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ABSTRACT 

Attention-deficit hyperactivity disorder (ADHD) has consistently been associated with substance use, 

but the nature of this association is not fully understood. To inform intervention development and 

public health messages, a vital question is whether there are causal pathways from ADHD to substance 

use and/or vice versa. We applied bidirectional Mendelian randomization, using summary-level data 

from the largest available genome-wide association studies (GWAS) on ADHD, smoking (initiation, 

cigarettes/day, cessation, and a compound measure of lifetime smoking), alcohol use (drinks/week, 

alcohol problems, and alcohol dependence), cannabis use (initiation) and coffee consumption 

(cups/day). Genetic variants robustly associated with the ‘exposure’ were selected as instruments and 

identified in the ‘outcome’ GWAS. Effect estimates from individual genetic variants were combined 

with inverse-variance weighted regression and five sensitivity analyses (weighted median, weighted 

mode, MR-Egger, generalized summary-data-based-MR, and Steiger filtering). We found evidence 

that liability to ADHD increases likelihood of smoking initiation and heaviness of smoking among 

smokers, decreases likelihood of smoking cessation, and increases likelihood of cannabis initiation. 

There was weak evidence that liability to ADHD increases alcohol dependence risk, but not 

drinks/week or alcohol problems. In the other direction, there was weak evidence that smoking 

initiation increases ADHD risk, but follow-up analyses suggested a high probability of horizontal 

pleiotropy. There was no clear evidence of causal pathways between ADHD and coffee consumption. 

Our findings corroborate epidemiological evidence, suggesting causal pathways from liability to ADHD 

to smoking, cannabis use, and, tentatively, alcohol dependence. Further work is needed to explore 

the exact mechanisms mediating these causal effects.  

Keywords: ADHD, Smoking, Alcohol, Cannabis, Coffee, Mendelian Randomization. 
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Introduction 

Individuals who have been diagnosed with attention deficit hyperactivity disorder (ADHD) are more 

likely to be (heavy) substance users compared to those without ADHD1. Around 5.9-7.1% of children 

and adolescents and 5.0% of adults are thought to meet the diagnostic criteria for ADHD2, and genetic 

studies support the notion that a clinical diagnosis represents the extreme end of a continuum of 

impulsivity and/or attention problems in the general population3,4. Both ADHD diagnosis and higher 

levels of impulsivity and attention problems are associated with higher levels of cigarette smoking5,6, 

cannabis use7,8, alcohol use7,9 and caffeine consumption10,11. The exact nature of these associations 

is not fully understood, which hampers the development of evidence-based interventions and public 

health messages. 

Several explanations have been posited as to why ADHD and substance use are correlated. 

First, there are risk factors that increase susceptibility to both. These could be environmental factors 

that have been shown to be risk factors for ADHD and substance use, such as trauma exposure or 

other adverse early life events12,13, or these could be genetic influences with pleiotropic effects on 

both ADHD and substance use. Family studies have shown that ADHD and substance use are 

moderately to highly heritable, and indicate shared genetic risk factors14,15. Overlap in genetic risk has 

also been examined in recent genome-wide association studies (GWAS) of ADHD and substance 

use4,16–19. Substantial genetic correlations were found for ADHD with ever versus never smoking 

(rg=0.48, p=4.3e-16), number of cigarettes smoked per day (rg=0.45, p=1.1e-05), alcohol dependence 

(rg=0.44, p=4.2e-06), and cannabis initiation (rg=0.16, p=1.5e-04), pointing to a common 

neurobiological aetiology. This is consistent with research indicating that cognitive deficits such as 

impaired response inhibition and working memory are important features of both ADHD and 

substance abuse20,21, and that both ADHD and substance abuse can be considered forms of 

externalizing disorders22.  
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While a partial common neurobiological aetiology to ADHD and substance use is therefore 

likely, environmental and genetic correlation could also (partly) reflect causal effects of one on the 

other. If variable X causes variable Y, it follows that any environmental or genetic risk factor causing 

variable X will also be associated (indirectly) with variable Y. The current literature has mostly focused 

on causal pathways from ADHD to substance use, with longitudinal cohort studies showing that 

externalizing symptoms in early adolescence predict onset of smoking and faster progression to daily 

smoking, and that ADHD medication reduces early onset smoking and alleviates smoking withdrawal5. 

For alcohol and cannabis the evidence is less clear, with some studies finding that ADHD symptoms 

only predict their use in girls23, and a recent twin study reporting no relation between ADHD symptoms 

and alcohol or cannabis use14. For caffeine, a relatively small longitudinal study (n=144) suggested 

reciprocal effects between caffeine consumption and ADHD symptoms during adolescence10.  

