
1 

 

Distinct role of flexible and stable encoding in sequential working memory 1 

 2 

Hyeonsu Lee1, Woochul Choi1,2, Youngjin Park1 and Se-Bum Paik1,2 * 3 

1Department of Bio and Brain Engineering, 2Program of Brain and Cognitive Engineering, 4 

Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea 5 

*email: sbpaik@kaist.ac.kr 6 

 7 

Abstract 8 

The serial-position effect in working memory is considered important for studying how a 9 

sequence of sensory information can be retained and manipulated simultaneously in neural 10 

memory circuits. Here, via a precise analysis of the primacy and recency effects in human 11 

psychophysical experiments, we propose that stable and flexible coding take distinct roles of 12 

retaining and updating information in working memory, and that their combination induces 13 

serial-position effects spontaneously. We found that stable encoding retains memory to 14 

induce the primacy effect, while flexible encoding used for learning new inputs induces the 15 

recency effect. A model simulation based on human data, confirmed that a neural network 16 

with both flexible and stable synapses could reproduce the major characteristics of serial-17 

position effects. Our new prediction, that the control of resource allocation by flexible-stable 18 

coding balance can modulate memory performance in sequence-specific manner, was 19 

supported by pre-cued memory performance data in humans. 20 

 21 

Introduction 22 

The brain receives various types of sensory information from the external environment and 23 

encodes them as a form of working memory1–4. This enables short-term storage of received 24 

information and manipulation of it at the same time, which is crucial to cognitive processes 25 

such as visual and auditory perception of sequential information5–7.  26 

Early studies reported that the capacity of working memory is limited3,7,8. Conceptual 27 

models suggested that working memory has a fixed number of slots, such as Miller’s magical 28 

number seven9 or Cowan’s number four10. More recently, psychophysical observations of 29 

working memory in multi-item tasks revealed that human working memory can be better 30 
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described by the resource model where a limited memory resource is flexibly allocated to the 31 

information of each item so that the amount of allocated resource determines the memory 32 

resolution3,11–14. However, these conceptual models simply describe a relationship between 33 

memory performance and resource allocation, but do not account for the underlying principle 34 

of memory resource allocation that enables retaining and updating information in working 35 

memory. 36 

One important observation in the sequential working memory task is that performance 37 

for each item varies by the order of presentation, referred to as the serial-position effect5,15–38 

20. The performance curves of subjects typically appear U-shaped in consequence, because 39 

most subjects better memorize items presented first and last in the sequence than the others 40 

in the middle. These are often referred to as the primacy17,18,21 and recency effects5,17,18,21, 41 

respectively, and are considered to reflect a key mechanism of how neural resource is utilized, 42 

specifically in sequential memory coding. 43 

Various models have been proposed to explain the underlying mechanism of this 44 

serial-position effect18–20, but a complete accounting of the observed results has not yet been 45 

achieved. For instance, one model suggested that the serial-position effects arise from the 46 

processes of temporal decay and restoration of memory22,23, but other studies claimed that a 47 

variation of retention time alone could not regenerate the observed profile of memory 48 

performance5,24. Similarly, another model suggested that the recency effect is explained by 49 

assuming a specific type of resource reallocation to recent items3,5, but the primacy effect 50 

could not be addressed together in this model. It also has been suggested that the primacy 51 

and recency effects could arise from declining encoding strength accompanied by response 52 

suppression during memory recall24,25, but the neural mechanism of this conceptual memory 53 

processes is not yet fully understood. 54 

Here, we propose that the serial-position effect arises from two distinct types of neural 55 

encoding that are indispensable for working memory function. Stable encoding of information 56 

allows retaining of previous memory and results in the primacy effect; while flexible encoding 57 

enables update of recent memory and results in the recency effect. Our results not only 58 

explain the origin of the serial-position effects, but also suggest that coexistence of flexible 59 

and stable coding is required to form working memory. 60 

First, we performed a human psychophysical experiment and precisely investigated 61 
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the serial-position effect. Based on the quantitative analysis of order-dependent memory 62 

performance, we suspected that the primacy and the recency effect could arise from two 63 

different mechanisms. With a model neural network simulation of controlled synaptic plasticity, 64 

we found that stable synapses could retain old information, while flexible synapses could 65 

encode new information. Taken together, we could reproduce the observed serial-position 66 

effect by balancing the contribution of flexible and stable synapses in a model neural network. 67 

Our model also predicted that modulation of the flexible/stable synapse ratio would change 68 

the strength of the recency/primacy effects, and also modulate memory performance in an 69 

order-specific manner. Our prediction was validated by human psychophysical experiments, 70 

in which a pre-cue of stimulus information altered subjects’ performance order- specifically 71 

as predicted. 72 

In summary, we propose that the serial-position effect of human sequential memory 73 

reflects distinct roles of flexible and stable neural encodings, and that this enables storage 74 

and instantaneous manipulation of information in working memory. 75 

 76 

Results 77 

Serial-position effects of sequential working memory 78 

To quantify the serial-position effects of sequential working memory, we designed a human 79 

psychophysical experiment using non-semantic visual patterns of smoothed white noises to 80 

minimize any correlation between items (see Methods for details). Subjects were asked to 81 

memorize visual patterns presented sequentially and to recall the memorized sequence freely 82 

(Fig. 1a and Supplementary Fig. S1). As expected, a strong serial-position effect was 83 

observed in most subjects, in which memory performance for the first and last items in a 84 

sequence was higher than that for the other items (Fig. 1b and c).  85 

According to the resource model3,5,26, the amount of memory resource allocated to 86 

each item determines the performance (Fig. 1d). In this view, more resources need to be 87 

allocated to the first and last items to reproduce the serial-position effect in our observation. 88 

