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Abstract 16 

Bee species worldwide are facing a future of further land-use change and 17 

intensification. Populations of closely-related species with similar ecological 18 

characteristics are likely to respond similarly to such pressures. Such phylogenetic 19 

signal in species’ responses could undermine the stability of pollination services in 20 

agricultural and natural systems. We use abundance data from a global compilation of 21 

bee assemblages in different land uses to assess the sensitivity of 573 bee species to 22 

agricultural expansion, intensification and urbanization; and combine the results with the 23 

Bee Tree of Life to assess phylogenetic signal. In addition, we assess whether variation 24 

in species’ sensitivity to land-use change is better explained by phylogenetic or 25 

available functional trait differences. Bee species show strong phylogenetic signal in 26 

sensitivity to agricultural land expansion but only a weak signal in sensitivity to 27 

agricultural intensification and urbanisation. Sensitivities were usually best explained 28 

by a combination of functional and phylogenetic distances. This finding suggests that 29 

the commonly-recorded traits, despite being meaningful as functional response traits, 30 

do not capture all important determinants of bee species’ vulnerability or resistance. 31 

However, it also suggests that model-based predictions of the sensitivity of poorly 32 

known species may be sufficient to help guide conservation efforts.  33 

Keywords 34 

Land-use change, pollination services, correlates of risk, species decline, 35 

conservation 36 

 37 

Introduction 38 

Land-use change is the most important driver of present-day terrestrial biodiversity 39 

loss [1,2] and is predicted to cause continued damage in the future [3,4]. Most 40 

scenarios incorporate further loss of natural and semi-natural land, driven by 41 

agricultural expansion and urbanisation, as well as increased degradation due to 42 

agricultural intensification [5]. The effect such global change will have on bee 43 

populations could have serious consequences for crop pollination worldwide [6] and—44 

as bee species are the most important pollinators of flowering plants globally [7]—for 45 

wild plant populations too [8]. 46 

Predicting likely effects of land-use change on ecosystem functions such as 47 
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pollination requires an understanding of whether and how species’ sensitivities to land-48 

use change are shaped by their functional traits and evolutionary history [9,10]. Traits 49 

are known to predict responses of European bee populations to land use and related 50 

pressures, but associations are inconsistent [11–13]. In bumblebees, long-term 51 

population declines in North America show phylogenetic signal (i.e., closer relatives 52 

tend to show more similar trends) [14], as does their global conservation status as 53 

assessed by the IUCN Red List [15], but information on other bees is limited. The 54 

relative usefulness of phylogeny and available functional trait data in predicting 55 

species’ responses is an open question. Although phylogenetic relatedness is in this 56 

context only a proxy for similarity of species’ functional responses [16], it may 57 

outperform functional trait data if responses are driven by a broader set of 58 

(phylogenetically patterned) ecological differences than are captured by available trait 59 

data. 60 

A strong phylogenetic signal in species’ responses to a particular pressure 61 

increases the risk that the pressure could impact ecosystem functioning [16], as the 62 

order of species losses can strongly influence pollination networks [17]. Phylogenetic 63 

diversity and redundancy of bee communities may also decline; although debate is 64 

ongoing [18,19], phylogenetic diversity can be important for ecosystem functioning and 65 

stability [20]. The protection of phylogenetic diversity (by conserving those clades that 66 

are most vulnerable) may also be important for maintaining robust pollination networks: 67 

high phylogenetic diversity can correlate with interaction diversity [21], as closely-68 

related species also tend to share resources [22,23]. The strength of phylogenetic 69 

signal can vary among pressures [e.g. 24], meaning that different land-use transitions 70 

could carry different risks of pollination impairment that might not be apparent from the 71 

effects on species diversity or overall abundance. Nonetheless, so far there has been 72 

no exploration of the phylogenetic pattern of bee sensitivities to particular threats such 73 

as agricultural expansion, agricultural intensification and urbanization. 74 

Understanding which disturbances prompt the most phylogenetically patterned response 75 

may therefore indicate where ecosystem services might be at greatest risk and so where 76 

conservation action will be most important. However, it is unclear whether responses to 77 

different pressures will all show phylogenetic signal [16] as the links between ecological 78 

traits and the response to human impacts are not always straightforward [11,16]. We 79 

use data from 86 studies and 2,599 sites to assess the sensitivity of 573 bee species 80 