There is tentative evidence that there may be causal effects in the other direction (i.e., 

substance use leading to an increase in ADHD symptoms)24,25. In monozygotic twin pairs discordant 

for smoking, the smoking twin scored higher on attention problems – a difference which only 

appeared after smoking was initiated24. For cannabis use the evidence is mixed. Low to moderate 

cannabis use in adolescents seems to lead to a small increase in attention and academic problems, 

which disappears following sustained abstinence25. However, there is no indication that cannabis use 

exacerbates ADHD-related brain alterations26. With regards to alcohol use, binge-pattern exposure 

during development has been shown to cause attention deficits in mice27, but there is no clear 

evidence for such effects in humans.  

It is difficult to fully unravel the nature of the association between ADHD and substance use 

with observational data because of bias due to (unmeasured) confounding and reverse causality (i.e., 

the outcome affecting the exposure). Mendelian randomization (MR) is a method to infer causality 

which has recently gained much popularity. MR uses genetic variants robustly associated with an 

exposure variable as an instrument to test causal effects on an outcome variable28,29. Because genes 
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are transmitted from parents to offspring randomly, genetic variants that are inherited for a trait (e.g., 

ADHD) should not be associated with confounders such as social-economic status. By using genetic 

variants as instrumental variables it is therefore possible to obtain less biased results.  

So far, one MR study found evidence for a causal effect of alcohol use on attention problems 

and aggression in adolescents (but not on delinquency, anxiety, or depression)30. Two other studies 

provided evidence that genetic liability to ADHD, as well as higher extraversion, has a causal effect on 

smoking initiation31,32. A recent MR study found that liability to ADHD leads to a higher risk of cannabis 

initiation, but these analyses were based on summary-level data of a cannabis GWAS which has 

recently been updated (with a much larger sample size – n=184,765 instead of n=32,330). Moreover, 

potential causal effects in the reverse direction were not adequately tested given that the authors 

included all ADHD cases instead of just those diagnosed in adulthood33. Overall, existing MR studies 

are limited in that they have primarily tested unidirectional effects only, included a narrow focus on 

one specific substance use behaviour, and/or had limited statistical power.  

We therefore performed bidirectional MR using summary-level data of the largest available 

GWAS, investigating causal effects between liability to ADHD and a broad spectrum of substance use 

phenotypes. We applied five different sensitivity analyses more robust to potential violation of the 

MR assumptions. Throughout the manuscript, we refer to ‘liability to’ a particular exposure (e.g. 

liability to ADHD). This is because the exposure estimates and the outcome estimates for our analyses 

come from separate samples, and it is not possible to determine whether or not the individuals in the 

outcome sample have actually experienced a particular exposure (e.g. an ADHD diagnosis).  

 

Materials and methods 

Mendelian randomization 
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The rationale behind MR is that the random assortment of genetic variants creates subgroups in the 

population which roughly mimic treatment groups from a randomized controlled trial. Outcomes are 

compared between individuals in the ‘high genetic risk group’ and those in the ‘low genetic risk group’ 

for a proposed exposure variable. The method rests on three important assumptions, namely that the 

genetic variants used as instruments: 1) strongly predict the exposure variable – typically, the selected 

variants have been genome-wide significantly associated (p<5e-08) with the exposure and replicated, 

2) are independent of confounding variables, and 3) do not affect the outcome through an 

independent pathway, other than possible causal effects via the exposure (Figure 1a). A potential 

threat to MR is horizontal pleiotropy, where the genetic variant used as an instrument directly affects 

vulnerability to multiple phenotypes. This could lead to violation of MR assumptions 2 and 3. To assess 

whether MR assumptions may have been violated, we conducted various sensitivity analyses 

described below. 

We applied MR using summary level data (sometimes known as ‘two-sample MR’), which uses 

effect estimates of genetic variants (SNPs) from large GWAS that have been performed previously. In 

this approach, the SNP-exposure association and the SNP-outcome association estimates are taken 

from two separate GWAS (Figure 1b). A major strength of this design is that it takes advantage of 

large, well-powered GWAS, without the need to have information on both the exposure and the 

outcome in one single sample. An additional assumption of this method is that the SNPs identified as 

instruments based on their effect estimates in the exposure GWAS also predict that exposure variable 

in the outcome GWAS – this cannot be directly tested. To estimate the causal effect of the exposure 

on the outcome, the SNP-outcome association is divided by the SNP-exposure association for each 

SNP. The main MR result is obtained by combining these ratios into an overall estimate of causal effect 

using inverse-variance weighted (IVW) fixed-effect meta-analysis (Figure 1b)29. 
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Figure 1. a) Illustration of the Mendelian randomization (MR) framework and its main assumptions that the 

instrument is associated with the exposure (1), the instrument is not associated with (un)measured confounders 

(2), and the instrument does not influence the outcome other than through the exposure (3). b) Illustration of 

the MR design when using summary level data and the SNP-exposure association and SNP-outcome association 

are taken from two separate GWASs (also known as ‘two-sample MR’). 

