the closed-loop configuration. To test this, we first used the ODE model (Fig. 3b) 

to predict the controller response in the open-loop and closed-loop configurations where the 

concentrations of PYtot and PZtot were varied from 0.2 to 0.7 nM, keeping a fixed 0.2 nM initial 

concentration of PX. We observed a less than 10% variation in the deGFP response for the 

closed-loop case, compared to over 300% variation in the open-loop case (Fig. S7). In the 

closed-loop operation, an increase in PYtot increases the amount of Y, but as more Y is available 

to sequester X, less XFREE is available to activate the production of Y and Z. Even though PZtot 

was increased, XFREE is reduced such that the reporter protein (G) remains the same, 

independently of the amount of PZtot (Fig. S8). For the open loop case, as there is no feedback, an 

increase in PZtot significantly increases the production of G (Fig. S9).  
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Encouraged by these results, we experimentally tested the same conditions in TXTL reactions. 

We added 0.2 nM PX and increasing concentrations of PYtot = PZtot, from 0.2 nM to 0.7 nM to 

reactions, and tracked the deGFP output over time for the open-loop (Fig 5a) and the closed-loop 

(Fig 5b) configurations. In the open-loop case, the output signal increased with the increasing 

concentration of PYCtot = PZtot due to the lack of feedback (Fig 5c). However, in the closed-loop 

case, the output signal was independent of the increasing PYtot = PZtot, thus confirming that the 

controller rejected the disturbance in their concentrations (Fig 5d), as predicted by integral 

feedback theory 

 

Similarly to reference tracking, rejection of disturbances should be independent of the way that 

the disturbance is introduced in the system. To test this, we characterized the controller response 

to a step change in the concentrations of PYtot and PZtot as disturbances. We started the reaction 

with PX, PYCtot and PZtot concentrations each set to 0.2 nM, and after four hours of incubation, 

additional PYCtot and PZtot were added (see Methods) (Fig. 5e). For the closed-loop case, instead 

of PYCtot, PYtot was added in the same amounts (Fig. 5f). The output was not perturbed in the 

presence of the disturbances (Fig. 5g,h) only in the closed-loop case, as expected based on our 

understanding of the controller. We also tested the controller’s response for a wide range of 

disturbances when different initial concentrations of DNA were used, and the disturbance was 

added in different amounts (See Fig. S10, S11). In each case, we found a similar robust 

controller response in the closed-loop settings. 
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DISCUSSION 

 

In this work, we constructed a synthetic biomolecular integral controller circuit for effective and 

robust control of gene expression. We demonstrated that in the closed-loop configuration, the 

output followed the input signal linearly over a wide range of conditions, even under step 

changes in input. By harnessing the natural interaction between the sigma factor σ28 and the anti-

σ28, FlgM, a strong sequestration reaction is realized that allowed an effective computation of the 

error between the reference and the output signal. This error signal is then integrated 

mathematically. Because of this, and as predicted by theory, the closed-loop controller output 

rejects the disturbances introduced in the DNA concentration. In contrast, the open-loop 

controller is unable to reject the disturbances, as noticed by the large variations of the output 

signal. This illustrates the advantage of closed-loop architectures, where an error computation is 

employed. 

 

Mathematical models play an important role in understanding complex synthetic networks. They 

provide insight into the operation of networks, and serve to guide experimentation. Here, we 

developed an ODE model for the integral controller that quantitatively explains the transient as 

well as the steady-state behavior of all the species involved in the system. We were able to obtain 

an effective model parameterization, by isolating parameters for each set of experimental data 

before finding their optimum values to achieve the best fit. Even though the presented model is a 

coarse-grained mechanistic model, it enabled us to explain the measured response of the 

controller, and can also predict dynamic trajectories for a wide range of operating conditions 

accurately. Based on the extracted parameter values, we derived a simplified version of the 
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original model that is as effective as the original model and can be used for further theoretical 

analysis in order to gain deeper insight into the operation of the controller.  

 

We have limited the model to the measured dynamic trajectories for up to 10 hours. 

Experimentally, after 10 hours, we observed effects of resource limitations (Fig. S12). We 

assume that the TXTL reactions have an unlimited source of energy for the first 10 hours in the 

range of plasmid concentrations used. After this point, we start to see a decrease of transcription 

and translation rates consistent with the depletion of energy resources and biochemical changes 

such as pH drop.24 The current ODE model assumes an unlimited energy source and therefore 

ignores the experimental results when that assumption no longer holds. Future work could 

incorporate resource competition and depletion. Because the controller was implemented in a 

TXTL reaction platform at the scale of a few microliters, a deterministic model was used while 

ignoring the biological noise. For in vivo applications, it may be desirable to extend the 

deterministic model to a stochastic model to consider intrinsic the biological noise.36  