(from 96 genera) to human-dominated land uses, including agriculture and urban areas, 81 

and to increasing agricultural intensity. We quantify the strength of phylogenetic signal 82 
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in these sensitivity estimates, accounting for uncertainty in sensitivities. Using trait data 83 

for a subset of 143 bee species, we assess whether phylogenetic differences are better 84 

able than functional traits to explain variation in species’ sensitivities. 85 

Materials and methods 86 

Site-level data on bee abundance and occurrence were extracted from the PREDICTS 87 

database [25] and De Palma et al. [26]. We refer to each survey of multiple sites that 88 

used the same sampling method within the same season and the same country as a 89 

‘study’. Differences in sampling effort among sites within a study were corrected for 90 

where necessary, assuming that recorded abundance increases linearly with sampling 91 

effort [26]. Within each study, we recorded any blocked or split-plot design. See 92 

Appendix Table S1.1 for a list of data sources (some containing multiple studies).  93 

The major land use and land-use intensity at each site was recorded based on 94 

information in the associated paper, supplementary files or other information provided 95 

by the original authors, as described in [27]. Land use was classified as primary 96 

vegetation, secondary vegetation, cropland, plantation forest, pasture or urban. The 97 

use-intensity scale assesses human disturbance on a three-level qualitative scale within 98 

each land use (minimal, light and intense) [28]. For instance, intensively-used cropland 99 

includes monocultures with characteristic features of intensification (e.g., large fields, 100 

high levels of external inputs, irrigation and mechanization); lightly-used cropland would 101 

show some, but not all, or the same features; whereas minimally-used cropland would 102 

include small mixed-cropping fields with little or no external input, irrigation or 103 

mechanization.  104 

Species sensitivity 105 

We focus on four land-use transitions (Table 1). The first, with the largest sample size, 106 

compares species abundances in natural/semi-natural land (i.e., primary or secondary 107 

vegetation) with all human-dominated land uses combined (i.e., all other land-use 108 

classes) as a recent synthesis showed that, in terms of species composition, 109 

assemblages in human-dominated land uses are more similar to each other than to 110 

those in natural or semi-natural land [3]. However, within this broad categorisation, 111 

particular transitions may influence species in different ways, so we also explore 112 

separately the impact of conversion to agricultural land, conversion to urban land, and 113 

increases in agricultural intensity. The land-use classes within the dataset were 114 
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coarsened depending upon the land-use comparison of interest, allowing species 115 

abundances to be compared between intact (natural and semi-natural) land uses and 116 

converted (human-dominated, agricultural or urban, respectively) land uses, or with 117 

increasing agricultural intensity (Table 1). 118 

We define the Species Sensitivity Index (SSI) as the log-response ratio: 119 

��� � ln ���

��

� 

 120 

where �� is the mean abundance of the species in converted land uses, and �� is the 121 

mean abundance in intact land-uses. SSI was estimated as follows. For each species, 122 

abundance was modelled statistically as a function of the land-use category (intact vs 123 

converted) or agricultural intensity. Study identity was included as a factor to account 124 

for among-study differences in methodology, sampling effort and biogeography. Study 125 

identity would ideally be treated as a random variable, but many species were in too 126 

few studies to accurately estimate random-effect variances [29] (~80% of species in 127 

our dataset were represented in six or fewer studies). Bayesian generalized linear 128 

models were used [with weakly informative default priors, as described in 30, 129 

implemented in the arm package using the bayesglm function] with a Poisson error 130 

structure unless overdispersion required use of a quasi-Poisson structure [31]. This 131 