However, the U-shaped memory performance cannot be regenerated by assuming a simple 89 

form of resource allocation that monotonically increases or decreases. Instead, we 90 

hypothesized that the primacy and recency effects might arise from two distinct mechanisms 91 
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of resource allocation (Fig. 1e): one with increasing amount of resources by order, and the 92 

other with decreasing. We observed that the primacy effect was well fitted to an exponential 93 

function decreasing by order, while the recency effect was to an increasing one. This 94 

suggests that two distinct types of resource allocation model are required to reproduce a 95 

complete profile of the serial-position effect. 96 

In the primacy effect, decreasing performance suggests that the amount of resources 97 

allocated to each item decreases by order (Fig. 1f, left). This phenomenon can be explained 98 

if we introduce a scenario of “stable” coding of information, in which the resource used by an 99 

old item is very stable, so that it cannot be shared by a new item received. Then, an old item 100 

is better retained than a new one, the amount of resource decreases by order in this instance. 101 

On the other hand, increasing performance in the recency effect can arise from a “flexible” 102 

coding of information, in which the resource allocated to an old item can be readily overwritten 103 

by the information of a new item (Fig. 1f, right). Thus, old items are better retained than a new 104 

one in the stable coding scenario, while the memory of a previous item is degraded when a 105 

new item is memorized in the flexible coding scenario. Under these assumptions, we 106 

supposed that stable encoding would induce the primacy effect, while flexible encoding would 107 

induce the recency effect, and that the serial-position effect reflects a collaboration of the 108 

flexible and stable encodings in working memory. Thus, we modeled how memory resource 109 

is allocated under flexible and stable encoding schemes, by quantitatively analyzing the 110 

recency effect and primacy effect, respectively. 111 

 112 

Recency effect by flexible encoding 113 

To model the profile of resource allocation by flexible encoding, we first examined how the 114 

performance for previous items was altered when a new item was introduced (Fig. 2a). For 115 

instance, we investigated how performance (or presumably the amount of allocated resource) 116 

for the previous three items is modulated by a new (fourth) item, by measuring difference 117 

between two performance curves (∆Performance) of which the number of total item is N = 4 118 

vs. N = 3 (Fig. 2b). We found that performance for previous items was decreased by a new 119 

item, in a way that the correct ratio for more recent items was decreased more. Interestingly, 120 

the trend of memory degradation was observed to be similar in different cases (N = 6 vs. N = 121 

5, N = 5 vs. N = 4 and N = 4 vs. N = 3) (Fig. 2c). This common trend of the performance 122 
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change, normalized to the performance of the last item, was well fitted to a single power-law 123 

function (𝑦 = −𝛾|𝑥|; 𝛾 = 0.55), suggesting that the memory resource for previous items was 124 

taken by a new item with a constant ratio (𝛾). 125 

 Based on this observation that a new item overwrites the memory resource of older 126 

items, we proposed a sequential overwriting model as a revision of the resource model 127 

previously suggested3,5,26 (Fig. 2d). First, following the resource model, we assumed that an 128 

item is memorized in the memory resource allocated to each item and that the memory 129 

performance for each item is proportional to the amount of resource allocated. Next, we 130 

hypothesized that memory resource (or performance) for previous items are degraded by a 131 

new item with an overwriting ratio, 𝛾 (Fig. 2c and d), so that the memory resource decreases 132 

as a power of 𝛾 by the item order, as observed in our experiment. In this model, the amount 133 

of performance change in previous items by sequential overwriting can be estimated 134 

mathematically. After sequential overwriting of every item, memory performance was 135 

estimated by the amount of resource remaining (see Methods for details). In this scenario, 136 

the profile of the memory performance curve only varied by overwriting ratio, 𝛾 (Fig. 2e, left). 137 

For non-zero 𝛾, memory performance for a recent item was always better than for previous 138 

items, signifying the recency effect. In addition, performance for the last item was not affected 139 

by resource overwriting (Fig. 2e, right). We found that our sequential overwriting model could 140 

not only reproduce the profile of the observed recency effect, but could also predict the 141 

degree of resource overwriting (estimated parameter 𝛾 = 0.47) that matches the observed 142 

profile of performance curve (Fig. 2f). Overall, our model implies that the recency effect might 143 

be a result of flexible encoding of sequential information. 144 

 145 

Primacy effect by stable encoding 146 

Flexible encoding model alone cannot explain the other face of sequential working memory. 147 

The primacy effect reveals that allocated memory resource seems to decrease by order (Fig. 148 

3a). To model the mechanism of declining memory resources, we introduced the concept of 149 

stable encoding of information, in which the resource allocated to an old item is very stable, 150 

so that it is not affected by a new item received (Fig. 3b). In this scenario, the amount of 151 

allocated resource decreases by order, because the total resource available is limited. Thus 152 

old items are better retained than a new one. To investigate this issue in the data, we 153 
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questioned how the amount of allocated memory resource is determined when there is no 154 

influence of resource overwriting. For this, we investigated memory performance for the last 155 

items in various set sizes, because they are not affected by the next item in the sequence, 156 

even under flexible encoding scenarios (Fig. 3c). We observed that memory performance for 157 

the last item in an experiment decreases as set size increases (Fig. 3d). Thus, we inferred 158 

that the profile of memory performance unaffected by resource overwriting is a monotonously 159 

decreasing curve and that more resource is allocated for earlier items if there is no resource 160 

overwriting, consistent with our stable encoding scenario. From this profile of memory 161 

performance for the last items, we could estimate the relative amount of resource allocated 162 

to each item, which well fit an exponential function (𝑦 = 𝑎 + 𝑏𝑒−𝑐(𝑥−𝑑); 𝑎 = 0.45, 𝑏 = 1.30, 163 