 

Mendelian randomization versus other causally informative designs 

MR is inherently different from other causally informative designs such as twin or family studies. While 

these methods use a priori knowledge of genetic relatedness between family members to explain 

variation in a particular phenotype, MR exploits directly measured genotype in (usually) unrelated 

individuals. Whereas twin and family studies aim to correct for genetic (and shared environmental) 

differences in order to infer causality, MR exploits the genetic component by using it as an instrument 

for causal inference. A comprehensive review comparing all methods that use genetic data to 

strengthen causal inference is available elsewhere34. 
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Data 

Summary-level data of large GWAS were obtained for ADHD (clinically diagnosed versus controls, 

n=55,3744), smoking (initiation (ever regularly smoked or ≥100 cigarettes during lifetime), 

n=1,232,091; cigarettes per day, n=337,334; cessation (former versus current smokers), n=547,21917; 

lifetime smoking, n=463,00335), alcohol use (drinks per week, n=941,28017; alcohol problems (AUDIT 

total score: Alcohol Use Disorders Identification Test), n=121,60419; alcohol dependence (clinically 

diagnosed versus controls), n=46,56836), cannabis use (initiation (ever used during lifetime), 

n=162,08216) and coffee consumption (cups per day, n=91,46218). When smoking initiation, cigarettes 

per day, smoking cessation or alcohol drinks per week was the outcome in the MR analysis, data of 

one of the included cohorts, 23andMe, were not available, resulting in sample sizes of n=632,783, 

n=263,954, n=312,821 and n= 537,341, respectively. 

Lifetime smoking is a compound variable that captures smoking initiation, duration, heaviness 

and cessation, across mid- to late-adulthood. As ADHD onset is expected to occur (long) before mid- 

to late-adulthood, lifetime smoking was not appropriate to use as an exposure and was only used as 

an outcome. In addition, cigarettes per day and smoking cessation could not be used as exposures 

because the GWAS these are based on were performed in (former) smokers only. To perform an MR 

analysis with genetic variants for cigarettes per day and smoking cessation as instruments, the 

outcome GWAS (in this case ADHD) would have to be stratified on smoking status, which was not 

possible with the summary data we used.  

When testing causal effects of liability to ADHD on substance use, summary statistics from the 

complete ADHD GWAS containing child, adolescent, and adult data were used. When testing causal 

effects of substance use on ADHD, only adult data (ADHD diagnosed >18 years) were used (n=15,548) 

to ensure a plausible temporal sequence of a potential causal effect (i.e., substance use cannot 

logically have a causal effect on ADHD diagnosed in childhood). This is crucial given that ADHD is 

generally a child-onset disorder and the onset of substance use is typically during adolescence or early 
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adulthood. What we aim to test here is whether substance use causes later development of or 

exacerbating of ADHD symptoms (resulting in a diagnosis at adult age). There was no sample overlap 

of the ADHD GWAS with the smoking, alcohol and coffee GWAS. Between the ADHD and the cannabis 

initiation GWAS there was very minimal overlap (<3%).  

 

Main analysis 

To assess causal effects of liability to ADHD on substance use, we identified independent single 

nucleotide polymorphisms (SNPs) that reached genome-wide significance (p<5e-08) in the ADHD 

GWAS to use as genetic instruments. These same SNPs were then identified in the substance use 

GWAS. To assess causal effects in the other direction, we identified independent genome-wide 

significant SNPs in the different substance use GWAS as genetic instruments, and then identified those 

different sets of SNPs in the ADHD GWAS. The analyses were conducted in R, using the two-sample 

MR package of MR-Base, a database and analytical platform37.  

 

Sensitivity analyses 

Besides IVW (Figure 1b), five additional MR methods were applied. Each of these five methods can 

provide an unbiased estimate of the true causal effect, provided that certain assumptions are met. 

While it is not possible to know which of these methods’ assumptions actually hold, examining the 

combined results of all methods allows us to assess the robustness of a causal finding. This practice of 

using multiple MR methods to triangulate evidence has become increasingly important now that MR 

has moved beyond more biological phenotypes (e.g., LDL-cholesterol) and is increasingly used in the 

context of complex traits such as ADHD and substance use, were detailed knowledge of the exact 

biological function of the associated genes is lacking38. 
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First, we used weighted median regression, which provides an unbiased estimate of the causal 

effect, even if <50% of the weight of the genetic instrument comes from invalid instruments39. Second, 

we used weighted mode regression, which provides unbiased results as long as the causal effect 

estimate that is most common among the included SNPs comes from valid instruments and is thus 

consistent with the true causal effect40. Third, we used MR-Egger regression, which provides an 

unbiased estimate of the causal effect provided that the strength of the genetic instrument 

(association between the SNP and the exposure) does not correlate with the effect that same 

instrument has on the outcome. This ‘InSIDE assumption’ (Instrument Strength Independent of Direct 

Effect) is a weaker assumption than the assumption of no pleiotropy41. However, MR-Egger does rely 

on the NOME (NO Measurement Error) assumption, and if this is violated its results may be biased. 