approach provides more realistic coefficient estimates and more conservative 132 

standard errors than frequentist generalized linear models given that there can be 133 

complete separation of the data (for example, when a species is always absent from 134 

converted sites but always present in intact sites). The land-use coefficient (the log 135 

response ratio) from the model was used as the estimate of SSI and the standard 136 

error as its associated uncertainty.  137 

In all further analyses, we use data for species that have abundance values in at 138 

least six sites (three intact and three converted), aiming for a balance between 139 

maximizing numbers of species and having sufficient data for each one. Repeating the 140 

analyses with a more stringent threshold (at least 12 sites: six intact and six converted 141 

site) produced qualitatively similar results, so we show results with the more lenient 142 

threshold, which include more species. 143 

Phylogenetic tree 144 

We used the Bee Tree of Life [32], a recent phylogeny of over 1,300 bee species from 145 
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around the world, after rate-smoothing using PATHd8 [a computationally efficient method 146 

for large phylogenetic trees 33] with the root age constrained to one. Of the species 147 

present in our dataset, 141 were also in the phylogeny. Although there was no difference 148 

in mean SSI between these and the species absent from the phylogeny (two-tailed t-test: 149 

t1,245.0 = -0.33, n.s.), the latter tended to have higher uncertainty in SSI (two tailed t-test: 150 

t1,230.1 = -4.29, p < 0.001). Because of this non-randomness, we used the pastis package 151 

in R [a birth-death polytomy resolver, 34] to estimate—1000 times—possible placements 152 

for missing species, given their taxonomic affinities [35], to produce 1000 complete trees. 153 

See Appendix S2 for full details. Birth-death polytomy resolvers can bias trait-based 154 

analyses [36], so we perform all analyses on the rate-smoothed incomplete tree of 141 155 

species as well as the 1000 complete trees. 156 

Phylogenetic analyses 157 

Phylogenetic signal was quantified using Pagel’s [37] λ, which produces reliable 158 

estimates when sample sizes are large [38], as here. We used the implementation in 159 

the R package phytools [39,40], which accommodates uncertainty in the SSI estimates, 160 

though we also estimated λ without accounting for uncertainty in species sensitivity, for 161 

comparison. As bumblebees (Bombus) may respond differently from other species to 162 

human impacts [14,41,42], which could drive phylogenetic signal in the overall dataset, 163 

we also estimated λ for both bumblebees alone and all other species. 164 

We used 'traitgrams' [43] to assess the relative power of phylogenetic and functional 165 

distances to explain variation in SSI. Phylogenetic and functional distances were 166 

combined into a single set of Euclidean distances [43] according to: 167 

 168 

	
��� � ���
���� � �1 � ��	����� 
where 
��� is the phylogenetic (cophenetic) species distance [pez package: 47], 	��� 169 

is the trait pairwise distance [Gower’s dissimmilarity with transformation to provide 170 

Eucleidian properties: 48,49], and � governs the relative weighting of 	��� and 
��� in 171 

	
���. Setting � � 0 computes functional diversity and � � 1 computes phylogenetic 172 

diversity. We calculated 11 distance matrices using � values spaced evenly from 0 to 1, 173 

and compared their explanatory power to find which best explained our data in 174 

distance-based generalised linear models [dbstats package, 47,48] weighted by the 175 

inverse squared standard errors of the SSI. We also modelled SSI as a function of a 176 

randomly-generated distance matrix (with original values drawn from a normal distribution) 177 
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as a null model. Models were compared using an adapted version of Akaike’s Information 178 

Criterion (AIC) [47,48]. We calculated models’ pseudo R2 as: 1 � �������	
 ����	��

��

 ����	��
�. 179 

Ecological trait data were collated for 556 of the species in our dataset by SPMR, 180 