𝑐 = 0.50, 𝑑 = 0.16). 164 

Based on these two scenarios of increasing and declining resource profiles, we 165 

hypothesized that working memory has both stable and flexible types of coding scheme. To 166 

model this idea, we performed a simulation to achieve a memory performance curve to which 167 

stable and flexible resources contributed together. We started from the observed profile of 168 

declining memory resources by stable encoding in Fig. 3d (only the primacy effect observed) 169 

and then added the flexible encoding component by allowing resource overwriting (𝛾 >0), as 170 

modeled in Fig. 2e. We confirmed that both the primacy and recency effects can be observed 171 

only when flexible encoding (non-zero resource overwriting) was added to stable encoding 172 

(Fig. 3e). To reproduce quantitatively the serial-position effects observed in the experimental 173 

data, we performed a parameter search for the overwriting ratio by minimizing the error 174 

between the performance curves of model and data (Fig. 3f; see Methods for details). The 175 

model performance curve fitted (𝛾 = 0.52) to the experimental observations suggested that 176 

the observed serial-position effect can arise when approximately half the memory resource 177 

of a new item affects previous items. Taken together, our model suggests that both flexible 178 

and stable encoding are required to generate the observed serial-position effect, both of 179 

which are also required, in principle, for working memory. 180 

 181 

Working memory simulation with flexible-stable model synapses 182 

We further assumed that the memory performance curve for sequential information could be 183 

altered by the balance between the relative amount of stable and flexible resources in neural 184 
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memory circuits (Fig. 4a). Our model predicted that if the whole resource performs flexible 185 

encoding only, a new item always overwrites old items. Thus, there would be the recency 186 

effect only (Fig. 4a, left). In the same way, if the whole resource was of the stable type, old 187 

items would always be better retained than a new item and strong primacy effect would be 188 

observed (Fig. 4a, middle). Therefore, to induce the serial-position effect, both sequential 189 

overwriting and declining resources must contribute together through the performance of 190 

flexible and stable encoding, respectively (Fig. 4a, right). 191 

 So far, we have shown that collaboration of flexible and stable encoding can generate 192 

the serial-position effect, using a conceptual model only. If so, then what kind of neural factors 193 

can implement two distinct encoding schemes in a neural circuit? Previously, the conventional 194 

and predominant view has been that sustained activity of neurons during the delay periods 195 

is the neuronal basis of working memory representation4,27–31. However, more recent studies 196 

have suggested a dynamic coding scenario, in which short-term retention of information is 197 

patterned in neural activities via synaptic plasticity32–36. It was reported that neurons in rat 198 

prefrontal cortex (PFC) exhibit large heterogeneity in their intrinsic temporal stability so that 199 

some neurons retain stimulus information while others code more transient selectivity 200 

functions. This enables reconciling of persistent and dynamic coding of the working memory37. 201 

Similarly, we assumed that information processing achieved by the combination of stable-202 

flexible encoding might be a key mechanism for understanding the neural basis of sequential 203 

working memory. 204 

To propose a possible neural basis of the serial-position effect in working memory, we 205 

studied to determine if our conceptual model of stable-flexible encoding could be realized in 206 

a model neural circuit, by simply introducing stable/flexible components of synaptic plasticity. 207 

For this, we adapted a particular form of synaptic plasticity recently found, the labile long-208 

term potentiation (LTP) (Fig. 4b)38, which can switch between stable and flexible encoding 209 

depending on conditions. This synapse potentiated by high frequency stimulation can be 210 

either maintained (stable) or depotentiated (flexible), depending on background activity 211 

frequencies. By adapting the dynamics of this labile LTP, we introduced two types of synapses 212 

into the model network: flexible and stable ones (Fig. 4c). The strength (weight) of the flexible 213 

synapse is allowed to continuously change during learning, so that the synapses can learn 214 

new information by sacrificing old information. In contrast, a stable synapse was set not to 215 
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change its synaptic weight, once it was potentiated or depotentiated enough to a certain 216 

threshold value (see Methods for details). 217 

Under this model condition, we expected that flexible and stable synapses could 218 

induce the recency and primacy effects, respectively, and that a mixed population of them 219 

could reproduce the observed serial-position effect. To test this idea, we made a model neural 220 

network that received random spike trains as input, and for which the feedforward wirings 221 

between input and output layers could be trained using the spike-timing-dependent plasticity 222 

(STDP) learning rule (Fig. 4d and Supplementary Fig. S2a)39. Performance (Memory index) 223 

of the trained network was defined as the consistency of response activity of the network to 224 

each trained input pattern, and was measured by the average pairwise cross-correlations 225 

between the binary output firing patterns of response activity, similar to those in hippocampal 226 

engram studies of fear memory40,41 (see previous Methods39 for details, and Supplementary 227 

Fig. S2b). Thus, with ‘1’ as the memory index, if the neural output pattern for a particular input 228 

pattern was always the same for that input, it would mean that this pattern was completely 229 

memorized. On the other hand, if the memory index were ‘0’, it would mean that the network 230 

did not memorize an input pattern so that it generated a random response pattern. Using this 231 

simplified model, we compared the memory performance of the neural populations under 232 

three conditions at different rates of flexible synapses, λ : when the neural wirings consist of 233 

(1) flexible synapses only (λ = 1), (2) stable synapses only (λ = 0), and (3) both flexible and 234 

stable synapses (0< λ <1) (Fig. 4e and f). 235 

When the network consisted of flexible synapses only, the memory index of newer 236 

items was higher than that of previous ones, regardless of the length of sequence (Fig. 4e, 237 

left). As in our previous conceptual model, flexible synaptic connections that encoded the 238 

information of the old items could be altered by information about new items in this case 239 

