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Abstract 
 
The growing literature reporting results of cognitive-neural mappings has increased calls for an 
adequate organizing ontology, or taxonomy, of these mappings. This enterprise is non-trivial, as 
relevant dimensions that might contribute to such an ontology are not yet agreed upon. We propose 
that any candidate dimensions should be evaluated on their ability to explain observed differences 
in functional neuroimaging activation patterns. In this study, we use a large sample of task-based 
functional magnetic resonance imaging (task-fMRI) results and a data-driven strategy to identify 
these dimensions. First, using a data-driven dimension reduction approach and multivariate 
distance matrix regression (MDMR), we quantify the variance among activation maps that is 
explained by existing ontological dimensions. We find that ‘task paradigm’ categories explain the 
most variance among task-activation maps than other dimensions, including latent cognitive 
categories. Surprisingly, ‘study ID’, or the study from which each activation map was reported, 
explained close to 50% of the variance in activation patterns. Using a clustering approach that 
allows for overlapping clusters, we derived data-driven latent activation states, associated with re-
occurring configurations of the canonical fronto-parietal/salience, sensory-motor, and default 
mode network activation patterns. Importantly, with only four data-driven latent dimensions, one 
can explain greater variance among activation maps than all conventional ontological dimensions 
combined. These latent dimensions may inform a data-driven cognitive ontology, and suggest that 
current descriptions of cognitive processes and the tasks used to elicit them do not accurately 
reflect activation patterns commonly observed in the human brain.    
 
 
Keywords: cognitive ontology, meta-analysis, fMRI 
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Introduction 
   

The exponential growth of functional neuroimaging studies mapping constructs at the 
psychological level to patterns of brain activity (cognitive-neural mappings) has led to issues 
surrounding an adequate organizing ontology or taxonomy of these results 1–4. An ontology of a 
scientific domain serves both an organizational and descriptive function. In terms of organization, 
an ontology provides a standardized framework for managing, sharing and analyzing increasingly 
large databases of experimental analyses and data. Importantly, they also serve to describe 
experimental results in terms of natural divisions or dimensions of the phenomena under study. 
This function is particularly important for cognitive neuroscience, where a central goal is to map 
constructs at the psychological level to phenomena studied at a neurobiological level of analysis. 
The present goal of this study is to identify data-driven dimensions of a potential ontology based 
upon its ability to explain variability between patterns of brain activity. 

 
Important progress in the development of an ontology for cognitive-neural mappings has 

been made using a combination of large-scale meta-analysis of task-based functional magnetic 
resonance imaging (task-fMRI) activation maps and topic modeling 5–7. At a general level, these 
studies map latent cognitive dimensions, derived from text documents 5,6 or task-paradigm 
descriptions 7, to patterns of brain activity. However, an important factor that needs to be addressed 
for an ontology of cognitive-neural mappings is what cognitive features of the task-fMRI 
environment drive the greatest differences in observed activation patterns. In other words, an 
adequate ontology of cognitive-neural mappings needs to identify those features of the task-fMRI 
experiment that explain the most variance among task-fMRI activation patterns.  
 
 To address this issue in a quantitative framework, we used a whole-brain representational 
similarity analysis (RSA) approach 8. Using this approach, we quantified the spatial similarity 
among whole-brain task-activation maps from the BrainMap database (Fox & Lancaster, 2002). 
Using multivariate distance matrix regression (MDMR; Zapala & Schork, 2006), we predict the 
variability between task-activation maps by existing ontological categories of the BrainMap 
database. The fundamental assumption of this approach is that the important features of the exiting 
ontology are identified in terms of the amount of variance they explain in task-activation map 
similarities.  
 

Using the spatial similarity estimates among whole-brain task-activation maps, we also 
explore the possibility of estimating latent ontological dimensions directly from these similarities 
using a graph clustering approach. We take the opposite strategy of recent topic modeling 
approaches 5–7. In this approach, latent cognitive dimensions are estimated from experimental-
descriptions and then projected onto patterns of brain activity 5, or co-occurring latent cognitive 
dimensions and patterns of brain activity are simultaneously estimated 6,7. In our approach, we 
reverse this chain of analysis. Commonly re-occurring whole-brain activation patterns, or 
activation states, are estimated directly from task-fMRI activation maps, and then projected onto 
experiment descriptions for interpretation. This approach assumes that the quality of a latent 
dimension is determined by how well these dimensions explain observable differences in task-
fMRI activation patterns. Thus, latent cognitive dimensions are determined not in terms of their 
co-occurrence in text, but their co-occurrence with dominant whole-brain activation states. 
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Importantly, these dimensions may or may not map cleanly onto existing latent cognitive 
dimensions.  
 
 
 
Results 
 
Outline of Approach 
 

Our approach proceeds in three general steps (Figure 1). First, sparse non-negative matrix 
factorization (sparse-NMF) is applied to task-fMRI activation maps (N = 8919) reconstructed from 
experiment-reported peak-activation coordinates to derive a sparse ‘dictionary’ of brain networks. 
Spatial similarity estimates between activation maps could be computed at the voxel level, but this 
ignores spatial dependence between voxels. As opposed to other techniques (e.g., independent 
component analysis) for estimation of brain networks using the BrainMap database 11,12, sparse-
NMF provides a data-driven network estimation technique uniquely suited for the data reported in 
the BrainMap database: all data are positive (i.e. positive activation values) and sparse (i.e. a small 
number of reported coordinates for each experiment). Sparse-NMF naturally leads to a parts-based 
parcellation of the brain given its enforcement of positive weights 13, even under low signal-to-
noise conditions 14.  