MK and EF by assessing peer-reviewed and grey literature and by measuring available 181 

museum specimens. Traits included inter-tegular distance (ITD) [a proxy for foraging 182 

range, 52], flight season duration, dietary breadth, nesting strategy, and reproductive 183 

phenology and strategy [11], and are generally phylogenetically conserved (see 184 

Appendix Table S3.2). However, because data for the complete set of seven traits were 185 

available for only 75 species in both our data set and the original phylogeny, we re-ran 186 

this analysis using a reduced set of traits (ITD, nesting strategy and reproductive 187 

strategy), enabling inclusion of 143 species. We also repeated the analysis using the 188 

completed trees (259 species with data for all traits; 537 species with the minimal set).  189 

R e s u l t s  190 

SSI values 191 

Species’ sensitivities to different land-use transitions were relatively normally 192 

distributed (see Fig 1), with wide variation in species responses. For the comparison 193 

between natural and human-dominated land-uses, for instance, 40 species had SSI < -194 

2 and 28 species had SSI > 2; 82 species had SSI estimates that were significantly 195 

non-zero (44 negative, 38 positive; coloured lines on Fig 1).  196 

 197 

Phylogenetic signal 198 

The strength of phylogenetic signal in SSI differed among land-use comparisons (Fig. 199 

2a). The strongest signal was in comparisons between (semi-)natural and human-200 

dominated land uses, with high and significantly non-zero λ values for all but one of the 201 

completed phylogenetic trees (p < 0.05; Fig. 2a and Fig. 3). SSIs comparing semi-202 

natural and natural land to agriculture showed λ values nearly as high: λ was 203 

significantly non-zero for the rate-smoothed tree (λ = 0.59, p < 0.05), and for >99% of 204 

the completed trees. The signal in sensitivity to urbanization and to increasing 205 

agricultural intensity depended on which phylogeny was used, being very low except 206 

with the completed trees (Fig. 2a). Weighting the analyses by the standard error of 207 

species sensitivity was extremely important: λ values were always low when standard 208 
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errors were not accounted for (Fig. 2b).  209 

There was no significant phylogenetic signal within the bumblebees. Phylogenetic 210 

signal was also lower among non-bumblebees, particularly when assessing species’ 211 

sensitivity to all human-dominated land-uses, and particularly when analyzing only the 212 

species in the rate-smoothed tree (Table 2); analyses using the complete phylogenies 213 

often found significant, albeit reduced, phylogenetic signal in non-bumblebees for both 214 

agricultural expansion and loss of natural vegetation (Table 2).  215 

 216 

Relative importance of traits and phylogeny 217 

Species’ sensitivities to human-dominated land uses were best explained by a 218 

combination of both phylogeny and functional distances: this was true when using the 219 

rate-smoothed tree and across the completed trees (with α ≥ 0.7 producing the highest 220 

AIC weights and high R2 values; Figure 4 and Appendix Figure S5.1). However, 221 

phylogenetic distance was more important than functional distances for transitions 222 

whose SSIs showed higher phylogenetic signal (i.e., sensitivity to human dominated 223 

land and agricultural land), whereas sensitivity to agricultural intensification seemed to 224 

be more strongly influenced by functional distances (α < 0.4 had the highest AIC 225 

weights and R2 values; Figure 4 and Appendix Figure S5.1). 226 

 227 

Dis cu ss ion 228 
 229 

Bee species show strong heterogeneity in their responses to land-use practices with, in 230 

our data set, roughly as many ‘winners’ (positive SSI) as ‘losers’ (negative SSI) (Fig 1). 231 

This is in line with the wide range of responses reported in the literature (e.g., 232 

urbanization has been reported as having positive [50,51], neutral [52] and negative 233 

[50,51,53] effects on bee populations). Clearly many bee species are able to benefit 234 

from the environmental changes (potentially including removal of competitors: [54]), 235 

while others struggle to persist.  236 

The strong phylogenetic signal (λ ~ 0.7) seen in species’ responses to human-237 

dominated land uses is not surprising: SSI estimates a species’ susceptibility to one 238 

particular driver (land-use change), which will be mediated by functional response traits 239 

