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Abstract6

Predicting gene expression with genetic data has garnered significant attention in recent7

years. PrediXcan is one of the most widely used gene-based association methods for testing8

imputed gene expression values with a phenotype due to the invaluable insight the method has9

shown into the relationship between complex traits and the component of gene expression that10

can be attributed to genetic variation. The prediction models for PrediXcan, however, were11

obtained using supervised machine learning methods and training data from the Depression and12

Gene Network (DGN) and the Genotype-Tissue Expression (GTEx) data, where the majority13

of subjects are of European descent. Many genetic studies, however, include samples from14

multi-ethnic populations, and in this paper we assess the accuracy of gene expression predictions15

with PrediXcan in diverse populations. Using transcriptomic data from the GEUVADIS (Genetic16

European Variation in Health and Disease) RNA sequencing project and whole genome sequencing17

data from the 1000 Genomes project, we evaluate and compare the predictive performance of18

PrediXcan in an African population (Yoruban) and four European populations. Prediction19

results are obtained using a range of models from PrediXcan weight databases, and Pearson’s20

correlation coefficient is used to measure prediction accuracy. We demonstrate that the predictive21

performance of PrediXcan varies across populations (F-test p-value < 0.001), where prediction22

accuracy is the worst in the Yoruban sample compared to European samples. Moreover, the23

performance of PrediXcan varies not only among distant populations, but also among closely24

related populations as well. We also find that the qualitative performance of PrediXcan for the25

populations considered is consistent across all weight databases used.26

1 Introduction27

In the past decade, genome-wide association studies (GWAS) have identified thousands of genetic28

variants significantly associated with a wide range of human phenotypes. The vast majority of these29

studies, however, were conducted in samples from European ancestry populations [1–5]. Differences30

in allele frequencies, genetic architecture, and linkage disequilibrium (LD) patterns across ancestries31

suggest that GWAS discoveries can fail to generalize across populations, and recent publications32

have provided compelling evidence that GWAS findings often do not transfer from European33
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populations to other ethnic groups. For example, Carlson et al. analyzed multi-ethnic data from34

the PAGE Consortium and concluded that some GWAS-identified variants from European ancestry35

population had different magnitude and direction of allelic effects in non-European populations36

and the differential effects were more persistent in African Americans [6]. Moreover, genetic risk37

prediction models derived from European GWAS were unreliable when applied to other ethnic38

groups [6]. Martin et al. examined the impact of population history on polygenic risk scores and39

demonstrated that they were biased and confounded by population structure. [7]. Since genetic risk40

prediction accuracy depends on genetic similarity between the target and discovery cohorts, Martin41

et al. advised against interpreting the scores across populations and recommended computing them42

in genetically similar cohorts.43

Associations between genetic variation and molecular traits, such as gene expression, have44

advanced our understanding of the mechanisms underlying trait-variant associations [8]. Prior45

studies have shown that a large proportion of GWAS variants identified for complex traits are46

expression quantitative trait loci (eQTLs): i.e., they play a role in regulating gene expression [9].47

Thus, eQTLs can aid in prioritizing likely causal variants among the ones identified by GWAS,48

especially if they are found in non-coding regions, and uncover the mechanisms by which genotypes49

influence phenotypes [8]. So having three types of data – genotype, phenotype and gene expression50

– on the same set of subjects can be advantageous for investigating the relationships between51

phenotypes and genetic background of a subject and underlying processes. However, collecting all of52

these data types is often not feasible due to cost and tissue availability. Additionally, eQTL studies53

have the same pitfalls as GWASs – the majority of the detected eQTLs are not causal, but may be54

in LD with causal variants. Similar to variants identified through GWAS, eQTL findings might fail55

to replicate in diverse populations due to LD patterns that differ across populations.56

Recently methods, such as PrediXcan, have been proposed for integrating eQTL studies and57

GWASs [10]. Such methods have multiple advantages over traditional GWAS methods, especially58

where expression data from the tissue of interest are not available and in cases when gene expression59

is in the causal pathway between genotypic variants and phenotype. PrediXcan can lead to an60

increase in power to detect associations for multiple reasons. First, it removes environmental noise61

and focuses on the genetically regulated component of gene expression. Second, PrediXcan bases62

gene expression prediction on a limited number of variants that are 1Mb upstream and downstream63

from the gene and then tests for association between the predicted expression and a phenotype. So,64

by including fewer variants that are potentially causal for every gene, the method has better power65

to detect eQTLs. Lastly, by conducting tests on aggregated variants instead of testing every variant,66

PrediXcan dramatically reduces multiple testing burden.67

However, PrediXcan models were built using data from the Depression Genes and Networks68