 
Second, we compute the spatial dissimilarity between the network activation estimates to 

a construct an activation map*activation map dissimilarity matrix. This can be seen as a large-
scale whole-brain representational similarity analysis 8, where dissimilarity estimates are 
computed between large-scale activity patterns across the entire brain. We then predict the 
variability among activation maps from the experimenter-labeled ontological categories of the 
BrainMap database using multiple distance matrix regression (MDMR) 10. MDMR regresses a 
distance matrix onto a set of continuous or categorical predictors, and has extensive use in 
behavioral genomics 15 and studies of individual differences in resting-state functional connectivity 
(known as connectome-wide association studies) 16. The parameter of interest from this analysis is 
the explained variance estimate (R2) for five sets of ontological categories provided by the 
BrainMap database: analysis decisions, response type, stimulus type, task-paradigm class, and 
behavioral domain. These estimates provide information regarding what features of the existing 
ontology drive the greatest differences in task-activation maps. 

 
Third, we convert the dissimilarity matrix into a similarity matrix for graph-based 

clustering. We use a graph clustering algorithm, known as symmetric non-negative matrix 
factorization (Sym-NMF), that has been shown to outperform commonly-used spectral graph-
clustering algorithms 17. Importantly, Sym-NMF allows for overlapping communities of activation 
maps. As noted above, the goal of this clustering analysis was to estimate potentially overlapping 
whole-brain activation states. These states may prove useful as candidates for latent dimensions of 
a new data-driven ontology of cognitive-neural mappings. All code used in this manuscript are 
provided on the following webpage: https://github.com/tsb46/BrainMap-Cognitive-Ontology 
(currently a work in progress). 
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Figure 1. Illustration of Data-Driven Approach. First, latent network activation estimates are 
computed from activation maps derived from the BrainMap database using sparse non-negative 
matrix factorization (sparse-NMF). Sparse-NMF decomposes the activation map matrix into a 
‘Network Matrix’ of network voxel weights, and a ‘Network Expression Matrix’ that reflects the 
activation estimates of all networks for each map. Next, an activation map dissimilarity matrix is 
constructed from dissimilarity estimates between latent network activation patterns for each map. 
With this computed dissimilarity matrix, we then assess existing ontological categories using 
MDMR, and derive potential data-driven ontological categories using Sym-NMF.  
 
NMF Results 
 
 In order to estimate the latent network activation estimates underlying each activation map, 
we applied a sparse-NMF algorithm to the full sample of 8919 task-fMRI activation maps. We 
derived a high-resolution network parcellation of 70 networks, the same high-model order 
estimated in previous analyses of the BrainMap database 11,18. The spatial similarity of activation 
maps replicated across alternative network solution sizes, as observed by the correlation between 
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dissimilarity estimates of a 70-network solution size with smaller and larger solutions: N = 55, r = 
0.91; N = 60, r = 0.93; N = 65, r = 0.96; N = 75, r = 0.95; N = 80, r = 0.94; N = 85, r = 0.92. Visual 
inspection of the 70-network solution (Figure 2) revealed a sparse parcellation of cortical and sub-
cortical regions of the brain, corresponding to functionally relevant brain areas.  
 

 
 
Figure 2. 70-Network Parcellation. Visualization of the 70-network solution derived from the 
sparse-NMF algorithm. Networks are visualized with separate random colors.  
 
Prediction of Activation Map Dissimilarity from Existing Ontological Categories 
 
 Using the latent network activation estimates of the 70 networks we computed the 
activation map ´ activation map dissimilarity matrix with the cosine distance metric, representing 
the dissimilarity in latent network activation estimates between all activation maps. We used 
MDMR to regresses this dissimilarity matrix onto a set of ontological categories associated with 
each task-activation map. Categories provided by the BrainMap database fell into five domains: 
1) analysis decisions (subtraction vs. baseline contrast, and reported de-activation vs. activation), 
2) stimulus type (e.g. visual words, auditory stories, fixation cross, etc.), 3) response type (button 
press, speech, finger tapping, etc.), 4) paradigm class (encoding, task-switching, counting, etc.), 
and 5) behavioral domain (action execution, language semantics, working memory).  
 
  The BrainMap database contains nested data such that multiple task-activation maps are 
reported for a single study. To correct for this nesting in the BrainMap database, individual 
explained variance estimates for each categorical domain were corrected using a permutation test 
that respected study ID during permuting of task-activation map labels. Computation of the 
explained variance associated with each of the five categorical domains was carried out in a leave-
one-out fashion. Each categorical domain was added to the remaining set of domains to compute 
the unique explained variance associated with each categorical domain.  
 