[11,12,55,56] that are often phylogenetically conserved [57] (though estimated 240 

responses will also be influenced by the contexts of individual studies, probably 241 

reducing the phylogenetic signal).  242 
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The different focused land-use comparisons find different degrees of phylogenetic 243 

signal in species’ responses (Fig 2), with conversion to agriculture and urbanization 244 

producing moderately strong signal (λ ~ 0.6, except for the analysis of urbanization 245 

using the rate-smoothed tree, where sample size is small) while agricultural 246 

intensification elicits negligible signal (λ ~ 0). Accounting for measurement error was 247 

crucial for estimating phylogenetic signal strength; omitting it led to much lower estimates 248 

of λ (Fig 2), as expected [39], though results were consistent. Results were also not 249 

strongly driven by bumblebees; clustering of sensitivity was seen throughout the tree.  250 

Why does agricultural intensification not produce a stronger phylogenetic signal? We 251 

consider three possible biological explanations. First, species’ responses to agricultural 252 

intensity may be mediated by features of landscapes—not considered in our models—253 

more than by features of sites. Field diversity and landscape composition, for example, 254 

have been shown to shape the biotic effects of agricultural intensity [58]; because such 255 

attributes are not recorded in the PREDICTS database, we were not able to consider 256 

them, perhaps causing responses to appear idiosyncratic. Second, the low-intensity 257 

agricultural habitats to which higher-intensity agriculture is compared may have already 258 

filtered out the most vulnerable native bee species (i.e., those with the most negative 259 

SSI values), and perhaps had synanthropic (i.e., SSI > 0) non-natives added, by the 260 

original conversion from natural to agricultural land. Such SSI-biased turnover of 261 

species would tend to erode SSI’s phylogenetic signal. This explanation—that the initial 262 

conversion of a landscape to an ‘anthrome’ [59] leaves a strong phylogenetic signal 263 

whereas subsequent intensification of use does not—requires that much the same 264 

traits mediate responses to agricultural expansion and agricultural intensification. Such 265 

trait-based extinction filters are likely why mammalian extinction risk shows no 266 

phylogenetic signal in regions with a long history of intense human activity [60]. If this 267 

explanation is correct, then even though low-intensity agricultural practices score better 268 

than more intensive systems for community-level measures of bee biodiversity [35,58], 269 

they may have already altered community composition irreversibly [42]. The third 270 

possibility is that the ability of species to persist in the face of agricultural 271 

intensification depends most strongly on traits that are not phylogenetically conserved. 272 

For instance, we found no strong phylogenetic signal in diet breadth (Appendix Table 273 

3.2). Diet breadth can be flexible for some species (e.g. Bombus terrestris can increase 274 

diet breadth when faced with increased resource competition [61]), but on the other 275 

hand, even generalist species can have rigid host-plant preferences [62]. A fourth, non-276 
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biological, explanation for the lack of phylogenetic signal in responses to agricultural 277 

intensification is that our use-intensity criteria mix multiple pressures (e.g. pesticide 278 

and fertilizer use); each component might on its own elicit phylogenetically patterned 279 

responses, but the signal may be lost by mixing them.  280 

Although SSI values usually showed phylogenetic signal, in the subset of bee species 281 

with available trait information, SSIs were generally better explained by a combination of 282 

both phylogenetic and trait distances [43], highlighting the added value of ecological 283 

trait data for species. These results are in line with previous analyses revealing that 284 

functional traits can significantly influence species sensitivities to a number of land 285 

uses and land-use practices in a variety of systems [11,12,55]. However, such trait-286 

environment relationships can have low explanatory power and results across studies 287 

can be contradictory [13]. Taken with our results, this suggests that species’ 288 

sensitivities may be influenced by ecological differences that are not fully captured by 289 

the commonly measured traits, while phylogeny may provide a closer approximation to 290 

these unmeasured characteristics [63]. For instance, the phylogenetic relatedness of 291 