(DGN) and the Genotype-Tissue Expression (GTEx) Project – both of which consist primarily69

of European-ancestry subjects. This poses the question of how accurate PrediXcan expression70

predictions are for non-European ancestry populations. Previous research has reported differences71

in gene expression levels across diverse populations from the HapMap3 project noting that 77%72
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of eQTLs are population specific and only 23% are shared between two or more populations [11].73

More distantly related populations have more differentially expressed genes, although this can often74

be explained by the expression of different gene transcripts across populations [12].75

In this work, we investigated whether the predictive performance of PrediXcan differs across76

four European populations and one African populations using the Genetic European Variation in77

Health and Disease (GEUVADIS) [12] and 1000 Genomes Projects data [12, 13]. We predicted78

gene expression levels using seven PrediXcan weight databases derived from whole blood and79

lymphoblastoid cell lines (LCL) expression data. To test prediction accuracy across populations,80

we compared observed and predicted gene expression levels by calculating Pearson’s correlation81

coefficients and then using linear mixed models to assess significant differences. In addition, we82

also evaluated the utility of whole-blood-based models when making predictions for LCL expression83

data. The results suggests that accuracy of PrediXcan for gene expression prediction differs across84

populations, even among closely related European ancestry populations. Furthermore, PrediXcan85

prediction accuracy is the worst in Africans across all weight databases we considered.86

87

2 Materials and Methods88

2.1 Datasets89

We obtained gene expression data from the GEUVADIS Consortium and whole genome sequencing90

data from the 1000 Genomes Project. The gene expression data consisted of RNA sequencing on91

lymphoblastoid cell line (LCL) samples for 464 individuals from five populations. Of these, 44592

subjects were in the 1000 Genomes Phase 3 dataset, including 358 subjects of European descent93

and 87 subjects of African descent. European samples included: Utah residents with Northern and94

Western European ancestry (CEU, n = 89), British individuals in England and Scotland (GBR,95

n = 86), Finnish in Finland (FIN, n = 92), and Toscani in Italy (TSI, n = 91). African samples96

included individuals of African descent from Yoruba in Ibadan, Nigeria (YRI, n = 87). Gene97

expression measurements were available for 23,722 genes.98

We used seven PrediXcan weight databases: DGN whole-blood (further referred to as DGN),99

GTEx v6 1KG whole blood, GTEx v6 1KG LCL, GTEx v6 HapMap whole blood, GTEx v6 HapMap100

LCL, GTEx v7 HapMap whole blood (GTEx WB) , and GTEx v7 HapMap LCL (GTEx LCL).101

The databases were downloaded from http://predictdb.org/.102

2.2 Filtering out poorly predicted genes103

Linear regression models were used to identify genes whose predicted values are not associated with104

the observed values at significance level of 0.05 in order to filter out the genes with poor prediction105

accuracy across all subjects. For each gene, we fit a linear regression model with observed gene106

expression as the outcome, and predicted gene expression as the predictor of interest. We performed107
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the Wald test to assess the significance of the coefficient for each gene and excluded the genes whose108

corresponding p-values were above the significance level of 0.05.109

We then calculated Pearson’s correlation coefficient, r, between observed and predicted expression110

values for every gene, in each population separately. A few genes had constant predicted gene111

expression levels across all subjects. Since we could not calculate the correlation if one of the112

variables was constant, we excluded those genes. Thus, for every gene we had five Pearson’s113

correlation coefficients, one per population. Note that we used r instead of the square of Pearson114

correlation, r2, in order to take the directionality of correlation into account. Using r2 as a measure115

of predictive accuracy can be misleading because a large proportion of genes predicted and observed116

expression values that are negatively correlated.117

2.3 Prediction accuracy differences across populations and across tissues118

To assess how the training of prediction models with different populations affects prediction accuracy,119

we used a linear mixed effect model approach. After filtering out poorly predicted genes, we fit the120

following model:121

rij = β0 + γi + β1IFIN,i + β2IGBR,i + β3ITSI,i + β4IY RI,i + εij , (1)

where rij is the correlation coefficient for gene i in population j; and IFIN,i, IGBR,i, ITSI,i, and122

IY RI,i are indicator variables that are equal to 1 if the gene correlation was calculated on the123

population indicated in the subscript, and otherwise are equal to 0. Thus, we modeled population as124

a categorical predictor, with the CEU population as a reference. To account for variation between125

genes, we included a random intercept γi for each gene and we assumed that γi ∼ N (0, σ2γ). We126

also included an error term εij , such that εij ∼ N (0, σ2). To simultaneously test for differences127

in correlation coefficients across populations, we used repeated measures ANOVA. To assess the128

association between the change in correlation coefficient and population, we tested the coefficients129

for each population using the likelihood-ratio test.130

We also ran an additional analysis where we excluded the CEU population due to potentially131

lower quality of the CEU cell lines, as reported in the literature [14, 15]. We fit a model identical to132