Violation of the NOME assumption can be assessed by the I2 statistic. An I2 value below 0.9 indicates 

considerable risk of bias, which may still be corrected for with MR-Egger simulation extrapolation 

(SIMEX). An I2 value below 0.6 means that MR-Egger results (even with SIMEX) are unreliable. We 

report MR-Egger results when I2>0.9, report MR-Egger SIMEX results when I2=0.6-0.9, and do not 

report MR-Egger results when I2<0.642. Fourth, we used generalised summary-data-based Mendelian 

randomization (GSMR)43. This method achieves higher statistical power than other MR methods by 

taking into account very low levels of linkage disequilibrium (LD) between the included SNPs. GSMR 

includes a filtering step which identifies and removes SNPs considered outliers based on their effect 

size (HEIDI-filtering). MR-Egger and GSMR were applied only when the genetic instruments contained 

10 or more SNPs. Fifth, we used Steiger filtering, which computes the amount of variance each SNP 

explains in the exposure and in the outcome variable. In case of a true causal effect of the exposure 

on the outcome, a SNP used as an instrument should be more predictive of the exposure than the 

outcome. If not (i.e., the SNP is more predictive of the outcome than the exposure) it might imply 

reverse causation44. Steiger filtering was used to exclude all SNPs that were more predictive of the 

outcome than the exposure, after which MR analyses were repeated. LCV (Latent Causal Variable 

model) is a recent method with the potential to distinguish genetic correlation from causation45. While 
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we conducted LCV analyses, we report these in the supplemental material only because: 1) we aim to 

explicitly test bidirectional causality, which LCV does not allow, and 2) for cigarettes smoked per day, 

smoking cessation, and lifetime smoking LCV is not appropriate because we intended to only use them 

as outcome variables, and with LCV it is not possible to indicate which trait is the exposure or outcome.  

For an additional indication of the robustness of our findings we inspected the Cochran’s Q 

statistic, which provides an estimate of heterogeneity between the effects of the individual genetic 

variants46, and performed leave-one-out analyses, repeating the IVW analysis after removing each of 

the SNPs one at a time37.  

 

Defining strength of evidence 

We did not explicitly correct for multiple testing to avoid judging the evidence based simply on an 

arbitrary threshold. Instead, we interpret the evidence by looking at both the effect size and statistical 

evidence for the main IVW result, combined with how consistent the results of the sensitivity analyses 

are across multiple MR methods. Due to their stricter assumptions, the sensitivity analyses have lower 

statistical power to identify a true causal effect. Thus, when the effect sizes of the sensitivity analyses 

are of similar magnitude and direction, this supports a causal interpretation, even if the statistical 

evidence for an individual analytical approach is weaker than in the IVW analysis.  

 

Results  

We found evidence for causal effects of liability to ADHD on smoking initiation (IVW beta=0.07, 95% 

CI=0.03 to 0.11, p=1.7e-05), cigarettes smoked per day (IVW beta=0.04, 95% CI=0.02 to 0.06, p=0.006), 

smoking cessation (IVW beta=-0.03, 95% CI=-0.05 to -0.01, p=0.005) and lifetime smoking (IVW 

beta=0.07, 95% CI=0.06 to 0.14, p=1.4e-07). The weighted median and weighted mode sensitivity 

analyses confirmed these findings, albeit with slightly weaker statistical evidence for the latter (Table 
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1). For smoking initiation, MR-Egger did not show clear evidence for a causal effect, but this may have 

been due to a lack of statistical power41. The Egger intercept did not indicate horizontal pleiotropy 

(intercept=0.01, 95% CI=-0.01 to 0.02, p=0.41, Supplementary Table 2). For cigarettes smoked per day 

and smoking cessation MR-Egger also did not confirm the IVW findings, with weak evidence for 

horizontal pleiotropy (Egger intercept=0.01, 95% CI=0.00 to 0.02, p=0.068 and intercept=0.01, 95% 

CI=0.00 to 0.01, p=0.089, respectively). GSMR could not be performed because there were too few 

SNPs (<10). Steiger filtering showed that – with the exception of one SNP in the ADHD risk to smoking 

initiation analysis – all SNPs were more predictive of the exposure than of the outcome. Cochran’s Q 

statistic indicated heterogeneity of the effects of the included variants for the ADHD liability to 

smoking initiation and ADHD liability to lifetime smoking analyses (Supplementary Table 3; Q=34.44, 

p=7.5e-05 and Q=47.73, p=2.9e-07, respectively), while leave-one-out analyses gave no indication that 

the overall causal effect was driven by a particular SNP (Supplementary Figure 1).  