(sequential overwriting); thus this model condition generated the recency effect of working 240 

memory (Fig. 4f, left). In contrast, when the network consisted of stable synapses only, the 241 

memory index of newer items was lower than the old ones (Fig. 4e, middle). Stable synaptic 242 

connections that encoded the information of old items were unchanged during the learning 243 

of new items, thus later items had smaller numbers of synapses available for encoding 244 

(declining resources), leading to the primacy effect (Fig. 4f, middle). 245 
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When the network consisted of both types of synapses, characteristics of flexible and 246 

stable encoding were observed simultaneously (Fig. 4e, right). Old items were better retained 247 

than newer ones (primacy effect) early in the sequence, while newer items were better 248 

memorized than old ones (recency effect) later in the sequence. To match quantitatively the 249 

profile of human data, we performed a parameter search for a ratio between flexible and 250 

stable synapses in the network that would minimize the error between the model and data 251 

performance curves (λ = 0.51). As a result, the model could successfully generate both the 252 

primacy and recency effects observed in human data (Fig. 4f, right and Supplementary Fig. 253 

S3). 254 

Our results show that the primacy and recency effects in sequential working memory 255 

can be generated from the cooperation of stable and flexible encodings of a neural circuit. In 256 

addition, stable and flexible encodings can be achieved simply from stable/flexible types of 257 

synaptic plasticity. Interestingly, stable and flexible encodings are two essential components 258 

among the working memory characteristics needed to retain and update information 259 

simultaneously. This implies that the serial-position effect reflects the most fundamental 260 

aspects of functional circuits for working memory. 261 

 262 

Working memory modulation by flexible/stable encoding balance 263 

We observed that the coexistence of flexible and stable synapses generates the 264 

characteristic profile of sequential memory performance (Fig. 4). Furthermore, our model 265 

predicted that controlling the ratio of flexible/stable components would alter memory 266 

performance differentially by item order in the sequence (Fig. 5a); that is, stronger primacy 267 

effect would be observed when the ratio of stable synapse was increased (small λ), thus 268 

memory performance for early items would be improved (Fig. 5b). In contrast, weaker 269 

primacy effect would be generated when the ratio of flexible synapse was increased (large 270 

λ), thus memory performance would be worsened for early items. Therefore, memory 271 

performance could be altered item-order specifically by modulation of the flexible/stable 272 

synaptic balance. Specifically, average performance modulation by flexible/stable ratio 273 

control is predicted to be more significant for early-presented items (1st ~ N–1st items) than 274 

for the last item (Nth item) (Fig. 5c). This sequence-specific memory modulation effect is a key 275 
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prediction of our sequential overwriting scenario with flexible and stable encodings. 276 

 With this hypothesis, we examined if this sequence-specific performance modulation 277 

could be observed in human data. Our hypothesis was that the flexible/stable encoding 278 

balance, could be altered if the degree of resource overwriting were changed, as shown in 279 

our model simulation (Fig. 2e and Fig. 3e). We might achieve this condition of overwriting 280 

variation by contrasting optimal/non-optimal allocation of memory resource. For this, we 281 

designed a human psychophysical experiment of memory allocation control. We 282 

hypothesized that memory allocation could be optimized if the total amount of information (or 283 

number of items) to memorize was given to the subjects prior to the test. For instance, if it 284 

were announced that “Four items will be given in the test”, then the subject could pre-estimate 285 

the size of resource allocation for each item that optimizes the degree of overlap between 286 

neural resources for different items. This pre-cue would effectively reduce the sequential 287 

overwriting in flexible coding and would increase the performance of early items in the 288 

sequence (Fig. 2e and Fig. 3e). On the contrary, if a wrong pre-cue were given so that the 289 

subject attempted non-optimal allocation of memory resource, the effect might be reversed 290 

and performance for early items degraded.  291 

To test this idea, we performed a memory task with three pre-cue conditions: the total 292 

number of items was (1) correctly given (correct information), (2) not given (no information), 293 

or (3) wrongly given (wrong information), prior to item presentation (Fig. 5d). For wrong 294 

information, the number 𝑁 − 1  was shown before 𝑁  items were presented. Actually, 𝑁 295 

was varied from 4 to 6. As expected, memory performance was highest when the correct 296 

information was given and was lowest when the wrong information was given (Fig. 5e). In 297 

addition, performance difference was more noticeable in early items in the sequence. To 298 

estimate quantitatively the degree of flexible encoding from the experimental data, we 299 

simulated memory performance in the model network by varying the ratio of flexible synapses 300 

(λ) and by minimizing the mean squared error of performance between the model and data 301 

(Number of items = 4–6). As a result, the case of memory performance with correct 302 

information was well described by low flexibility conditions (λ = 0.48), while that of the wrong 303 

information case was well described by high flexibility conditions (λ = 0.53) (Fig. 5e and 304 

Supplementary Fig. S4). In addition, memory performance was largely altered in early 305 

presented items compared to the last items, as the model simulated (Fig. 5c and f). These 306 
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results suggest that sequence-specific memory modulation by pre-cue could be described by 307 

manipulation of the flexible-stable encoding balance in the neural circuit. 308 

 309 

Discussion 310 

In this work, we investigated a characteristic profile of the serial-position effect in sequential 311 

working memory, and proposed that the primacy and recency effects reflect stable and 312 

flexible encodings of neural circuits, both of which are required to retain and update 313 

information for working memory function. We also showed that flexible and stable memory 314 

function could be implemented by different types of synapses in a model neural network and 315 

that balance modulation of flexible/stable encoding could alter memory performance in a 316 

sequence-specific way. 317 

Our new concept of sequential overwriting of memory resource provides a simple 318 

explanation for previous observations on working memory performance for simultaneous and 319 

sequential presentation of stimuli42–44, where memory performance is worse when stimulus 320 

information is presented sequentially than when it is presented simultaneously. This result 321 

has not been addressed by a simple resource model, because the total amount of allocated 322 