(1), excluding the CEU and using the FIN population as a reference:133

rij = β0 + γi + β1IGBR,i + β2ITSI,i + β3IY RI,i + εij , (2)

where the notation is the same as above. Again, we performed a repeated measures ANOVA to test134

for differences in gene correlations across the populations and the likelihood-ratio test to separately135

test the change in gene correlations for each population compared to the reference population.136

To evaluate how PrediXcan performance with whole-blood (WB) databases differed from LCL137

databases, we restricted the set of genes to only those that were present in both the WB and LCL138

databases. We compared each pair of GTEx WB and GTEx LCL databases using a paired t-test.139

All the statistical analyses described above were performed in R version 3.3.3.140
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3 Results141

3.1 Overview of PrediXcan weight databases142

In Table 1, we summarize the main features of the PrediXcan weight databases that we used in143

the analyses. Compared to DGN database, GTEx databases have fewer gene models and smaller144

training sample sizes. HapMap and 1KG-based models differ in the number of variants used for145

training: GTEx Hapmap models were trained on the HapMap SNP set while GTEx 1KG were146

trained on the 1000 Genomes SNP set, so the latter utilize more SNPs when predicting expression.147

While GTEx LCL databases are based on relatively small training sets, they are derived from the148

same tissue as the GEUVADIS RNA-seq data we analyzed. Lastly, DGN and GTEx v7 sets of149

weights were trained only on the Europeans samples, while GTEx v6 databases had a small fraction150

of non-Europeans.151

To avoid repetition, we focus our attention on DGN, GTEx v7 WB and GTEx v7 LCL databases152

in the main text, and report our findings for the other four databases in the Supplementary material.153

3.2 PrediXcan prediction accuracy differs across diverse populations154

Using DGN, GTEx WB and GTEx LCL models and sequence data, we predicted gene expression155

for 10387, 5432 and 2777 genes, respectively (see Table 2). The number of genes with available156

predictions varied by population: the four European populations had similar counts and YRI had157

a slightly lower count. Because there was no variation in predicted expression values in at least158

one of the populations, we excluded 33 genes from DGN, 13 from GTEx WB, and 10 from GTEx159

LCL. From the remaining genes, we filtered out the ones with poor prediction accuracy based on160

associations between observed and predicted values, as described in the Materials and Methods161

section. Two-thirds of genes were excluded by this criteria from the genes predicted with DGN162

database, and slightly less than a half were excluded from gene sets predicted with the GTEx163

databases.164

Next, we computed gene correlation coefficients, separately in each of the five populations. Violin165

plots display the correlation coefficients by population across genes before and after filtering (see166

Figures 1A and 1B, respectively). We note that prediction accuracy is slightly lower for the African167

populations than for any of the European populations, regardless of the weight database used, and168

this trend is even more obvious after the filtering process.169

Afterwards, we binned the genes into six categories based on the gene correlation coefficients170

(see Table 3). The majority of genes have very poor prediction accuracy – of the genes predicted171

with whole-blood databases, a third have negative correlations and a half have correlations between172

0 and 0.2. Of the genes predicted with LCL, a fifth have negative correlations and over a third have173

correlations between 0 and 0.2. The distribution of gene correlation coefficients is fairly similar across174

the four European populations, although predictive accuracy seems worse in CEU compared to FIN,175

GBR, and TSI. The predictive accuracy is the worst in the African sample. Across all populations,176

only a small number of genes were predicted with high accuracy (with r > 0.6). Furthermore, all177
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European populations have a greater number of well-predicted genes than the African population,178

regardless of the weight database used.179

Next, we assessed the association between the prediction accuracy (as gene correlation coefficients)180

and population category via repeated measures ANOVA and linear mixed models. We present181

the parameter estimates and their 95% confidence intervals calculated using model-based standard182

errors for the model 1 in Table 4. Based on the repeated measures ANOVA, we find that prediction183

accuracy differs across populations, regardless of the weight database used (p-values for all databases184

were < 0.001). From the linear mixed model 1, we find that the prediction accuracy is significantly185

higher in FIN, GBR and TSI and significantly lower in YRI, compared to CEU (all p-values < 0.001).186