There was also considerable evidence that liability to ADHD causally increases risk of cannabis 

use initiation (IVW OR=1.13, 95% CI=1.02 to 1.25, p=0.010). Weighted median, weighted mode and 

GSMR confirmed this finding, but with (slightly) weaker statistical evidence. MR-Egger was not 

reported due to a low I2 value (Supplementary Table 4). Steiger filtering did not identify any SNPs 

more predictive of the outcome than of the exposure. There was weak evidence for heterogeneity in 

SNP effects for the ADHD liability to cannabis initiation analysis (Q=15.90, p=0.069). Leave-one-out 

analyses did not suggest any individual SNPs were driving the overall effect. 

There was no clear evidence for a causal effect of liability to ADHD on alcohol drinks per week, 

alcohol problems or coffee consumption. While there was some weak evidence that liability to ADHD 

causally influences alcohol dependence (IVW OR=1.07, 95% CI=1.01 to 1.14, p=0.030), this effect was 

not consistent across the sensitivity analyses. However, when we repeated these analyses using 

alcohol intake frequency as the outcome measure in UK Biobank only – one of the cohorts included in 

the much larger GWAS sample the main analyses were based on – there was evidence for a causal 
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effect reflecting increased risk (IVW beta=0.22, 95% CI=0.04 to 0.40, p=0.013, Supplemental Table 5). 

This is in line with recent findings that different alcohol use behaviours can show distinct (directions 

of) genetic associations47. 

 

< INSERT TABLE 1 (INCLUDED AT THE END OF THIS DOCUMENT) > 

 

In the other direction, we found strong evidence for causal effects of liability to smoking 

initiation on ADHD risk (IVW OR=3.72, 95% CI=3.10 to 4.44, p=2.9e-51). Weighted median, weighted 

mode, MR-Egger, and GSMR sensitivity analyses indicated similarly strong evidence, albeit with 

smaller effect sizes (Table 2). The Egger intercept did not indicate horizontal pleiotropy 

(intercept=0.01, 95% CI=-0.01 to 0.03, p=0.37). However, for this relationship the I2 value was low – 

0.60 (Supplementary Table 4) – indicating that MR-Egger was not reliable. Furthermore, Steiger 

filtering revealed that only 265 of the 346 smoking initiation SNPs (77%) were more predictive of the 

exposure, smoking, than of the outcome, ADHD. When repeating the IVW and sensitivity analyses with 

these SNPs only, the evidence for a causal effect was still strong, but effect sizes were attenuated 

(Supplementary Table 6). Cochran’s Q statistic provided no clear evidence for heterogeneity for the 

liability to smoking initiation to ADHD risk analysis (Q=373.84, p=0.14) and leave-one-out analyses did 

not indicate that the overall effects were driven by a single SNP. As an additional sensitivity test, we 

repeated the smoking initiation – ADHD analyses using ADHD symptoms in childhood only, with one 

of the replication samples of the original GWAS paper (<13 years; n=17,66648). The degree to which 

smoking initiation SNPs predict ADHD childhood symptoms in such an MR analysis could reflect 

horizontal pleiotropy, since most individuals in this age group will not have begun to smoke yet. We 

found strong evidence for a causal effect (IVW beta=0.28, 95% CI=0.17 to 0.39; Supplementary Table 

7) – although these effect estimates and the statistical evidence were weaker than in the original 
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analyses that restricted to adults. Together with the results of Steiger filtering, this indicates that the 

increasing effect of smoking initiation on ADHD risk is, at least in part, due to horizontal pleiotropy. 

There was no clear evidence for a causal effect of liability to cannabis use initiation, alcohol 

use, or coffee consumption on ADHD risk. 

The results of LCV analyses indicated that smoking initiation and alcohol dependence are 

genetically causal for ADHD, while for all other relationships there was no clear evidence of causal 

effects (Supplementary Table 8). 

 

< INSERT TABLE 2 (INCLUDED AT THE END OF THIS DOCUMENT) > 

 

Discussion 

We find evidence, using Mendelian randomization analyses of summary-level data, for causal effects 

of liability to ADHD on substance use risk, such that it increases the odds of initiating smoking, smoking 

more cigarettes per day among smokers, and finding it more difficult to quit, as well increasing the 

odds of initiating cannabis use. There was some indication that liability to ADHD increases alcohol 

dependence risk, but evidence for that was weak. In the other direction there was weak evidence that 

liability to smoking initiation increases (adult) ADHD risk. There was no clear evidence of causal effects 

between liability to ADHD and coffee consumption. 