 The explained variance accounted for by all categorical domains (Npredictors = 603) in the 
model was 19.67%. The explained variance accounted for by analysis decisions (subtraction vs. 
baseline contrasts, and reported activation vs. de-activations), controlling for other domains, was 
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0.49% (p = 0.001). The explained variance accounted for by stimulus type, controlling for other 
domains, was 3.1% (p = 0.001). The explained variance accounted for by response type, 
controlling for other domains, was 0.57% (p = 0.014).  The explained variance accounted for by 
paradigm class, controlling for other domains, was 4.17% (p = 0.001).  The explained variance 
accounted for by behavioral domain, controlling for other domains, was 3.71% (p = 0.001). In 
summary, all categorical domains, which correspond to traditional ontological categories 
commonly used to describe cognitive-neural mappings, accounted for less than 20% of explained 
variance in activation maps.  
 

We also ran a second model using only study ID as a predictor and we found that study ID, 
the study from which the task-activation map was reported, accounts for 44.71% of the variance 
in task-activation map differences. The single predictor of study ID accounted for more than twice 
the variance of the five categorical domains provided from the BrainMap database.  
 
 Identification of Re-occurring Whole-Brain Activation States  
 
 As the full set of available ontological categories explain a limited amount of variance 
between whole-brain activation patterns, we next explore whether differences in whole-brain 
activation patterns can be explained by a smaller set of latent whole-brain activation states. We 
first apply a graph clustering approach, symmetric non-negative matrix factorization (Sym-NMF), 
to derive overlapping clusters of task-activation maps. Overlap allows for the possibility that a 
single task-activation map may represent a combination of multiple whole-brain activation states. 
We then project these latent dimensions onto the task-descriptive categories for behavioral and 
cognitive interpretation. 
  
 To choose the optimal number of clusters, we used a cross-validation approach to identify 
cluster sizes that exhibited stable cluster centroids across split-half samples. We repeated the two-
fold cross-validation procedure for cluster sizes ranging from 2 to 20. Examination of average 
cluster centroid stability across cross-validation samples revealed two strong local minima of 
stability at a cluster sizes of four (Mstability = 0.043) and seven (Mstability = 0.055). Thus, further 
analyses were carried out on these cluster solutions.  
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Figure 3. Instability Across Cluster Number. Mean instability (with standard error bars) across 
100 random split-half samples for cluster numbers ranging from 2 to 20. Strong global minima 
were present at a cluster of four and seven (indicated by a vertical red line).  
 
 
 In order to provide a functional interpretation of the clustering results, we computed the 
centroid activation maps and the prevalence of BrainMap ontological categories in each cluster. 
The centroid activation maps represent the weighted average activation pattern of the activation 
maps within the cluster. The association of a BrainMap category with a cluster was computed as 
the probability that BrainMap category appears given the cluster, normalized by the base 
probability of the cluster (see Method and Materials). 
 
 For the four-cluster solution, the centroid activation maps corresponded to functionally 
relevant brain areas (Figure 4). The clusters included a visual/dorsal-parietal activation pattern 
(Four Cluster 1; 4C1), fronto-parietal activation pattern (4C2), a default mode network (DMN) 
activation pattern (4C3), and an auditory/motor activation pattern (4C4). Consistent with previous 
reports of domain-general BOLD activation in anterior insula (AI) and dorsomedial prefrontal 
cortex (DMPFC) 19, activation in the AI and thalamus was observed across all centroid activation 
patterns. The BrainMap categories associated with the four clusters are consistent with previous 
functional descriptions of these brain areas. 4C1 was associated with paradigms requiring viewing 
and responding to or manipulating visual objects, including ‘mental rotation’, visual shape 
perception, and ‘spatial cognition’. 4C2 was associated with paradigms requiring a variety of 
complex high-level actions and behaviors, including ‘working-memory,’ ‘action inhibition’ and 
‘language processing’. 4C3 was associated with paradigms requiring recall/recognition of previous 
information, inferences regarding others’ behavior (‘social cognition’), and various affective states 
(e.g. sadness, fear, reward, etc.). In addition, consistent with a DMN activation pattern, the 
activation maps within 4C3 were more likely to be reported as ‘de-activations’. 4C4 was associated 
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with paradigms requiring overt/covert motor responses, along with listening or responding to 
auditory stimuli.   
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Figure 4. Centroid Activation Maps and Behavioral Decoding for Four-Cluster Solution (BD 
= Behavioral Domain; PC = Paradigm Class; ExtVariable = External Variable; Stim = Stimulus; 
Resp = Response). Centroid activation maps with preliminary interpretative descriptions, and word 
cloud visualizations (presented to the right each centroid activation map) for the four-cluster 
solution. Experimental descriptors were sized by the degree of association with each cluster and 
their positions with respect to each other was determined by their ‘semantic closeness’. 
Experimental descriptors were colored according to the metadata category they belong to (e.g. 
Stimulus Modality, Behavioral Domain, etc.). A color key for each metadata category is provided 
in the top-right of the figure. The centroid activation maps represent the consistency of activation 
reported in each voxel across its cluster members (warmer colors represent a greater number of 
activations recorded at the voxel across activation maps for that cluster). Alongside each cluster 
label is the amount of unique explained variance that cluster explains in the similarity BOLD 
activation patterns, controlling for the remaining clusters.  
 