We used a molecular sequestration reaction to realize the error computation. This strategy has 

been used previously to design closed-loop biomolecular controllers for reference tracking and 

disturbance rejection.13-18 Although our design is a variation of those in,13, 26 it differs from them 

in substantial ways in its biological instantiation. Our results are unique in the sense that we have 

a well-characterized controller that is realized in all E. coli TXTL system, where biological noise 

is negligible compared to in vivo implementations. In the latter, biological noise plays a 

dominant role in governing the system dynamics.18 Because of this, we can not only precisely 

regulate gene expression, but can also accurately predict the dynamic response of the integral 

controller. Our controller design, which uses a genetic network, can also be easily tailored to 
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regulate any other gene of interest such as those involved in controlling metabolic rates, a task 

which might not be feasible using a post-transcriptional based controller.13 We also demonstrate 

disturbance rejection capabilities of our controller when a constant or a step disturbance is added 

to DNA concentration (PYtot and PZtot); disturbances in DNA concentration are realistic because 

they typically arise in in vivo or in vitro genetic networks. Such experiments are not feasible 

using an in vivo reaction platform, thereby limiting the usage of the controller in rapid 

prototyping and implementation.  

 

Notably, for the current architecture, disturbance rejection is only possible when perturbations do 

not directly influence the parameters involved in governing the steady-state response of the 

reporter protein (shown in Fig. 4f). It is also important to note that the closed-loop controller can 

only reject the disturbance provided that the genes y and z are at the same concentration and that 

the added disturbance to both is the same, ensuring that at any time during the reaction it holds 

that PYtot = PZtot. To achieve this operating condition in vivo, Y and Z could be expressed on the 

same operon, controlled by a single promoter. Finally, in this work, we demonstrated that the 

closed-loop controller can robustly control single gene expression of the deGFP fluorescent 

reporter protein taken as a model process to be controlled. However, we anticipate that the 

controller design could be extended to tightly regulate multiple genes that encode other 

biologically relevant proteins simultaneously or could be employed within a complex network 

system where multiple processes required tight regulation to improve robustness and 

performance of the network. 
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Molecular controllers capable of robust gene regulation are needed in synthetic biology in order 

to implement more complex circuit networks. The well-characterized and rationally implemented 

synthetic integral feedback controller we presented here is capable of addressing these challenges 

to advance biological engineering, and could lead to the development of powerful, synthetic 

network systems capable of achieving complexity similar to that found at the cellular level, to 

develop cell-free applications such as calibrated biomanufacturing or programming synthetic 

cells for specific tasks. 

 

 

 

METHODS 

 

Mathematical modeling and parameter estimation  

The simulated response of the controller was determined by numerically integrating ODE models 

(Fig. 3b) using MATLAB ode23s solver unless otherwise specified. Initial conditions for each 

molecular species are described in the figure captions, and the values of reaction parameters are 

shown in Table 1. For the cases where there is a step change in the DNA concentration over the 

course of the reaction, similar settings were used to determine the model response numerically.  

 

For parameter estimation, first we found initial guesses of parameter values that qualitatively 

agreed with the measured open-loop response. We then randomly sampled a set of input 

parameters from a uniform distribution within a bounded interval (upper and lower bounds of 

15% each) centered around the initial guess values. This input set of parameters was then 
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optimized to minimize the error between the model and measured open-loop responses for all 

five trajectories (shown in Fig. 3c). To find the best fit, the least squares error between the model 

and the measured response was minimized using the MATLAB fmincon function. During the 

fitting, each input parameter was allowed to vary from 0.1 to 10 times with respect to the input 

value. Further constraints were placed on some parameters so that they lie within a feasible 

range. For example, the activated transcriptional rate must be several orders of magnitude larger 

than the basal expression (αV+>>αV and αZ+>>αZ) and the transcriptional rates of the x gene and 

activated y and z genes should be in the same order (αX≈αY+≈αZ+) (See SI Table S1). Because in 

the open-loop case, a modified version of y gene (denoted as yc) is expressed from the promoter 

PYtot and cannot sequester with X, parameters αV, αV+, δV, αY, κ and PYtot were set to zero. Once 

we found the optimum set of parameter values that provided the best fit for the open-loop 

response, these parameter values were then fixed during fitting all five trajectories of the closed-

loop response (shown in Fig. 3d) while varying only αV, αV+, δV, αY and κ. This resulted in a set 

of 15 parameters that fit both open and closed-loop responses (Fig. 3c and d, respectively). The 

fitting process was repeated 1000 times, which gave a range for the 16 parameters (Fig. 3e) with 

95% confidence interval.  