 Our findings complement and confirm a large body of observational literature suggesting that 

individuals diagnosed with ADHD are at a higher risk of initiating smoking, transitioning into regular 

smoking, and being less able to quit5. We also provide evidence for a causal effect of liability to ADHD 

on risk of cannabis use, for which the literature has so far been inconclusive14,23. While previous 

observational studies may have been biased by (unmeasured) confounding, our approach of using 

genetic variants as instrumental variables is more robust to confounding and reverse causality. We 
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were not able to identify the exact mechanism of causation, but it seems plausible that higher levels 

of impulsivity may lead individuals with ADHD liability to try out cigarettes or cannabis without 

considering their possible negative consequences5,49. Another potential mechanism is ‘self-

medication’, whereby a substance is used because of its (real or perceived) positive effects on ADHD 

symptomatology – even though such effects might not actually exist50. 

 Interestingly, there was also evidence for causal effects of liability to smoking on ADHD risk. 

This is in line with previous literature indicating that smoking can have detrimental, long-term effects 

on attention24. It has been hypothesized that nicotine inhaled through cigarette smoke can affect the 

developing prefrontal cortex – involved in attention and impulse control – during adolescence51. It is 

important to note, however, that the evidence we found for causal effects of smoking on ADHD risk 

was much less robust than it was in the other direction. First of all, we were not able to test causal 

effects of smoking heaviness or smoking cessation on ADHD, which would have provided more 

compelling evidence. Second, a considerable portion (23%) of the SNPs used as an instrument for 

smoking initiation were in fact more predictive of the outcome, ADHD, implying reverse causation. 

There is extensive research showing that genetic influences on smoking initiation are mediated via 

impulsivity-related traits5. This was confirmed by our findings that the genetic instrument for smoking 

initiation also showed strong evidence for a causal effect on ADHD symptoms in children <13 years 

(who would not yet have started smoking). Another important point is that for the analyses of 

substance use to ADHD, we used adult diagnosed ADHD as the outcome. This strengthened our 

approach by ensuring the appropriate temporal sequence for a causal effect in this direction. 

However, it might be that individuals with adult diagnosed ADHD differ from those who were 

diagnosed during childhood. A recent study assessed the neurodevelopmental profile of individuals 

diagnosed with ADHD in adulthood, and found that they did not have a typical profile of 

neurodevelopmental impairment52. Our results should therefore be replicated using other, 

continuous measures of ADHD symptoms in adulthood. Preferably these would be more ‘proximal’ 
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measures of attention problems and impulsivity, obtained through cognitive performance tasks or 

(functional) brain imaging. 

We found some weak evidence for a causal effect of liability to ADHD on alcohol dependence 

risk (based on a DSM-diagnosis), but no clear evidence for causal effects of liability to ADHD on drinks 

per week or alcohol problems (based on the AUDIT self-report survey). These findings are of particular 

interest because current evidence on the mechanisms underlying associations between ADHD and 

alcohol use is inconclusive14,23. Given the very large and powerful genetic datasets that our analyses 

are based on, one would expect that a strong causal effect of ADHD on alcohol use would be 

convincingly shown, which was not the case given the weak evidence. The fact that there was some 

indication of causality from ADHD liability to alcohol dependence risk, but not for the other two 

alcohol measures, weakens the evidence further. However, it might be that ADHD liability only affects 

serious manifestations of alcohol abuse – such that it is clinically diagnosed – but not self-reported 

consumption. Of all the included GWAS data sets included in our study, alcohol dependence was based 

on the smallest sample size (n=46,568), and so it would be good to attempt replication of this finding 

when bigger samples become available. There was no clear evidence for causal effects between 

liability to ADHD and coffee consumption, which would indicate that observational correlations are 

the result of shared risk factors rather than causality. 

Important strengths of this study include the very large and recent samples that the analyses 

are based on, the variety of different substance use phenotypes that were included, and the use of 

multiple sensitivity analyses that each rely on distinctly different assumptions. However, there are 

also limitations to consider. First, the genetic instruments used in MR may vary in their strength (i.e., 

the amount of variance in the exposure variable that they explain). Stronger instruments are more 

likely to identify a causal effect, which in theory could explain why there was reasonable evidence for 

causality for some relationships (e.g., smoking to ADHD), but not for others (e.g., alcohol to ADHD). 