 The seven-cluster solution presented a slightly more fine-grained partition of the four-
cluster solution. While 4C2 remained stable from the four-cluster to seven-cluster solution (7C7), 
the other three clusters from the four-cluster solution were split into two separate clusters in the 
seven-cluster solution. 4C4 in the four-cluster solution was split into two clusters with activation 
predominantly in sensory/motor cortices (7C2) and auditory cortices (7C5). Consistent with 
previous functional descriptions of these areas, the BrainMap categories associated with 7C2 
included ‘action execution’, flexion/extension and tactile stimulation, and passive listening and 
pitching monitoring/discrimination for 7C2.  
 

4C3 in the four-cluster solution was split in the seven-cluster solution into two clusters 
with activation predominantly in the default-mode network (7C4) and sub-cortical structures (basal 
ganglia and amygdala; 7C6). Consistent with previous functional descriptions of these areas, the 
categories associated with 7C4 included ‘theory of mind’, ‘social cognition’, and autobiographical 
recall, and affective stimuli and long-term memory for 7C6.  

 
4C1 in the four-cluster solution was split in the seven-cluster solution into visual (7C1) and 

parietal-frontal clusters (7C3). Activation in 7C1 was predominantly observed in the visual cortex, 
with slightly weaker activation in the dorsal-parietal and frontal cortices. Activation in 7C3 was 
predominantly observed dorsal-parietal and frontal cortices, with slightly weaker activation in the 
visual cortex. Categories associated with 7C1 included passive viewing paradigms, including 
‘action observation’, and visual shape perception, and perception of moving objects. Task-
descriptive categories associated with 7C3 included active viewing paradigms, including ‘mental 
rotation’, ‘spatial cognition’, and delayed match to sample tasks. 
 

An important observation apparent in the clustering solution is that BrainMap categories 
‘distant’ in semantic space (farther apart in the word cloud) load strongly onto single activation 
states. In other words, categories that are semantically ‘distant’, are often not so ‘distant’ in the 
latent BOLD activation space. For example, consider the following two task paradigms: the Stroop 
color word task, and an overt word generation task. The psychological processes generally inferred 
to underlie these tasks include action inhibition 20 for the Stroop color word task, and lexical 
processing 21 for a word generation task. However, the whole-brain activation patterns of these 
paradigms are similar, as they both load strongly onto the same latent whole-brain activation state: 
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4C4 in the four-cluster solution and 7C7 in the seven-cluster solution. This suggests the neural 
response measured by task-fMRI is similar for the Stroop color word task and word generation 
task. Thus, whole-brain activation states may be informative in terms of mapping the similarity in 
functional anatomy between different cognitive or behavioral processes. 
 
   

 
Figure 5. Centroid Activation Maps and Behavioral Decoding for Seven-Cluster Solution (BD 
= Behavioral Domain; PC = Paradigm Class; ExtVariable = External Variable; Stim = Stimulus; 
Resp = Response). Centroid activation maps with preliminary interpretative descriptions, and word 
cloud visualizations (presented to the right each centroid activation map) for the four-cluster 
solution.  
 
Whole-Brain Activation State and BrainMap Category Comparison 
 
 To compare the explained variance from these latent whole-brain activation states to the 
existing ontological categories provided by the BrainMap database, we conducted an MDMR 
analysis regressing the weighted membership coefficients of the four- and seven-cluster separately 
onto the activation map * activation map dissimilarity matrix. The total explained variance for the 
four-cluster solution and seven-cluster solution were 20.95% (p = 0.001) and 34.37% (p = 0.001), 
respectively. Thus, both lower-order latent activation states (N =4 and N = 7) explained a greater 
amount of variance in task-activation map dissimilarity than the full model of existing ontological 
categories (N = 603). This difference in explained variance can be visualized with a re-ordered 
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activation map*activation map similarity matrix according to either the latent activation states or 
two example categorical domains (Behavioral Domain and Paradigm Class; Figure 5).  
 
   
 

 
Figure 5. Comparison of Latent Activation State Clusters and Task-Descriptive Category 
Clusters. To visualize the differences in explained variance between the latent activation states 
and two task-descriptive categories (Behavioral Domain and Paradigm Class), we visualized a re-
ordered activation map * activation map similarity matrix according to the latent activation state 
and task-descriptive categories. The re-ordered similarity matrices for the latent activation state 
and task-descriptive categories were created by re-organizing each activation map in the similarity 
matrix according to their dominant whole-brain activation state cluster (i.e. assignment of each 
map to the cluster with the strongest loading) or Behavioral Domain/Paradigm Class. The values 
in the similarity matrices vary from 0 (no similarity; cool colors) to 1 (max similarity; warm 
colors). The red lines organized along the diagonal of the similarity matrix trace groups of 
activation maps that belong to a single cluster according to their latent activation state or 
Behavioral Domain/Paradigm Class category. Similarity matrices with brighter colors within the 
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red cluster lines, and cooler colors outside, correspond to more compact and well-separated groups 
of task-activation maps. 
 