resources must be different across the presentation conditions, even though the number of 323 

stimuli was identical. Thus, the total amount of resource seems to vary for simultaneous and 324 

sequential presentations, which is controversial to the basic assumption of the resource 325 

model. Our sequential overwriting model, however, suggests that such a difference could 326 

arise from various conditions of resource overwriting. If there existed a resource overwriting, 327 

such that the resources for old items were degraded by a new item, the effect of overwriting 328 

would be noticeable only under the condition of sequential presentation, but not for 329 

simultaneous presentation. Thus, the observed difference between sequential and 330 

simultaneous presentation conditions was naturally understandable in our view. Another 331 

observation, that memory performance for the last item in sequential presentation is not 332 

different from that for simultaneous presentations5, also supports memory resource 333 

overwriting. In our model, the last item in a sequence is not affected by overwriting, and the 334 

performance must be the same as that in simultaneous presentation. Therefore, this 335 

experimental result is consistent with the prediction of our model (Fig. 2e). 336 
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From the fact that the last item in a sequence is not affected by resource overwriting, 337 

we were able to achieve another important finding directly from the observed human data: 338 

there is a profile indicative of memory resource allocation without resource overwriting (Fig. 339 

3d). In this case, the amount of allocated resources decreases exponentially; thus we could 340 

investigate this primacy effect separately from the recency effect. Interestingly, this 341 

observation of declining resources is similar to the conceptual idea in previous models18,25, 342 

in which decreasing activation level or novelty-based encoding were suggested. The models 343 

assumed that early presented items are more strongly encoded than recent ones, consistent 344 

with the view of a stable coding scheme. Thus, our model suggests that the stable coding 345 

model provides a plausible mechanism for previous ideas of decreasing memory resources. 346 

To provide an example of a neural circuit in which flexible and stable encodings 347 

contribute together, we simulated a model network with flexible and stable synapses (Fig. 4c 348 

and d). However, it is notable that collaboration of flexible and stable encodings can be 349 

achieved in numerous ways by other neural mechanisms, too. For instance, one study 350 

showed that intrinsic temporal stability of neuronal activity can be heterogeneous in a 351 

population, which may determine whether each neuron encodes information stably or 352 

dynamically37. In general, any neural parameters that modulate the stability of synaptic 353 

connection or activity could induce the combination of flexible and stable encodings at 354 

population level. It is also notable that distinct roles of flexible and stable coding have been 355 

observed in the memory function of flexible and stable values. A previous study reported that 356 

cells in the caudate nucleus encode values in two distinct forms45: neurons in the caudate 357 

head code flexible values while those in the caudate tail code stable values. Thus, the 358 

flexibility of encoding may vary by location, and probably by distinct types of neurons. Taken 359 

together, the collaboration of flexible and stable encodings could be generated by a variety 360 

of factors. 361 

In summary, we found that the serial-position effect in sequential memory reflects 362 

distinct roles of flexible and stable encodings in neural memory circuits for working memory 363 

function. Our findings explain the origin of the serial-position effect and suggest that an 364 

association of flexible and stable encodings enables characteristic functions of working 365 

memory for retaining and updating information simultaneously. Our model provides a 366 

theoretical basis for understanding neural circuits for human working memory.  367 
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Methods 368 

Subjects 369 

Twenty-eight subjects (14 males, 14 females; 20 to 29 years old; all with normal or corrected 370 

normal vision) participated in the experiments after agreeing by written informed consent 371 

approved by the Institutional Review Board (IRB) of KAIST (KH2017-05). All procedures were 372 

carried out in accordance with approved guidelines. 373 

 374 

Sequential memory task and visual stimulus 375 

Non-semantic visual patterns were used as a stimulus in the sequential memory task. Visual 376 

stimuli were blob-like patterns of within a 1.5° × 1.5° colored ring (bandwidth 0.1°, in visual 377 

space), and the pattern was generated as follows46: 378 

𝑆(𝑥, 𝑦) = ∬ 𝑁(𝑥, 𝑦) 𝐷𝐺(𝑥 − 𝜏1, 𝑦 − 𝜏2)𝑑𝜏1𝑑𝜏2 379 

where 𝑁(𝑥, 𝑦) is white noise and 𝐷𝐺(𝑥, 𝑦) is the difference between two 2D Gaussian filters 380 

(𝜎1 = 0.4°, 𝜎2 = 0.8°, in visual space)(Supplementary Fig. S1a). A circular part of the pattern 381 

was normalized by z-scoring, and its absolute value was upper bounded by ‘3’. Subjects were 382 

positioned 160 cm away from the monitor and the visual patterns were presented on an LCD 383 

monitor (DELL U3014, 29.8 inch, resolution of 2560 × 1600, 60 Hz). 384 

During the task, visual patterns (Number of items = 3–6) were presented sequentially 385 

at the center of the screen and subjects were asked to memorize their shape and order (Fig. 386 

1a). A fixation cross at the center was presented in black (500 ms), red (1000 ms) and black 387 

(500 ms) in sequence, to inform the trial start. After a fixation screen (2000 ms), a stimulus 388 

was presented for 400 ms and an inter-stimulus-interval was given for 200 ms. After a 1000 389 

ms delay, candidate patterns consisting of the presented stimuli and the same number of not-390 

presented stimuli were given in a test session (Supplementary Fig. S1b). On the test screen, 391 

subjects were asked to recall freely the memorized sequence from the candidate patterns 392 

with a mouse click. They had to choose a sequential position and the item corresponding to 393 

that position.  394 

Three conditions were tested in the pre-cued memory tasks (Fig 5d). Prior to the 395 

sequential presentation, the number of items to memorize was (1) correctly given, (2) not 396 
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given, and (3) wrongly given to subjects to provide different conditions of pre-allocation of 397 

resources. In the wrong information case, a number that was one less than the actual number 398 

of presented items was given to subjects to induce miss-allocation of resource (e.g., ‘3’ was 399 

given as a pre-cue before ‘4’ items were presented). Twenty five percent of the pre-cue trials 400 

were under wrong information conditions. Three to six items were presented in the correct 401 

information and no information cases, and four to six items were presented in the wrong 402 

information case in random order. The ratio of trials for each condition was set as follows: 403 