bee species can inform the structure of plant-pollinator networks [23,64]; as ecological 292 

interactions are lost more quickly than species from a system [65], a given species’ 293 

network could have a strong influence on its resilience to disturbances. Responses to 294 

agricultural intensification do not fit this model: trait differences explained some 295 

variation in SSI but phylogenetic distance did not. This combination of results is 296 

consistent with the suggestion that trait-mediated competition may underlie the 297 

responses [66].  298 

Although the importance of traits in mediating species’ sensitivities to land-use 299 

changes is congruent with previous work [12], our dataset may not be representative; it 300 

is therefore possible that a more complete set of species with trait data would change the 301 

relative importance of traits and phylogeny. The species in our dataset capture 302 

significantly less phylogenetic diversity than expected from a random selection of 303 

species from the Bee Tree of Life (see Appendix 6). Local assemblages are often a non-304 

random subset of the global phylogeny [67,68]; our analyses focus on such assemblages 305 

and so this is, in part, an inescapable consequence of our study’s objectives. 306 

The strong phylogenetic signal in bee species’ sensitivities to human-dominated land 307 

uses like agriculture means that losses of diversity are likely to be concentrated within a 308 

subset of clades, where they will be correspondingly more severe; likewise, any gains in 309 

diversity will be restricted to groups of related species. Clustering of losses can greatly 310 
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reduce the phylogenetic and functional diversity of a system [16], potentially 311 

jeopardizing its ability to function under environmental change [20]. Crop pollination may 312 

be more robust than other ecosystem functions to species losses as a few dominant 313 

species are the main contributors at local scales [69]. However, higher species diversity 314 

may be necessary at larger spatial scales [70]. Furthermore, some wild plant species 315 

require specialist pollinators, potentially meaning that they face a double threat from 316 

conversion of land to agriculture: directly, though loss of habitat, and indirectly, through 317 

the decline in their pollinators.  318 

Our results suggest that the phylogenetic risk assessment framework set out by 319 

Díaz et al. [16] could inform management practices and highlight gaps in knowledge. 320 

Even though bees are well studied relative to many other invertebrate groups, there are 321 

still uncertainties about their current status and vulnerability to human impacts [71] as 322 

well as gaps in trait data. The strong phylogenetic patterning in species’ sensitivities to 323 

agricultural expansion could help to predict the sensitivity of understudied species, 324 

identifying those that are most vulnerable or resistant to guide conservation planning 325 

[72,73]. For instance, many species of bumblebees showed positive or neutral 326 

responses to agricultural land, but negative responses to increased agricultural 327 

intensity (Appendix Figure S4.2 and S4.4); this combination of results suggests that 328 

agricultural production can support many species of bumblebees, but only if intensity is 329 

low. However, our estimate of sensitivity to particular pressures—SSI—does not 330 

necessarily indicate the conservation status of a species, which is a product of both 331 

sensitivity to combined pressures and exposure to those pressures. This may explain 332 

why we found no phylogenetic signal in bumblebee SSIs, even though extinction risk in 333 

these species is significantly non-random [15]. Phylogenetically patterned responses 334 

may also open opportunities to monitor bee communities at higher taxonomic levels 335 

[74–76]: this would reduce the need for species identification by expert taxonomists 336 

and the need for destructive sampling of bees [77,78], save time and money, and 337 

facilitate citizen science.  338 

Our results provide a basis from which to make, test, and inform predictions about 339 

bee species’ sensitivities to land-use change, with potentially important benefits for 340 

monitoring and conservation prioritization, as well as identifying land-use pressures that 341 

may most affect pollination services to crops and wild species. Analyses of how these 342 

results scale up to changes in abundance-weighted phylogenetic diversity of 343 

communities are necessary to identify spatial patterns in diversity and potential areas of 344 
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pollination deficit [35,79]. 345 
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Figure Legends 583 