  
 

Discussion 
 

 A driving goal of cognitive neuroscience is to generate and constrain theories and models 
of cognitive processes using functional neuroimaging data. Directed at this goal, the primary aim 
of this study was to identify the dominant cognitive dimensions upon which whole-brain blood-
oxygen-level dependent (BOLD) activation maps vary. In other words, what dimensions of the 
task-fMRI experiment is the BOLD response most attuned do? Task-based fMRI research has 
conventionally used a fluid set of ontological categories to interpret the differences between 
activation maps. Using a novel analysis pipeline applied to the BrainMap database, we quantify 
the variance explained by these existing ontological categories, describing various features of the 
task-fMRI experiment. The full model of existing ontological categories (N = 603 predictors) 
explained a moderate proportion of variance (R2 = 0.197) in the similarities between activation 
maps. We find that ‘stimulus type’, ‘paradigm class’ and ‘behavioral domain’ uniquely explain a 
small (R2 < 0.05), but non-trivial amount of variance in similarity between activation maps.  
 

It is difficult to assess these explained variance estimates in terms of absolute value, as 
the disparate quality of the activation maps (derived from peak-activation coordinates) place an 
unknown upper limit on the variance explainable by the task-descriptive categories. However, 
we can make relative comparisons. We find that the observable domain of ‘paradigm class’ (or 
task paradigm), explains the greatest amount of variance among the task-descriptive categories, 
controlling for other domains, (R2 = 0.0417). This suggests that differences in task experiments 
drive the most observed differences in fMRI task-activation patterns over and above differences 
in other domains (e.g. behavioral domain). Thus, researchers should be aware that the choice of 
experimental task may be of more crucial importance than whether they are thought to be 
eliciting the same purported cognitive or behavioral process. Surprisingly, a substantial portion 
of variance in the similarity between activation maps can be explained by the study ID (R2 = 
0.447); over two times greater than the full set full model of task-descriptive categories (R2 = 
0.197). This can be for multiple reasons: 1) differences in peak-coordinate reporting, 2) 
differences in pre-processing pipelines and scanner hardware, or 3) differences in significance 
thresholding procedures 22. These differences in study ID may be reduced with the sharing of 
unthreshold statistical maps 23, that avoids peak-coordinate reporting and thresholding 
procedures 19. 

 
We assume that the quality of latent cognitive or behavioral descriptors for a task-fMRI 

ontology is contingent upon how well these descriptors explain differences in BOLD activation 
patterns. Thus, we attempt to derive a set of latent activation states and associated cognitive and 
behavioral descriptors that maximize the explained variance between BOLD activation patterns. 
With just a set of four (or seven) latent activation states with sensible cognitive interpretations, 
we can explain a greater amount of variance in BOLD activation maps than the full set of 
ontological categories of the BrainMap database (N = 603). One might argue that this is trivial: 
one would expect that a solution built to maximize explained variance between activation 
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patterns will of course explain more variance than the a priori ontological categories. However, 
we do not believe this is trivial for two reasons: 1) though it is trivial fact that all clustering 
algorithms, at a general level, estimate clusters that maximize explained variance, it is not trivial 
that a low-dimensional clustering solution (N= 4 or N = 7) can explain greater variance than the 
high-dimensional task-descriptive categories (N = 603). Relatedly, 2) explained variance of 
activation map dissimilarities should be our criterion for what constitutes an adequate ontology 
of cognitive-neural mappings. For example, if a four-cluster solution explained 99% of the 
variance in task-activation map dissimilarity, adding more ontological categories amounts to an 
unnecessary overparameterization of this space. 

 
The BrainMap categories associated with the latent activation states from the 4-cluster 

and 7-cluster map onto plausible neurocognitive systems. The four latent activation states can be 
generally described as object-viewing (4C1), higher-order cognition 
(inhibition/control/language) (4C2), self-memory/affective/social (4C3), and auditory-
stimulus/motor-action (4C4) states. The seven latent activation states can be generally described 
as passive object-viewing (7C1), sensory-motor (7C2), active object-viewing (7C3), 
social/theory of mind (7C4), auditory (7C5), affective (7C6) and higher-order cognition (7C7). 
Examination of the four-cluster and seven-cluster solutions centroid activation patterns revealed 
a set of regions commonly activated across the BrainMap database. Consistent activation was 
observed across regions that make up the traditionally described ‘task-positive’ and ‘task-
negative’ activation/de-activation pattern 19,24,25. The ‘task-positive’ activation pattern 
traditionally includes elements of the fronto-parietal (DLPFC, SPC and DMPFC) and salience 
networks (dorsal anterior cingulate cortex and AI). Consistency of activation was particularly 
predominant in the AI across all centroid activation maps, in accord with previous studies 
demonstrating the ubiquity of AI activations across task paradigms 26. The ‘task-negative’ de-
activation pattern, generally restricted to the DMN 25, was represented in both the four- and 
seven-cluster solution. Consistent with the ‘task-negative’ ascription, the activation maps of 
these clusters were more likely to be reported as ‘de-activations’.  
 