Correct info. ∶ No info. ∶ Wrong info. = 3 ∶ 2 ∶ 1 404 

Subjects performed a training session (60 trials/session) and ten experimental sessions (72 405 

trials/session). All codes for the experiment were generated with the MATLAB Psychtoolbox. 406 

 407 

Calculation of sequential memory performance 408 

From the repetition of the sequential memory task sessions, the memory performance of each 409 

subject was measured. If the subjects chose both the item and order that matched the 410 

presented sequence, it was counted as correct. The performance in each order was then 411 

calculated. The response time of all trials was also measured, and its distribution for each 412 

condition was fitted with a log-normal function. The trials in which the response time lay 413 

outside of the 2σ (standard deviation) of the response time distribution were excluded from 414 

the analysis. 415 

 416 

Sequential overwriting model and memory resources 417 

To model quantitatively the memory performance of the sequential memory task, we assumed 418 

that the amount of allocated resource 𝑅𝑖 determined the performance of the item positioned 419 

in order 𝑖 as follows: 420 

𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒 𝑓𝑜𝑟 𝑖𝑡𝑒𝑚 𝑖 = {

0,         𝑅𝑖 ≤ 0
𝑅𝑖 ,     0 < 𝑅𝑖 ≤ 1
1,         𝑅𝑖 > 1

 421 

where 𝑅𝑖 is the amount of resource allocated for item 𝑖.  422 

We also assumed that the previously allocated resources were overwritten when a 423 
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new item was added as follows: 424 

{
𝑅𝑖 = 𝑅𝑖 ,              𝑓𝑜𝑟 𝑖𝑡𝑒𝑚 𝑖

𝑅𝑖−𝑘 = 𝑅𝑖−𝑘 − 𝛾𝑘𝑅𝑖 , 𝑘 = 1, … , 𝑖 − 1
 425 

where 𝛾 is the overwriting ratio (Fig. 2) and 𝑘 is the sequential distance between previous 426 

item and new item. Here, 𝑅𝑖 can be either identical (Fig. 2) or declining (Fig. 3) by order. To 427 

estimate the amount of allocated resources from the observed data (Fig. 3d), the 428 

performance for the last item was obtained from the average memory performance curve of 429 

the no-information condition, and fitted by  430 

𝐶𝑅𝑙𝑎𝑠𝑡 =  𝑎 + 𝑏 𝑒𝑥𝑝(−𝑐(𝑜𝑟𝑑𝑒𝑟 − 𝑑)) 431 

where ‘order’ varies from three to six. 432 

 433 

Data fitting with sequential overwriting model 434 

To reproduce quantitatively the observed sequential memory performance, we fitted the 435 

model by minimizing the mean squared errors between the data and simulated curves. The 436 

amount of allocated resources at each order was estimated from the average memory 437 

performance of the last item. The fitted sequential overwriting ratio (𝛾∗) was searched from 438 

error minimization, using the “fmincon” function in MATLAB: 439 

γ∗ = 𝑎𝑟𝑔𝑚𝑖𝑛 (
∑ |𝑑𝑎𝑡𝑎𝑖 − 𝑚𝑜𝑑𝑒𝑙𝑖|𝑖

2

𝑁
) 440 

where 𝑑𝑎𝑡𝑎𝑖 (𝑚𝑜𝑑𝑒𝑙𝑖) is the performance for order 𝑖 in the data (model), respectively. 𝑁 is 441 

the total number of items in a sequence (Fig. 3f). 442 

 443 

Neural network model 444 

To study the neural basis of the serial-position effect, we used a model neural network that 445 

could learn and store sequential input patterns, adapted from a previous study39. The model 446 

network consisted of two layers: input and output layers (50 neurons each) of integrate-and-447 

fire model neurons. Each input and output neuron was connected with a probability 0.2. In 448 

training sessions, six input patterns (10 Hz spike train for 100 ms) were given sequentially 449 
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(50 times) and synaptic weights were updated using a STDP rule as follows: 450 

∆𝑤𝑖𝑗 =
𝑘+(𝑤𝑚𝑎𝑥 − 𝑤𝑖𝑗) 𝑒𝑥𝑝 (−

∆𝑡
𝜏+

)  ∆𝑡 ≥ 0, 𝐿𝑇𝑃

𝑘−(𝑤𝑖𝑗 − 𝑤𝑚𝑖𝑛) 𝑒𝑥𝑝 (−
∆𝑡
𝜏−

)  ∆𝑡 < 0, 𝐿𝑇𝐷
 451 

where ∆𝑡 = tpost − 𝑡𝑝𝑟𝑒 represents a spike timing interval. The other parameters set, were 452 

𝑘+ = 0.6 , 𝑘− = −0.9 , 𝜏+ = 3 ms , and 𝜏− = 15 ms . Performance of the trained network 453 

(Memory index) was measured as the consistency of binary output spike patterns for the 454 

same inputs repeatedly given. A binary pattern was defined from the output firings: a number 455 

for each output neuron was set as ‘1’ if the neuron fired at least once during the repetitions, 456 

while it was set as ‘0’ if there was no response spike. Consistency was measured by 457 

averaging pairwise cross-correlations between all patterns of the repeated trials as follows 458 