When looking at the predictive power of the instruments, the differences were modest – for ADHD all 
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SNPs included in the instrumental variable combined explained 0.5-0.7% of the variance, for smoking 

initiation 2.4%, for cannabis initiation 0.2%, for alcohol drinks per week 1.1%, for alcohol problems 

0.3%, for alcohol dependence 0.2%, and for coffee consumption 0.6% (the formula to compute these 

numbers is described elsewhere16). However, the power of these instruments to pick up effects on the 

outcomes also depends on the sample size of the outcome samples. Second, we were not able to 

apply all sensitivity analyses to all the tested relationships, due to an insufficient number of robustly 

predictive SNPs for some of the exposures. When even larger GWAS will become available, identifying 

more SNPs, we will be able to examine these relationships better. Third, and a more general limitation 

of MR, is that we cannot correct for unmeasured familial confounding, such as ‘dynastic effects’ which 

occur when parental genotypes have a direct effect on offspring phenotypes. This could potentially be 

dealt with using within-family MR studies when large enough data sets become available53. Fourth, 

the nature of our study design did not allow us to assess the role of ADHD medication status, which 

has previously been shown to affect substance use5. Fifth and final, the multiple testing burden should 

be considered when interpreting our findings, although this would not change our conclusions 

substantially, given the strong statistical evidence for the main findings. 

Overall, our findings add to the current literature by allowing more robust conclusions on the 

causal nature of associations between ADHD and substance use. We confirm previous evidence from 

epidemiological studies that liability to ADHD increases the odds of initiating smoking, smoking more 

heavily, and finding it more difficult to quit5. For cannabis and alcohol use, where epidemiological 

studies were inconsistent, we show that liability to ADHD may increase the odds of initiating cannabis 

use and, tentatively, of developing alcohol dependence. This suggests that addressing ADHD 

symptoms early on in life may not only decrease smoking initiation and progression, but also cannabis 

initiation and the development of alcohol dependence. To further inform preventive efforts, future 

work should focus on the exact mechanisms through which causal effects of liability to ADHD are 

mediated. One possibility would be to perform an MR analysis for the different dimensions of ADHD 

(attention problems vs. impulsivity-hyperactivity) separately, if and when large enough GWAS for 
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those phenotypes become available. Another area of interest is cognitive training. Efforts have been 

made to test whether training cognitive functions such as inhibitory control, which is impaired in 

ADHD, can decrease substance use. While for several health behaviours there is evidence that 

stimulus-specific inhibitory control training can be effective54, the literature of its efficacy on smoking 

is still very scarce. Our finding that smoking might causally increase ADHD risk should first be replicated 

and followed-up with different research methods and a wider range of measures of ADHD symptoms. 

Such triangulation55 will be essential to provide conclusive evidence on this, potentially highly 

impactful, finding. For the relationships where there was no indication of any causal effects – liability 

to ADHD and alcohol consumption and coffee use – it seems that we can, tentatively, say that the best 

approach for prevention would be to identify shared risk factors that are modifiable, so as to decrease 

risk of ADHD as well as alcohol and coffee consumption.  
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Table 1. Results of the Mendelian randomization analyses using summary level data from liability to ADHD to substance use risk including IVW estimates 

and four sensitivity analyses: weighted median, weighted mode, MR-Egger, and GSMR (generalized summary-data-based Mendelian randomization). 

Exposure Outcome  

n 

IVW Weighted median Weighted mode MR-Egger  

n  

SNPs* 

GSMR 

  SNPs beta OR 95% CI p beta OR 95% CI p beta OR 95% CI p beta OR 95% CI p beta OR 95% CI p 

ADHD Smoking initiation  10 0.07  0.03 to 0.11 1.7e-05 0.05  0.03 to 0.07 4.2e-05 0.05  0.03 to 0.07  0.010 0.01  -0.13 to 0.15 0.937 8 n.a.  n.a. n.a. 

ADHD Cigarettes / day  10 0.04  0.02 to 0.06 0.006 0.05  0.01 to 0.09 0.004 0.05  -0.01 to 0.11 0.089 -0.11  -0.25 to 0.03 0.127 8 n.a.  n.a. n.a. 

ADHD Smoking cessation  11 -0.03  -0.05 to -0.01 0.005 -0.03  -0.05 to -0.01 0.026 -0.03  -0.07 to 0.01 0.215 0.06  -0.04 to 0.16 0.255 9 n.a.  n.a. n.a. 

ADHD Lifetime smoking 10 0.10  0.06 to 0.14 8.8e-08 0.09  0.05 to 0.13 1.6e-09 0.10  0.06 to 0.14 0.003 n.a.  n.a. n.a. 9  n.a.  n.a. n.a. 

                        

ADHD Alcohol drinks / week  10 -0.01  -0.05 to 0.03 0.741 0.02  0.00 to 0.04  0.150 0.02  0.00 to 0.04 0.153 0.08  0.06 to 0.10 0.468 7 n.a.  n.a. n.a. 

ADHD Alcohol problems 10 0.01  -0.01 to 0.03 0.234 0.00  -0.02 to 0.02 0.729 0.00  -0.02 to 0.02 0.815 n.a.  n.a. n.a. 8 n.a.  n.a. n.a. 