   
Limitations 
 
 One objection to the current approach is that it is circular in some sense. According to 
this objection, the use of conventional task-descriptive categories of cognitive functioning and 
task paradigms for interpretation in the behavioral decoding analysis essentially reifies these 
categories in our neural-driven categorization. Thus, the analysis relies on a circular inference. In 
response, we agree that the mix of ordinary and technical terms codified in the BrainMap 
experimental descriptors is relied upon in our descriptions of the data-driven categories, but 
reliance on this terminology does not constitute circularity. The behavioral decoding analysis 
maps clusters to their most representative experimental descriptors, but does not identify the 
clusters with those experimental descriptors. For example, descriptions of complex physics 
topics often rely on ordinary linguistic terminology, but this description does not then identify 
the physical systems themselves with these ordinary terms. In the same manner, describing the 
data-derived categories in terms of their association with ordinary or current technical terms of 
cognitive science does not constitute circularity. By examining the pattern of experimental 
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descriptors associated with each cluster, we may find pointers to an underlying neural process 
that unifies these descriptors.  
 
 Due to the disparate representation of activation maps in the BrainMap database in terms 
of peak-activation coordinates, the precision of the distinctions between possible clusters is 
limited. However, the substantial sample size of reported task-fMRI experiments provided by the 
BrainMap database is unmatched in terms of power and detailed experimental metadata. The 
increasing size of databases containing unthresholded activation maps, such as NeuroVault 23,  
offers the potential for a more precise or fine-grained categorization using the approach applied in 
this study. In addition, the task-activation maps in the BrainMap database were computed using a 
variety of analytic approaches and experimental designs, which introduces an extra source of 
variability among the activation maps that cannot be accounted for in our analysis. Nevertheless, 
we hope the results presented here provide a starting point for a well-developed ontology of 
cognitive-neural mappings.  
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Methods and Materials 
 
Construction of Activation Maps from BrainMap Coordinates 
 
 At the time of the analysis, the BrainMap database 9 contained 15900 experimental 
contrasts from 3216 published manuscripts. Associated with each experimental contrast were the 
coordinates of statistically significant peak-activation coordinates in MNI152 and Talairach 
coordinate spaces. Coordinates in Talairach space were converted to MNI152 coordinates using 
the transform described in Lancaster et al. 27.  The number of contrasts was reduced to ensure that 
only experimental contrasts of interest were included in the analysis. The only type of experimental 
contrast included in the analysis was a ‘normal mapping’ experiment, or exclusively a contrast 
within healthy participant groups (e.g. no drug treatment). These criteria resulted in a total number 
of 8919 experimental contrasts for the current analysis.   
 
 For each of the 8919 experimental contrasts, modeled activation maps were constructed by 
placing a 12-mm FWHM Gaussian kernel around the center of each peak-activation coordinate 
reported for each contrast. This kernel size is identical to a previous analysis of the BrainMap 
database 11. Because the modeled activation maps are extremely sparse (i.e. consisting mainly of 
zeros), they were sub-sampled by a power of 2 along the X, Y and Z directions for computational 
feasibility. This sub-sampling resulted in 26459 voxel values per activation map.  
 
Network Discovery using Non-Negative Matrix Factorization 
 
 To estimate the latent network activation estimates associated with each activation map, 
we utilized sparse-NMF. The activation maps were first vectorized and placed into a 26459 (voxel) 
´ 8919 (activation map) matrix. This was then input to the sparse-NMF algorithm to model the 
voxel ´ activation map matrix as the multiplicative combination of a network matrix and network 
expression matrix. Each element of both matrices is constrained to be >= 0. The network matrix 
(voxel ´ selected number of networks) contains the voxel weights of each network. The network 
expression matrix (selected number of networks ´ activation map) represents the latent network 
activation estimate of each network for each activation map. The NMF algorithm implements the 
following minimization objective: 
 
  𝑚𝑖𝑛$%&,(%&	𝑓 𝑊,𝐻 = 	 .

/
𝐴 −𝑊𝐻 2

/     (1) 
 

where A is the voxel ´ activation map matrix, W is the network matrix, H is the network 
expression matrix, and 2is the Frobenius norm of the residual of the W*H matrix projected 
onto the A matrix. 
 
 The conventional estimation algorithm for NMF estimates elements of the network and 
network expression matrix by minimizing the above objective using a multiplicative update rule 
13, which is computationally infeasible given the dimensionality of the input matrix (26459 ´ 8919 
matrix). Thus, we used a fast NMF estimation procedure using the block principal pivoting/active 
set method described by Kim and Park 28 and implemented in MATLAB code provided on their 
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webpage (https://www.cc.gatech.edu/~hpark/nmfsoftware.php). We used a variation of NMF, 
sparse-NMF, that adds an additional sparsity constraint imposed on the network matrix (W matrix) 
by adding the L1 Norm of the sum of each column of the network matrix to the minimization 
objective above (Eq. 1). The estimation algorithm searches for a local minimum, and is thus 
initialization-dependent. Rather than using a random initialization of the network and network 
expression matrix, we use a singular-value decomposition (SVD) of the voxel ´ activation map 
matrix as the starting initialization of the algorithm described by Boutsidis and Gallopoulos (2008), 
and implemented by Sotiras et al. 30. The code implemented was provided on the following 
webpage: https://github.com/trigeorgis/Deep-Semi-NMF/blob/master/matlab/NNDSVD.m.  
 