Figure 1: Spread of SSI values (points) and their standard error (lines) for each land-use 584 

transition, for all species in the dataset. Coloured points indicate that SSI values were 585 

significantly different from 0. Particularly vulnerable species (i.e., those with an SSI 586 

significantly below 0) are coloured in yellow to red, while species that strongly benefit 587 

from land-use change (i.e., those with SSI values significantly above 0) are coloured light 588 

to dark blue. 589 

 590 

Figure 2: Phylogenetic signal in species’ sensitivity to various land use pressures, when 591 

(a) standard errors are accounted for and (b) when they are ignored. Red triangles 592 

indicate the values for the rate-smoothed tree, where some species are missing from the 593 

tree. Numbers in red show the number of species included in these tests. Boxplots show 594 

the distribution of values across the 1,000 completed trees, with numbers in black 595 

showing the number of species included in these tests. 596 

 597 

Figure 3: Phylogenetic signal in species’ sensitivity to all human-dominated land uses 598 

using the rate-smoothed (incomplete) tree. Tips of the phylogeny are coloured according 599 

to the species’ sensitivity: from blue to red indicate less to more sensitive. The right 600 

panel shows species sensitivity ± the standard error. See Appendix Figures S4.2 to S4.4 601 

for similar figures for other land-use transitions. 602 

 603 

Figure 4: Akaike’s Weights of models assessing species sensitivities as a function of 604 

alpha value, where alpha = 0 uses only functional traits to calculate the distance, alpha 605 

= 1 uses only phylogeny to calculate the distance, and alpha = 0.5 considers both traits 606 

and phylogeny equally. Model performance was also calculated where distances were 607 

randomly computed. Red triangles indicate the values for the rate-smoothed tree, where 608 

some species are missing from the tree. Numbers in red show the number of species 609 

included in these tests. Boxplots show the distribution of values across the 1,000 610 

completed trees, with numbers in black showing the number of species included in these 611 

tests. For a similar figure assessing explanatory power of models, see Appendix Figure 612 

S5.5.  613 
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Tables 614 

 615 

Table 1: Land-use transitions of interest and the component land-use classes. Dataset 616 

sample sizes are also given: number of studies, species and species that match with the 617 

recently-published Bee Tree of Life [32]. 618 

Land use 

comparison 

Intact Converted Number 

of 

studies 

Number 

of 

species 

Number of 

species in 

the 

phylogeny 

Loss of natural 

and semi-natural 

habitat 

Primary & 

Secondary 

vegetation 

Cropland, 

Pasture, 

Plantation forest 

& Urban 

86 488 141 

Agricultural 

expansion 

Primary & 

Secondary 

vegetation 

Cropland, 

Pasture & 

Plantation forest 

84 437 121 

Urbanisation Primary & 

Secondary 

vegetation 

Urban 54 146 56 

Agricultural 

intensification 

Agricultural sites (as defined 

above) with a continuous use-

intensity scale from 1 (minimal 

use) to 3 (intense use) 

53 268 87 

  619 
  620 
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Table 2: λ values of the sensitivity of all bee species, bumblebees only and other 621 

species (bumblebees excluded from the phylogenetic tree) to land-use change. For the 622 

completed trees, this is the mean λ ± standard deviation across the 1000 phylogenies. 623 

 624 
Sensitivity to: Tree λ 

  All species Bumblebees Other species 

Human-dominated land 
Rate-smoothed 0.741 0 0 

Completed 0.672 ± 0.09 0 ± 0 0.626 ± 0.14 

Agricultural land 
Rate-smoothed 0.594 0 0 

Completed 0.64 ± 0.1 0 ± 0 0.586 ± 0.16 

Urban land 
Rate-smoothed 0 0 0.143 

Completed 0.633 ± 0.15 0.256 ± 0.44 0.2 ± 0.12 

Higher-intensity agriculture 
Rate-smoothed 0.046 0 0.041 

Completed 0.116 ± 0.03 0 ± 0 0.121 ± 0.04 

 625 
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