 

TXTL Preparation and Reactions 

The all E. coli cell-free TXTL extract was prepared from BL21 Rosetta 2 from Novagen, as 

described previously.23,24 The TXTL system is commercially available as the product 

“myTXTL” from Arbor Biosciences. TXTL reactions are composed of 1/3 volume cell lysate, 

with the remaining 2/3 volume containing plasmids, amino acids, and reaction buffers. All TXTL 

reactions contained 50 mM HEPES pH 8, 1.5 mM ATP and GTP, 0.9 mM CTP and UTP, 0.2 
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mg/mL tRNA, 0.26 mM coenzyme A, 0.33 mM NAD, 0.75 mM cAMP, 0.068 mM folinic acid, 

1 mM spermidine, 30 mM 3-PGA, 1.5% PEG8000, 30 mM maltodextrin, 3 mM each of 20 

amino acids, 90 mM K-glutamate, and 4 mM Mg-glutamate. TXTL reactions were assembled 

using the Labcyte Echo 550 liquid handler, to volumes of 2 µl in a 96-well V-bottom plate 

(Corning Costar 3357 with caps Costar 3080) and incubated at 29°C.  

 

DNA 

Plasmids were constructed using standard cloning techniques. Each plasmid contains the 

untranslated region UTR1, and either the σ70 promoter P70a or the σ28 promoter P28a, all 

described previously.23,24,35 For experiments with step changes in the concentration of DNA, the 

TXTL reactions were assembled in the same manner, using the Labcyte Echo 550, and incubated 

in a plate reader at 29°C. Reactions were then taken out of the plate reader, and the additional 

DNA was added to the reaction using the Labcyte Echo 550. The well plate was then 

immediately returned to the plate reader. The total time that the well plate was out of the reader 

and at room temperature was less than two minutes. The step-change of DNA added to the 

reactions diluted the TXTL reaction by less than 5%. Plasmid sequences can be found in the 

Supplementary Note S2. 

 

TXTL Time-Course Fluorescence Measurements 

Fluorescence kinetics were performed using the reporter protein deGFP, a truncated version of 

eGFP that is more translatable in the TXTL system (25.4 kDa, 1 mg/mL = 39.38 µM).23 

Measurements were carried out on Synergy H1 and Neo2 (Biotek Instruments) plate readers, 

using an excitation of 485 nm and emission of 525 nm, measuring every 3 minutes. To quantify 
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the concentration of deGFP on the plate readers, a standard curve of intensity vs. deGFP 

concentration was made using recombinant eGFP (Cell Biolabs Inc.).35 All reactions were 

performed in at least triplicate. 
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Table 1: Estimated model parameters obtained from the least squares fitting for the ODE model 

shown in Fig. 3b. Note for the open-loop response αV, αV+, δV, αY, κ and PYtot were set to zero. 

The error values were determined using the standard error of the mean. N=1000.  

 

Parameters Values   Error Units 
aU 0.60 ± 0.0031 s-1 
aV 2.75×10-5 ± 5.19×10-7 s-1 
aV+ 0.51 ± 0.0034 s-1 
aW 3.68×10-7 ± 2.90×10-9 s-1 
aW+ 0.78 ± 0.0005 s-1 
dU 0.00501 ± 2.43×10-5 s-1 
dV 0.00026 ± 2.00×10-6 s-1 
dW 0.00109 ± 1.23×10-6 s-1 
bX 0.00045 ± 4.64×10-6 s-1 
bY 0.00183 ± 1.10×10-5 s-1 
bZ 0.00098 ± 8.94×10-7 s-1 
k 8.99×10+4 ± 3.22×10+2 M-1 s-1 
w 8.02×10+5 ± 2.19×10+3 M-1 s-1 
n 1.54 ± 0.03 s-1 
ϒG 1.95×10-3 ± 7.88×10-6 s-1 
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Figure 1. The synthetic biological integral controller. (a) Block diagram of a typical closed-

loop controller. (b) Design of the synthetic biological integral controller. The reference is set by 

the input DNA PX and the intermediate output Z is measured through Y. Error computation is 

achieved through a molecular sequestration reaction between X (which tracks the reference 

signal PX) and Y (which acts as a proxy for the output Z). Here the red-color cross represents the 

open-loop configuration of the controller where the feedback signal Y is absent. XFREE is a 

transcriptional activator that regulates the expression of output Z and Y simultaneously. (c) In 

the closed-loop configuration, the error signal (XFREE) is the difference between X and Y. To 

produce an output that is independent of the disturbances in PYtot and PZtot, the error signal is 

mathematically integrated by the controller. Here 𝑉 is the steady state value of V (See SI Note 
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S1). In the absence of the feedback (which is the open-loop configuration) the output depends 

nonlinearly on PX and PZtot such that any disturbance in PZtot may perturb the output. (d) 