 The network expression estimates were used in the subsequent computation of task-
activation map dissimilarity. We chose a higher-order network solution of 70 networks, 
comparable to previous analyses of the BrainMap database 11,18. However, the spatial dissimilarity 
estimates replicated across alternative network solution sizes, as observed by the correlation 
between dissimilarity estimates of a 70-network solution size with smaller and larger solutions: N 
= 55, r = 0.91; N = 60, r = 0.93; N = 65, r = 0.96; N = 75, r = 0.95; N = 80, r = 0.94; N = 85, r = 
0.92. 
 
 
Prediction of Activation Map Dissimilarity with Task-Descriptive Categories  
 
 Dissimilarity Matrix Computation  
 

Using the latent network activation estimates of the 70 networks we computed the 
activation map ´ activation map dissimilarity matrix with the cosine distance metric, representing 
the dissimilarity in latent network activation estimates between all activation maps. The cosine 
distance metric was used over other possible distance metrics because it is advantageous for high-
dimensional and sparse data 31,32. The pair-wise dissimilarity between two activation maps in 
network expression profiles could vary from 0 (perfect similarity) to 1 (no similarity).  

 
BrainMap Categories Predictor Matrix Preprocessing 
 

 Ontological categories of the BrainMap database fell into five domains: 1) analysis 
decisions (subtraction vs. baseline contrast, and reported de-activation vs. activation), 2) stimulus 
type (e.g. visual words, auditory stories, fixation cross, etc.), 3) response type (button press, 
speech, finger tapping, etc.), 4) paradigm class (encoding, task-switching, counting, etc.), and 5) 
behavioral domain (action execution, language semantics, working memory). For details of each 
category, please see: http://www.brainmap.org/taxonomy/. For each domain, categories were 
dummy-coded leaving the following variables as the reference variable for each domain: ‘words’ 
(stimulus type), ‘write’ (response type), ‘n-back’ (paradigm class), and ‘Perception.Vision.Shape’ 
(behavioral domain).   
 

Because the BrainMap categories (excluding analysis decisions) allow multi-label 
classification (i.e. activation maps can have more than one sub-category), multi-label 
classifications were treated as separate clusters. For example, an activation map classified as 
Action Inhibition and Attention was treated as belonging to an Action Inhibition/Attention cluster, 
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as opposed to the belonging to both an Action Inhibition and Attention cluster. This increased the 
number of clusters, and allowed for more precise classifications. A small percentage of activation 
maps belonged to multi-label categories with fewer than five members (N = 435 for stimulus type; 
N = 61 for response type; N = 706 for paradigm class; N = 599 for behavioral domain), and these 
multi-label categories were re-categorized as ‘unclassified.’ Inclusion of multi-label classifications 
without a membership size cutoff resulted in a heavily overparameterized model (1508 variables), 
and large sets of perfectly multicollinear predictors (resulting in a rank deficient matrix).  

 
 Additional categories were also excluded from the analysis, including those categories with 
high collinearity with another category (r >0.99; 14 categories), ‘Not Defined’ categories, and 
multi-label categories that included a ‘None’ classification and a non-None classification. The 
final dummy coded matrix contained a total of 603 dummy coded variables, including 163 stimulus 
type variables, 29 response type variables, 215 paradigm class variables, 194 behavioral variables, 
and 2 analysis decision variables. 
 
 
 Multivariate Distance Matrix Regression 
 

We used multivariate distance matrix regression (MDMR) 10 to model the variability in 
whole-brain activation map dissimilarity explained by the dummy-coded category predictor 
matrix. Computation of the unique explained variance associated with the five categorical domains 
was carried out in a leave-one-out fashion. Each domain of categorical predictors was added to the 
remaining set of categorical predictors to compute the unique explained variance associated with 
each categorical domain.  

 
Activation maps reported in the BrainMap database have a nested structure: multiple 

activation maps are reported for the same study. To correct for this nesting in the BrainMap 
database, explained variance estimates for each categorical domain were corrected using a 
permutation test that respected study ID. The permutation test involved a nested reshuffling of 
activation map labels within each study set. After each reshuffling, an R2 estimate for each set of 
predictors was computed to construct a null distribution of R2 values. The p-value of the original 
R2 was then computed as the percentile of the original R2 in the null distribution. The permutation 
test was run 1000 times. 
 

 
Graph Clustering Approach 
 
 Symmetric non-negative matrix factorization (SymNMF) applies the non-negative matrix 
factorization framework to pair-wise similarity matrices 17. In the sparse-NMF algorithm described 
above, the voxel*activation map matrix is factorized into a multiplicative combination of a 
network matrix (W) and network expression matrix (H). In the symmetric-NMF framework, the 
symmetric activation map*activation map similarity matrix (S) is factorized into a cluster 
membership matrix (H) multiplied by itself. More formally, the symmetric-NMF minimizes the 
following objective function: 
 
  𝑚𝑖𝑛(3&	 𝑆 − 𝐻𝐻5

6
/        (2) 
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where S is the activation map ´ activation map similarity matrix, H is the cluster 

membership matrix, and 2is the Frobenius norm of the residual of the H*HT matrix projected 
onto the S matrix. Importantly, SymNMF allows for each activation map to have non-negative 
weights on more than one cluster. Thus, an activation map can have varying degrees of 
membership for each cluster. The MATLAB code implement for SymNMF was provided on the 
following webpage: (https://github.com/andybaoxv/symnmf). 
 
