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Abstract 30 

Studies of the intestinal microbiome commonly utilize stool samples to measure microbial 31 

composition in the distal gut. However, collection of stool can be difficult from some subjects 32 

under certain experimental conditions. In this study we validate the use of swabs of fecal matter 33 

to approximate measurements of microbiota in stool using 16S rRNA gene Illumina amplicon 34 

sequencing, and evaluate the effects of shipping time at ambient temperatures on accuracy. 35 

Results indicate that swab samples reliably replicate stool microbiota bacterial composition, 36 

alpha diversity, and beta diversity when swabs are processed quickly (< 2 days), but sample 37 

quality quickly degrades after this period, accompanied by increased abundances of 38 

Enterobacteriaceae. Fresh swabs appear to be a viable alternative to stool sampling when 39 

standard collection methods are challenging, but extended exposure to ambient temperatures 40 

prior to processing threatens sample integrity. 41 

42 
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 42 

Introduction 43 

The microbial communities inhabiting the human gastrointestinal tract play important roles in 44 

digestion, immune and metabolic regulation, and disease (1). Monitoring the gut microbiota is 45 

often performed to assess the impact of disease or other disturbances (2), therapeutic 46 

interventions (3), or host development (4). Measurements of microbiota composition in the distal 47 

gut commonly utilize stool samples. 48 

Collection and transport of stool may be difficult or impossible, however, under certain 49 

conditions, e.g., due to stool consistency or if subjects are unable or unwilling to provide stool. 50 

In a study by Sinha et al., the microbial compositions of stool swabs correlated closely with stool 51 

(5); however, this study only assessed the similarity of swab microbiota to stool at two different 52 

storage times (fresh and after 4 days at room temperature). With a similar approach, Bassis and 53 

coworkers showed that collecting and immediately processing rectal swabs also approximated 54 

stool microbiota composition (6). Rectal swabs are collected by insertion of a sterile swab into 55 

the rectum; fecal swabs are collected by applying a sterile swab to freshly passed stool or toilet 56 

paper. Collection of fecal swabs represents a simpler and less disruptive approach than either 57 

stool collection or rectal swabbing, permitting its use with sensitive patients. Swab collection 58 

also simplifies sample handling and processing during collection, archiving, and DNA extraction. 59 

This facilitates sampling under busy clinical settings or by individual subjects at home. 60 

To validate stool swabs for measurements of intestinal microbiota, stool swabs and stool 61 

samples were collected from subjects in the autism MTT study from identical stool samples, and 62 

microbiota composition and diversity were compared between sample pairs using 16S rRNA 63 
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gene amplicon sequencing and analysis in the QIIME 2 software package (7). We show that 64 

swab and stool samples exhibit highly similar microbiota profiles, provided that the swabs were 65 

received and processed within two days of collection. 66 

Results 67 

An accurate measurement of intestinal microbiota composition should demonstrate a high 68 

degree of similarity to stool composition, the current gold standard method. We measured 69 

phylogenetic similarity between samples using abundance-weighted and unweighted pairwise 70 

UniFrac distance (8). We also measured paired differences in observed richness of sequence 71 

variants, phylogenetic diversity (PD) (9), and Shannon diversity and evenness to assess alpha 72 

diversity differences between swab and stool samples. 73 

Fresh swab microbiota resemble stool 74 

Freshly processed (≤ 2 days) pairs of stool and swab samples collected from the same 75 

individual at the same time (paired samples) were significantly more similar to each other than 76 

to stool or swab samples collected from the same individual but collected at different times 77 

(within-subject pairs), suggesting that stool and swab samples yield similar community 78 

structures when swabs are processed quickly (Figure 1) (weighted UniFrac Mann-Whitney U = 79 

294.5, P = 0.007; unweighted UniFrac U = 342.5, P = 0.024). Swabs experiencing longer 80 

transport times were not significantly more similar to their stool pairs than they were to within-81 

subject pairs (P > 0.05), suggesting that shipping times longer than 2 days do not reliably 82 

represent the microbiome of stool samples frozen at the time of collection. 83 
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 84 

Figure 1. Unweighted (A) and Weighted (B) UniFrac distance distributions between sample 85 

pairs. Boxplots compare distance distributions between all samples collected from within each 86 

individual subject (“W”, green), between all subjects (“B”, purple), between all stool samples 87 

(“St”, yellow) or all swab samples (“Sw”, red) collected from the same subject at different times, 88 

and between pairs of stool and swab samples collected from the same individual at the same 89 

time (paired samples, shown in blue). Swarmplots are overlaid for paired distance 90 

measurements between swab and stool samples only, indicating the actual distribution of paired 91 

distances. 92 

 93 

transport time degrades swab accuracy 94 

Both unweighted and weighted UniFrac paired sample distances increase as swab shipping 95 

time increases (Figure 1), becoming significantly more dissimilar than within-subject pairs by 6 96 

days of shipping (Wilcoxon P < 0.05); transport time is positively correlated with paired sample 97 

dissimilarity for both weighted (Spearman R = 0.88, P = 0.004) and unweighted UniFrac (R = 98 

0.88, P = 0.004). Thus, transport times above 1-2 days appear to have a damaging effect on 99 
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swab compositional accuracy, similar to the negative effects of room-temperature storage on 100 

stool compositional accuracy (10). 101 

Pairwise differences in alpha diversity between paired samples (swab – stool observed 102 

diversity) indicates that swab richness decreases as transport time increases (Spearman R = -103 

0.86, P = 0.006) and PD (R = -0.88, P = 0.004). Shannon diversity (R = -0.64, P = 0.086) and 104 

evenness (R = -0.57, P = 0.139) also decrease with increasing transport time, but the 105 

correlations are not significant (Figure 2). After 4 days of transport time, swab richness, 106 