ADHD Alcohol dependence 12 0.07 1.07 1.01 to 1.14 0.030 0.06 1.06 0.96 to 1.17 0.230 0.07 1.07 0.93 to 1.23 0.378 -0.16 0.85 0.60 to 1.21 0.407 10 0.06 1.06 0.98 to 1.15 0.094 

                        

ADHD Cannabis initiation  10 0.12 1.13 1.02 to 1.25 0.010 0.17 1.19 1.05 to 1.34 0.001 0.19 1.21 0.97 to 1.52 0.107 n.a. n.a. n.a. n.a. 10 0.11 1.12 1.03 to 1.21 0.004 

                        

ADHD Cups of coffee / day 9 0.03  -0.03 to 0.09 0.322 0.04  -0.04 to 0.12 0.331 0.05  -0.09 to 0.19 0.458 n.a.  n.a. n.a. 9 n.a.  n.a. n.a. 

n SNPs = number of SNPs included in the genetic instrument. SE = standard error of the beta. Note that the dichotomous variables smoking initiation and smoking cessation 

were rescaled in the original GWAS such that its unit is a standard deviation increase in prevalence17. The beta coefficients in this table represent the change in outcome per 

2.72-fold increase in the prevalence of ADHD diagnosis (due to the log odds nature of the ADHD GWAS data). For MR-Egger; when I2 was 0.6-0.9, a SIMEX correction was 

applied, while estimates were not reported at all when I2 was <0.6. n.a: the number of SNPs available for the analysis was too low, or, in the case of MR-Egger, I2 was <0.6. 

*Number of SNPs left after the HEIDI filtering step which is part of GSMR.  
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Table 2. Results of the Mendelian randomization analyses using summary level data from liability to substance use to adult ADHD risk (diagnosis received 

after age 18) including IVW estimates and four sensitivity analyses: weighted median, weighted mode, MR-Egger, and GSMR (generalized summary-level-

data based Mendelian randomization). 
Exposure Outcome  

n 

SNPs 

IVW Weighted median Weighted mode MR-Egger  

n    

GSMR 

  beta OR 95% CI p beta OR 95% CI p beta OR 95% CI p beta OR 95% CI p SNPs* beta OR 95% CI p 

Smoking initiation ADHD 346 1.31 3.72 3.10 to 4.44 2.9e-51 1.18 3.26 2.59 to 4.14 5.0e-22 1.04 2.84 1.17 to 6.82 0.021 1.00 2.72 1.48 to 5.00 0.001 330 1.24 3.46 2.89 to 4.14 1.4e-44 

                        

Alcohol drinks / week ADHD 90 0.01 1.01 0.57 to 1.79 0.975 0.01 1.01 0.44 to 2.34 0.978 -0.17 0.84 0.29 to 2.44 0.747 -0.46 0.63 0.19 to 2.10 0.444 80 1.08 2.95 1.67 to 5.21 0.788 

Alcohol problems ADHD 7 0.59 1.81 0.14 to 24.05 0.655 0.52 1.68 0.07 to 41.68 0.752 0.78 2.18 0.03 to 165.67 0.736 n.a. n.a. n.a. n.a. 7 n.a. n.a. n.a. n.a. 

Alcohol dependence ADHD 9 -0.23 0.80 0.53 to 1.20 0.283 -0.13 0.88 0.52 to 1.49 0.633 -0.69 0.50 0.21 to 1.21 0.162 n.a. n.a. n.a. n.a. 9 n.a. n.a. n.a. n.a. 

                        

Cannabis initiation ADHD 5 0.38 1.46 0.93 to 2.29 0.103 0.48 1.62 1.01 to 2.59 0.044 0.57 1.77 0.98 to 3.19 0.132 n.a. n.a. n.a. n.a. 5 n.a. n.a. n.a. n.a. 

                        

Coffee / day ADHD 4 -0.01 0.99 0.66 to 1.49 0.969 -0.01 0.99 0.73 to 1.35 0.923 0.01 1.01 0.70 to 1.46 0.951 n.a. n.a. n.a. n.a. 4 n.a. n.a. n.a. n.a. 

n SNPs = number of SNPs included in the genetic instrument. SE = standard error of the beta. Note that the dichotomous variable smoking initiation was rescaled in the 

original GWAS such that its unit is a standard deviation increase in prevalence17. The ORs in this table reflect the change in ADHD diagnosis odds for a one-unit increase in 

the exposure variable in the case of continuous exposure variables and the change in ADHD diagnosis odds per 2.72-fold increase in the prevalence of the exposure variable 

for binary exposure variables (due to the log odds nature of the binary exposure GWAS data). For MR-Egger; when I2 was 0.6-0.9, a SIMEX correction was applied, while 

estimates were not reported at all when I2 was <0.6. n.a: the number of SNPs available for the analysis was too low, or, in the case of MR-Egger, I2 was <0.6. *Number of SNPs 

left after the HEIDI filtering step which is part of GSMR.  
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