This suggests that predictive performance varies not only among distant populations, but also187

among closely related populations.188

Finally, we repeated the analysis described above, this time excluding the CEU population. We189

present the parameter estimates and the corresponding 95% confidence intervals in Table 5. From190

the repeated measures ANOVA, we find that prediction accuracy differs across the four populations191

(p-values for all databases were < 0.001). Moreover, based on the coefficients and the corresponding192

p-values from the linear mixed model 2, we estimate the prediction accuracy to be significantly193

higher in GBR and significantly lower in TSI and YRI, compared to the FIN population (see194

corresponding p-values in Table 5). This difference in prediction accuracy is the greatest between195

YRI and FIN when GTEx v7 LCL weight database was used. Like in the analysis above, we notice196

that predictive performance differs across populations, including European populations.197

3.3 PrediXcan prediction accuracy differs between tissues198

As can be seen in the violin plots in Figure 1, both databases based on whole blood perform similarly,199

and LCL-based database displays improved prediction accuracy. In order to compare pairwise gene200

correlations, we restricted our analyses to the 1,587 genes common in both GTEx v7 WB and201

GTEx v7 LCL. Scatter plots presented in Figure 2 suggest that the majority of genes have very202

similar correlation coefficients when using WB and LCL databases across all populations. However,203

we see more genes in the upper left corner, above the dotted line, indicating that using the LCL204

database results in more genes have better prediction accuracy. This result is not surprising since205

the expression data we used were derived from LCL. The results of the paired t-test are consistent206

with the visual examination of the data: the mean difference between gene correlations based on207

the GTEx v7 LCL model and based on the GTEx v7 WB model is 0.03 (p-value < 0.0001), with208

predictions based on the LCL model having better performance.209

4 Discussion210

In this work, we evaluated PrediXcan performance and compared it across five geographically diverse211

populations using multiple weight databases. Models from all seven weight databases were trained212

mostly on subjects of European ancestry; three of the databases were derived from LCL and the213
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remaining four from whole blood. As a measure of prediction accuracy, we computed correlation214

coefficients for each gene in all populations and used the linear mixed models framework to quantify215

the differences in prediction performance across populations. We also investigated whether whole216

blood models could be used for predicting gene expression levels in LCL.217

Overall, PrediXcan accurately predicted gene expression for some genes; however, the majority218

of genes had very poor correlation between measured and predicted expression levels. For almost219

half the genes, the correlation was negative. As expected, prediction accuracy was higher when the220

training and testing cohorts were of similar ancestry; i.e., models trained on Europeans performed221

better in the subjects of European descent and the worst in the African subjects. Surprisingly,222

prediction accuracy varied even among the European populations, with Finnish, British, and Italian223

populations having significantly higher accuracy than the CEU. These results held under all the224

weight databases we considered. Lastly, LCL-trained models outperformed whole-blood-trained225

models, although the prediction accuracy was similar for many of the genes.226

A recent study reported consistent results to our findings and suggested that gene expression227

models should be trained on genetically similar populations [16]. Lack of genomic data from diverse228

populations limits the ability to effectively interpret and translate genomic results into clinical229

applications for individuals from admixed and other non-European populations. Our results in this230

paper emphasize the need to develop methods that account for ancestry and incorporate ancestral231

LD structure and allele frequencies differences. We also corroborate the importance of including232

more ancestrally diverse individuals in medical genomics to ensure that everyone gets the benefits233

of precision medicine and to avoid further exacerbating healthcare inequality.234

We conclude this paper with some important caveats. LCLs are derived from B cells found235

in whole blood, and they provide a continuous supply of genetic material for GWAS and gene236

expression studies. However, they do undergo a transformation to become immortal that can change237

their biology and they do not have the same properties as native tissue [17]. Storage conditions,238

freeze-thaw cycles, and maturity of cell lines can also affect gene expression patterns [14,15]. The239

CEU cell lines were collected much earlier than the other cell lines and LCL age can have a240

confounding effect and bias downstream analyses [14]. This factor could have contributed to the241

differences in prediction accuracy among European populations. Lastly, our study had modest242

sample sizes and only one non-European population. Future work is needed to investigate the243

performance and prediction accuracy of PrediXcan and other related approaches for gene expression244

in other multi-ethnic and ancestrally diverse populations.245
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Tables256

Table 1: Summary of PrediXcan databases used in analyses.

PrediXcan Database Training set size Number of models Number of SNPs used

DGN whole blood 922 13,171 249,696
GTEx v6 1KG whole blood 338 6,759 185,786
GTEx v6 1KG LCL 114 3,759 125,045
GTEx v6 HapMap whole blood 338 6,588 136,941
GTEx v6 HapMap LCL 114 3,441 91,237
GTEx v7 HapMap whole blood 315 6,297 140,931
GTEx v7 HapMap LCL 96 3,045 88,143

Table 2: Number of genes for which Pearson correlation coefficients are available by population and
by PrediXcan weight database.