(see previous Methods39 for details):  459 

Memory Index (MI) =  
1

𝑁𝑝𝑎𝑖𝑟
∑

𝑆𝑖 ∙ 𝑆𝑗

𝑁𝑓𝑖𝑟𝑖𝑛𝑔
𝑖,𝑗∈[1:20]

 460 

where 𝑆𝑖 represents the 𝑖th binary pattern of output firing, 𝑁𝑝𝑎𝑖𝑟 denotes the number of all 461 

pairs, and 𝑁𝑓𝑖𝑟𝑖𝑛𝑔  is the total number of fired output neurons. To rescale a memory index into 462 

memory performance, we applied a sigmoid function to memory index as a response transfer 463 

function (Supplementary Figure S2c), based on the observation that behavior results could 464 

be described by a logistic function of neural activity47. We used the sigmoid function as follows: 465 

Performance = 1/(1 + exp (−𝑎(Memory Index − 𝑏))) 466 

Each constant was estimated by minimizing the mean squared error of the sequential 467 

memory performance between data and model using the MATLAB function ‘fmincon’ (𝑎 =468 

6.78, 𝑏 = 0.34 for flexible synapse only case; 𝑎 = 14.92, 𝑏 = 0.59 for stable synapse only 469 

case; 𝑎 = 17.5 , 𝑏 = 0.46  for both flexible and stable synapse case). For learning, we 470 

defined two types of synapses: flexible and stable synapses. For the flexible one, synaptic 471 

weight was allowed to change continuously during the entire learning event. In contrast, for 472 

a stable one, the synaptic weight was set to remain unchanged when the weight saturated to 473 

99% of the maximum or minimum value. 474 
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Statistical test 475 

The type of statistical test and corresponding p-values used in the analysis were given in 476 

figure captions and the main text. One-way ANOVA with Bonferroni correction was used to 477 

examine performance differences across the pre-cue conditions.  478 
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 598 

Figure 1. Recency and primacy effect of sequential working memory task 599 

a, Experimental design for a sequential memory task. Subjects were asked to memorize 600 

visual patterns (Nitems = 3–6) presented sequentially and to recall freely. b, Sample memory 601 

performance curve by item order (Nitems = 6). Performance for the first (orange) and last (blue) 602 

items was higher than for the others (mean ± s.e.m.). Gray lines represent individual 603 

performance curves. c, Average memory performance curves. The serial-position effect was 604 

observed regardless of the number of items in a sequence (mean±s.e.m.; Nitems = 3–6). d, 605 

Illustration of the resource model. The model assumes that the amount of allocated resources 606 

determines the memory performance for each item. e, Two types of resource allocation. The 607 

serial-position effect can be described with a decreasing (orange) and increasing (blue) 608 

resource allocation model. The primacy and recency effects were fitted with exponential 609 

functions, respectively (𝑦 = 𝑎exp(𝑏𝑥) + 𝑐; 𝑎 = 0.64, 𝑏 = −0.19, 𝑐 = −0.12 for primacy effect, 610 

𝑎 = 9.37 × 10−4, 𝑏 = 1.01, 𝑐 = 0.12  for recency effect). f, Model hypotheses of stable and 611 

flexible encoding. We hypothesized that stable encoding would induce the primacy effect and 612 

that flexible encoding would induce the recency effect.  613 
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 614 

Figure 2. Flexible encoding induces the recency effect with resource overwriting 615 

a, Illustration of flexible encoding. Under flexible encoding scheme, performance for old items 616 

(red and blue) is degraded by a new item (green). b, Estimation of resource overwriting by 617 

flexible encoding in data. Performance for previous items decreased when the last item was 618 

given (top; mean ± s.e.m.), and ∆ Performance was better in recent items (bottom). c, 619 

Universality in performance change. Performance differences (normalized to performance for 620 

the last item) were well fitted with a single exponential function (𝑅2 = 0.91, 𝑦 = −𝛾|𝑥|, 𝛾 =621 

0.55). d, Concept of sequential overwriting model. When a new item (green) is given, a new 622 

item overwrites memory resources of old items (red and blue) by a constant overwriting ratio 623 

(𝛾). Overwriting was assumed to follow a power-law function, following the observation in c. 624 

e, Performance curve simulated by a model. The recency effect, higher performance of recent 625 

items than for older items, was strengthened as the overwriting ratio increased. f, A fitted 626 

recency effect curve with sequential overwriting model. Memory performance for the last 627 

three items was fitted by error minimization (𝛾 = 0.47). All error bars represent s.e.m.  628 
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Figure 3. Stable encoding induces the 629 

primacy effect and coexistence of stable and 630 

flexible encoding generates the observed 631 

serial-position effect 632 

a, Prediction for primacy effect. To induce the 633 

primacy effect, the amount of allocated 634 

resources needs to decrease by order (Inset). 635 

More resources are allocated to early-636 

presented items. b, Illustration of stable 637 

encoding. Old items (red and blue) are better 638 

retained than a new item (green), because 639 

more resource is occupied by old items. c, 640 

Estimation of resources not affected by 641 

resource overwriting. Even in flexible 642 

encoding scheme, the last item is not 643 

overwritten by the other items (orange). d, 644 

Estimation of resource amount from data. 645 

The amount of resource allocated with no 646 

overwriting effect was estimated from 647 

memory performance of the last items (orange triangles), fitted to an exponential function 648 

( 𝑅2 = 0.99 , 𝑦 = 𝑎 + 𝑏 exp(−𝑐(𝑥 − 𝑑)) , 𝑎 = 0.45 , 𝑏 = 1.30 , 𝑐 = 0.50 , 𝑑 = 0.16 ). e, 649 