Determination of the Number of Clusters  
 
 To choose the optimal number of clusters, we used a repeated two-fold cross-validation 
procedure for cluster sizes ranging from 2 to 20. First, 100 random split-half samples (n = 4459) 
of the total sample of activation maps were generated. Next, the above SymNMF algorithm was 
applied to all 100 split-half pairs. Finally, the average pair-wise instability between the 100 split-
half cluster centroids was measured using an Amari-type quantity procedure developed by Wu et 
al. 33 (https://github.com/bdgp/staNMF). The average instability, which can vary from 0 (perfect 
stability) to 1 (no stability), was then plotted across all solutions to search for network solution 
sizes with low instability. Plotting of the average instability values across all solutions sizes from 
2 to 20 revealed two strong local minima in average instability (Figure 3). 
 
Centroid Activation Patterns and Behavioral Decoding of Clusters 
 
 The resulting community partitions (i.e., clusters) at the two levels of resolution (c = 4 
and c = 7) were interpreted in terms of their centroid activation pattern and the BrainMap task-
descriptive categories. The centroid activation map of each cluster was computed in two steps: 1) 
network expression profiles of each activation map within the cluster were averaged to yield a 
centroid network expression profile, and 2) the centroid network expression profile was then 
projected onto voxel space to create the centroid activation map using the following equation:  
 
  V = W´C        (3) 
 

where V is 26459 (voxel) ´ 1 centroid activation map, W is the network matrix (from the 
NMF solution), and C is the centroid network expression profile. For visualization, the missing 
voxel values in the centroid activation map from the sub-sampling procedure described above 
were interpolated using a penalized least squares procedure 34 
(https://www.mathworks.com/matlabcentral/fileexchange/27994-inpaint-over-missing-data-in-1-
d--2-d--3-d--n-d-arrays). The resulting images were then smoothed using a 6mm FWHM 
Gaussian kernel. 
 
 Behavioral decoding of the clusters was performed using the task-descriptive categories 
used in the MDMR analysis above. In addition to Stimulus Type, Response Type, Paradigm 
Class, Behavioral Domain and Analysis Decisions, we used the following additional task-
descriptive categories: Stimulus Modality, Response Modality, Instruction, and External 
Variable. Of note, some task-descriptive categories were labeled ‘None’ or ‘Unknown,’ and were 
excluded from the analysis. To behaviorally decode each cluster i for each task-descriptive 
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category s of all metadata categories, we computed the forward inference probability normalized 
by the probability of that cluster:  
 
(#	92	:;<=>9?@	𝒔	BCD<;C:=D	BC	:EFD<=?	𝒊)/(#	92	:;<=>9?@	𝒔	BCD<;C:=D	;:?9DD	;EE	:EFD<=?D)

(#	92	;:<BJ;<B9C	K;LD	BC	:EFD<=?	𝒊	)/(#	92	;:<BJ;<B9C	K;LD)
 (4) 

 
 where the numerator represents the Pr(Cluster | Category) and the denominator 
represents the Pr(Cluster).  
  
Visualization of Behavioral Decoding 
 
 Given the number of task-descriptive categories assessed (n = 144; from the above-
mentioned categories), we used a data-driven word cloud visualization to illustrate the results. The 
word cloud visualization displays text with varying sizes and colors throughout space in a 
visualization window. For each cluster, word locations were positioned by the ‘semantic closeness’ 
of each task-descriptive category. The size of the text was proportional to the behavioral decoding 
result from equation (4). To estimate the ‘semantic closeness’ of the sub-categories we did the 
following: 1) counted the appearances of all the sub-categories for each activation map to create a 
144 (sub-category) ´ 8919 (activation map) sub-category count matrix, 2) estimated the 144´144 
sub-category distance matrix by computing the pair-wise Jaccard distance in the counts between 
all pairs of sub-categories, and 3) projected the distances between all 144 sub-categories onto a 
two-dimensional subspace using a nonmetric multidimensional scaling (MDS) algorithm using the 
mdscale scale function in MATLAB (https://www.mathworks.com/help/stats/mdscale.html). 
Metadata categories were distinguished by different colors. In many cases, the original word cloud 
visualization output spatially overlapping sub-category terms. Thus, for clarity, we manually 
moved spatially overlapping sub-category terms to reduce overlap, while respecting their original 
position along the dimensions derived from the MDS solution. We used publically available code 
for displaying the word cloud visualization, provided on the following webpage:  
(https://www.mathworks.com/matlabcentral/fileexchange/53016-wordcloud--classical-). 
 
 
The data that support the findings of this study are available from www.BrainMap.org, but 
restrictions apply to the availability of these data, which were used under license for the current 
study, and so are not publicly available. Data are however available from the authors upon 
reasonable request and with permission of BrainMap. 
 
 
 