PrediXcan database DGN GTEx v7 WB GTEx v7 LCL

Genes with observed and
predicted expression values 10,387 5,432 2,777

By population:
CEU 10,385 5,432 2,777
FIN 10,385 5,432 2,777
GBR 10,385 5,432 2,777
TSI 10,385 5,432 2,776
YRI 10,354 5,419 2,767

Genes before filtering 10,354 5,419 2,767
Genes after filtering 3,493 2,288 1,699
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Table 3: Binned gene correlation coefficients for the five populations using DGN, GTEx WB and
GTEx LCL weight databases.

Unfiltered Filtered
CEU FIN GBR TSI YRI CEU FIN GBR TSI YRI

DGN database
r < 0 3,583 3,491 3,480 3,587 4,156 561 547 554 585 911

0 < r < 0.2 5,107 4,976 4,812 4,954 5,001 1,533 1,379 1,258 1,409 1,674
0.2 < r < 0.4 1,359 1,480 1,589 1,434 1,016 1,097 1,162 1,209 1,121 728
0.4 < r < 0.6 239 302 354 290 147 236 300 353 289 146
0.6 < r < 0.8 56 93 105 75 31 56 93 105 75 31

0.8 < r < 1 10 12 14 14 3 10 12 14 14 3
GTEx v7 WB database

r < 0 1,756 1,621 1,622 1,684 2,101 336 309 314 335 590
0 < r < 0.2 2,471 2,450 2,366 2,456 2,491 877 786 732 820 993

0.2 < r < 0.4 902 958 981 901 668 788 804 793 758 546
0.4 < r < 0.6 210 282 329 278 117 207 281 328 275 117
0.6 < r < 0.8 69 93 100 85 38 69 93 100 85 38

0.8 < r < 1 11 15 21 15 4 11 15 21 15 4
GTEx v7 LCL database

r < 0 546 488 484 509 774 80 69 55 69 274
0 < r < 0.2 1,119 1,031 996 1,050 1,296 560 443 426 477 777

0.2 < r < 0.4 718 742 761 736 510 675 681 692 681 461
0.4 < r < 0.6 293 361 369 360 145 293 361 369 360 145
0.6 < r < 0.8 80 126 137 96 38 80 126 137 96 38

0.8 < r < 1 11 19 20 16 4 11 19 20 16 4

Table 4: Results from linear mixed models for population category (with CEU as a reference) and
change in gene correlation coefficient among filtered genes.

DGN GTEx v7 WB GTEx v7 LCL
Estimate 95% CI p-value Estimate 95% CI p-value Estimate 95% CI p-value

FIN 0.019 (0.014, 0.025) < 0.001 0.021 (0.015, 0.028) < 0.001 0.038 (0.030, 0.046) < 0.001
GBR 0.029 (0.023, 0.034) < 0.001 0.032 (0.025, 0.039) < 0.001 0.051 (0.043, 0.059) < 0.001
TSI 0.010 (0.004, 0.016) < 0.001 0.013 (0.007, 0.020) < 0.001 0.027 (0.019, 0.035) < 0.001
YRI -0.054 (-0.059, -0.048) < 0.001 -0.070 (-0.077, -0.063) < 0.001 -0.097 (-0.105 -0.089) < 0.001

Table 5: Results from linear mixed models for population category (excluding CEU, with FIN as a
reference) and change in gene correlation coefficient among filtered genes.

DGN GTEx v7 WB GTEx v7 LCL
Estimate 95% CI p-value Estimate 95% CI p-value Estimate 95% CI p-value

GBR 0.010 (0.004, 0.015) < 0.001 0.011 (0.004, 0.018) 0.003 0.013 (0.005, 0.021) 0.002
TSI -0.009 (-0.015, -0.003) 0.002 -0.008 (-0.015, -0.001) 0.028 -0.011 (-0.019, -0.003) 0.009
YRI -0.073 (-0.079, -0.067) < 0.001 -0.091 (-0.098, -0.084) < 0.001 -0.134 (-0.143, -0.126) < 0.001
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Figure captions257
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Figure 1: Violin plots of gene expression correlation coefficients by five populations using DGN,
GTEx v7 WB and GTEx v7 LCL weight databases; (A) before and (B) after filtering out poorly
predicted genes.
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Figure 2: Scatter plots comparing gene correlation coefficients by population using GTEx v7 LCL
vs GTEx v7 WB databases.
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