Performance curves modeled with both stable and flexible encodings. Both primacy and 650 

recency effect were generated if both stable and flexible encoding contributed (red). f, Serial-651 

position effect in sequential overwriting model fitted to data. The degree of overwriting was 652 

estimated by minimizing the mean squared error between the performance curves of model 653 

and data (𝛾 = 0.52; mean±s.e.m.).  654 
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Figure 4. Flexible and 655 

stable synapses in model 656 

network induce flexible and 657 

stable encoding 658 

a, Population model of 659 

stable and flexible encoding. 660 

(top) Each dashed box 661 

represents sub-regions of 662 

memory space where 663 

memory resource can be 664 

allocated. When an item is 665 

encoded, the memory 666 

resource for that item is 667 

allocated in memory space 668 

either flexibly (blue) or stably 669 

(orange). (bottom) Predicted 670 

memory performance of 671 

models in each condition. b, 672 

Illustration of the input 673 

frequency-dependent 674 

synaptic plasticity (labile 675 

LTP38). Potentiation remains 676 

stable (orange) or is reset 677 

rapidly (blue). c, Design of 678 

stable and flexible synapses. 679 

Synaptic weight of connection can be either increased (LTP) or decreased (LTD) during 680 

learning. For stable synapse (orange), its weight maintains stable after the weight is saturated. 681 

For flexible synapse (blue), its weight continuously changes during learning. d, Design of a 682 

feedforward neural network for memory simulation. The network consists of two-layers: input 683 

layer and output layer (50 neurons, each). Synaptic weights of connections can be updated 684 

using the STDP learning rule. e, Memory index change for sequentially given inputs. Four 685 
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items (temporal spike patterns) were sequentially encoded to the network. The networks 686 

consist of flexible synapse only (left), stable synapse only (middle), or both flexible and stable 687 

synapses (right). f, Simulated memory performance. The recency and primacy effects were 688 

observed under the flexible and stable synapse cases, respectively (left, middle). A complete 689 

serial-position effect is observed only when both flexible and stable synapses coexist (right). 690 

Shaded area represents 95% confidence intervals.  691 
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 692 

Figure 5. Change of flexible/stable synapse ratio modulates memory performance in 693 

sequence-specific way 694 

a, Illustration of flexibility modulation in neural network model. b, Model simulation results of 695 

altered synaptic stability. Memory performance of early presented items (white circles) is 696 

improved if the network consists of more stable synapses (small λ), or worsened with more 697 

flexible ones (large λ). c, Memory performance changes with the flexible synapse ratio. The 698 

larger performance difference is observed in early presented items (white circles) rather than 699 

last items (white squares). d, Paradigm for pre-cued memory tasks. The three types of pre-700 

cues given: correct, no, and wrong information of the total number of items in a sequence. In 701 

the wrong information case, “N-1” is given before N items are presented. e, Sample result of 702 

a pre-cued memory task. Memory performance improves when the correct information is 703 

given (blue), while it worsens when the wrong information is given (red). Model performance 704 

with a different degree of flexibility (line) fit the observed performance (marker). (inset) 705 

Estimated flexibility from model fitting. f, Observed memory performance difference with 706 

estimated flexibility. As simulated in the model (gray markers), performance difference across 707 

conditions is better in early presented items than in the last item (for N–1 items, repeated 708 
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measures ANOVA with Bonferroni post hoc correction, 𝐹(2,54) = 26.01, *𝑃 = 1.23 × 10−8; 709 

for Nth item; 𝐹(2,54) = 1.30, 𝑃 = 0.28). All error bars represent 95% confidence intervals.  710 
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Supplementary information 711 

 712 

 713 

Supplementary Figure S1. Stimulus generation and paradigm of sequential memory task 714 

a, Design of visual stimuli. Visual stimuli are generated by filtering a two-dimensional white 715 

noise with a spatial band-pass filter. The filter is designed with a difference between two 716 

Gaussian distributions (𝜎1 = 0.4°, 𝜎2 = 0.8° , in visual space; see Methods for details). b, 717 

Design of sequential memory task. Subjects memorize sequentially presented items (Nitems = 718 

3–6) during memory session. In recall session, subjects choose the presented items and their 719 

presented order among candidates. Items presented during the memory session (purple 720 

circle) and the same number of not-presented ones (gray circle) were given as candidates.   721 
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 722 

Supplementary Figure S2. Paradigm of neural network simulation 723 

a, Scheme of memory encoding. Sequential spike trains are encoded in a neural network 724 

using an STDP learning rule. Each spike train (item) consists of a spike at random timing 725 

within 100 ms and is fed into a network 50 times, for 5 s. b, Scheme of memory test. The 726 

consistency of output firing patterns is measured for the repeatedly given items and defined 727 

as a memory index (see Methods for details). The memory index is high for the trained items 728 

(top), while it is low for the untrained items. c, Simulated results of the model (bottom). (left) 729 

Memory index by item order. Four memory index curves show how the network responds to 730 

trained items, as the number of items in a sequence increase (from Nitems = 1–4). The U-731 

shaped memory performance curves are observed after four items are encoded. (middle) To 732 

rescale the memory index into memory performance, a sigmoid function is applied. (right) 733 

Comparison of performance between the experimental data and model (Nitems = 4). Our model 734 
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generates the serial-position effect observed in the experiment. Shaded area represents 95% 735 

confidence intervals.  736 
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 737 

Supplementary Figure S3. Results of model fitting for different numbers of items 738 

The neural network regenerates the serial-position effects observed in the human 739 

psychophysical experiments. The red line represents the simulated results of the model, while 740 

the black line represents the experimental data. Shaded area represents 95% confidence 741 

intervals.  742 
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 743 

Supplementary Figure S4. Results of pre-cued memory task and model fitting 744 

A neural network with low flexible synapse ratio is able to generate the memory performance 745 

of the correct information case (blue), while that with a high flexible synapse ratio is able to 746 

generate the performance of the wrong information case (red). Error bars represent 95% 747 

confidence intervals. 748 
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