Experimental implementation of the integral controller. Three plasmids are used, P70a-S28, 

expressing the E. coli sigma factor 28 from a sigma 70 promoter, P28-FlgM, expressing the anti-

sigma 28 (FlgM) from a sigma 28 promoter, and P28a-deGFP, expressing the reporter deGFP 

from a sigma 28 promoter. In the open-loop controller, instead of FlgM, mSA is expressed, 

which is not sequestered by sigma 28, nor does it directly interact with any reaction rates. For 

simplification σ28, FlgM and immature deGFP are denoted as X, Y and Z while promoters P70a 

and P28a are denoted as PX and PZtot (same as PYtot) respectively. (e) Overview of the E. coli cell-

free toolbox for prototyping and executing parts and circuits in vitro. 
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Figure 2. The output tracks the input signal linearly in the closed-loop configuration. (a,b) 

TXTL measurement of the response of the integral controller in the (a) open-loop and (b) closed-

loop configurations at different initial concentrations of PX (0.1 - 0.7 nM) while initial PYtot and 

PZtot were both 1 nM each. (c,d) Summary of the measured deGFP response of the controller at 

10 hours respectively. To disable the feedback in the open-loop case PYtot was replaced by PYCtot, 

which expresses a protein that cannot sequester with X. (c-d) Measured response for a step 

change in PX. PX was increased from 0 nM to different concentrations (0.1-0.7 nM) after 4 hours 

of the reaction in the presence of initial 1 nM of PYtot and PZtot each. (g,h) Summary of the 

measured deGFP response of the controller at 10 hours respectively. Error are shown in the 
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shaded region and were determined using the standard error of the mean of three or more repeats. 

A two-degree polynomial was used to fit the measured deGFP endpoints for (c,g) the open-loop 

case while a linear regression with zero intercept was used to fit the closed-loop response where 

slope (d) m=0.0108 and (h) m=0.008. A calibration factor was used to convert the measured 

deGFP fluorescent signal into the concentration. 
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Figure 3. Schematic of the model parametrization process and validation of the model. (a) Detailed 

reaction network of the controller and the corresponding (b) ODE model. Here U, V and W are the 

translationally initiated mRNA of the X, Y and Z proteins respectively. The additional reaction was 

added into the model to consider the maturation of immature deGFP into a fluorescent deGFP (G). 

Details on how the PYtot and PZtot promoter switch from the inactive (PY, PZ) to active (PY+, PZ+) states 

are shown alongside. (c-d) Comparing the measured deGFP response (solid lines) with the mean of the 

best-fitted simulation results (dashed lines) for the (c) open-loop and (d) closed-loop cases. ODE model 
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was used to calculate the controller response while initial concentrations of PYtot and PZtot were 1 nM 

each. Note for the open-loop response αV, αV+, δV, αY, κ and PYtot were set to zero. Least squares fitting 

was used to generate the best-fit model response at different initial guesses of the reaction parameters 

(see Methods). Experimentally observed error bars are shown in the shaded region while the mean 

simulated trajectories (dashed line) are shown here within 95% confidence intervals. N=1000. Error bars 

are from the SEM of at least three repeats. (e) Histograms of the initial guesses and estimated 

parameters were obtained from 1000 samples that gave the lowest fitting error (see Methods).  
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Figure 4. Model simplification and predicting the controller response. (a-b) Predicting the (a) 

open-loop and (b) closed-loop controller response for a step change in PX. PX was increased from 0 nM 

to different concentrations (0.1-0.7 nM) after 2 hours of incubation in the presence of initial 0.7 nM of 

PYtot and PZtot each. The ODE model shown in Fig. 3b was used to determine the response with 

parameters shown in Table 1. (c) Simplified ODE model of the controller. (d) Comparing the 

simplified model response with the original model response for the (d) open and (e) closed-loop cases. 

(d) Analytical solution of the reporter protein deGFP over time that is defined as a reference signal. 

Using the parameters values shown in Table 1, constant rate (shown inside the brackets) was 

determined.  
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Figure 5. Closed-loop operation enables the controller to achieve robustness to disturbances on 

the system. (a,b) Measured deGFP response of the controller in the presence of disturbances in the 

concentration of PYtot and PZtot (0.2 – 0.7 nM) for the (a) open-loop and (b) closed-loop cases while 

initial PX was 0.2 nM. (c,d) Summary of the measured deGFP response of the controller at 10 hours 

respectively. To disable the feedback in the open-loop case PYtot was replaced by PYCtot, which 

expresses a protein that cannot sequester with X. (e,f) Measured response of the controller when the 

disturbance in PYtot and PZtot was added in a step manner. Additional PYtot and PZtot were added (0.1-0.5 

nM) after 4 hours of the reaction in the presence of initial 0.2 nM of PX, PYtot and PZtot each. (g,h) 

Summary of the measured deGFP response of the controller at 10 hours respectively. The error bars 
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are shown in the shaded region and were determined using the standard error of the mean of three or 

more repeats. The predicted response for each case was determined using the ODE model shown in 

Fig. 3b with parameters shown in Table 1. 
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