Shannon diversity, and evenness, but not PD, are significantly lower than stool (Wilcoxon P < 107 

0.05), but transport time under 4 days does not significantly impact these alpha diversity 108 

metrics. This decrease in richness and evenness likely indicates that growth of one or more 109 

bacterial species (facultatively aerobic enterobacteria, as results below suggest) numerically 110 

overshadows the abundance of other bacteria (e.g., strict anaerobes and slower-growing 111 

organisms). The latter organisms do not disappear from this closed system, but become less 112 

likely to detect. 113 
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 114 

Figure 2. Observed differences in alpha diversity metrics between stool and swab paired 115 

samples in relation to transport time. Boxplots show quartile distributions of differences between 116 

paired samples (swab – stool observed diversity) for observed richness (A), Shannon H (B), 117 

Faith’s PD (C), and evenness (D). Swarmplots are overlaid to show actual distribution of metric 118 

differences. 119 

 120 
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Supervised learning classification confirms accuracy of fresh swabs 121 

To confirm the similarity of swab microbiota compared to stool microbiota, we used random 122 

forest (11) classification models to predict sample type (stool or swab) based on microbiota 123 

composition (16S rRNA gene sequence variants). Stool samples were compared to swab 124 

samples exposed to between 3-8 days of transport time (highly dissimilar from stool) or only 1-2 125 

day of transport time (more similar to stool). Swabs exposed to 3-8 days of transport time could 126 

be accurately classified 94.6% of the time, and stool samples 90.1% of the time. However, 127 

swabs exposed to ≤ 2 days of transport time could not be reliably distinguished from stool 128 

samples: swab samples were correctly classified only 47.1% of the time (random chance is 129 

50%). Notably, the most important features identified in each model were members of family 130 

Enterobacteriaceae. 131 

 132 

Swabs are characterized by overrepresentation of Enterobacteriaceae 133 

compared to stool samples 134 

Next we determined the impact of transport time on swab bacterial taxonomic composition 135 

compared to stool to identify taxa responsible for altered diversity patterns. The taxonomic 136 

compositions of swab samples became dominated by Enterobacteriaceae as transport time 137 

increased, leading to a notable disparity compared to stool samples collected from the same 138 

subject at the same time (Figure 3). Enterobacteriaceae relative abundance was positively 139 

correlated with transport time (R = 0.88, P = 0.004) (Figure 4). Paired ANCOM tests (12) 140 

between all paired samples (regardless of transport time) indicates that bacterial species in the 141 

families Enterobacteriaceae and Bacillaceae were overrepresented in swab samples (P < 0.05) 142 
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and a broad range of Clostridiales were overrepresented in stool (Table 1). While phylum 143 

Proteobacteria (represented mostly by family Enterobacteriaceae) was overrepresented in swab 144 

samples compared to their matching stool samples (slope > 1), most other phyla exhibited slight 145 

overrepresentation in stool (slope < 1) (Figure 5). Nevertheless, the abundances of all phyla are 146 

significantly correlated between swabs and their matching stool samples (Spearman R = 0.67, P 147 

< 0.0001) (Figure 5). This most likely indicates cellular growth of Enterobacteriaceae while other 148 

populations remain largely static and are supplanted at an approximately even rate. This could 149 

also indicate death and DNA degradation of these other populations, but that scenario seems 150 

much less likely given the short time frame of this experiment; however, we cannot discern 151 

changes to absolute abundance based on our compositional (relative abundance) sequence 152 

data. 153 

 154 

Figure 3. Relative abundance of bacterial families in paired stool (top) and swab samples 155 

(bottom). Paired stool and swab samples collected from the same individual at the same time 156 

point are aligned along the x axis, and sorted by swab transport time. 157 
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 158 

Figure 4. Distribution of Enterobacteriaceae relative frequencies in stool samples and in swab 159 

samples exposed to different transport times. 160 

 161 
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Figure 5. Scatterplot comparing relative abundances of all taxa observed in stool and swab 162 

samples. Taxa are colored by their phylum affiliation (all other phyla are combined into “other”), 163 

and linear regressions for each phylum are plotted. Spearman correlation coefficients (R) and P 164 

values comparing stool and swab abundances for each phylum are shown in the legend. 165 

 166 

Table 1. ANCOM differentially abundant sequence variants (P < 0.05) between stool and swab 167 

paired samples. 168 

Feature IDa Family Genus and 
Speciesb 

Wc Stool 
median 

Stool 
max 

Swab 
median 

Swab 
max 

f3fc3c1992d8118d6105048408aaf6d6 Enterobacteriaceae  2457 27.5 1932 2201.5 57802 

8ce638638fc5ee9e2128ac4bd03ed11e Enterobacteriaceae Klebsiella 2455 1 10 1 35068 

5a83ea3d76cd341dac86f333c7d5f293 Enterobacteriaceae Citrobacter 2436 1 18 1 18276 

c57bf51f33c656b83ae967392536b842 Enterobacteriaceae Klebsiella 2406 1 66 1 3235 

801cc2f4b3dfb4b130c4ba7ef4a20094 Bacillaceae Bacillus 2276 1 1 1 2076 

fb9c4b48fcb5d89827e4d868e63846a8 Lachnospiraceae Blautia 2213 169 4721 73.5 2374 

2f561a0913fb0ed1a03d6cbdd1796e0c Lachnospiraceae Coprococcus 2294 122.5 2295 50.5 1321 

edfefd945764652423a9183e4934f63e Lachnospiraceae Roseburia 2229 38 1327 1 769 

c4e55d1fa1d9152699f44847eec89821 Lachnospiraceae  2375 152.5 1544 46.5 701 

6f063a38df307a2c50a525bf2ae85f7d Lachnospiraceae Blautia 2273 78 1996 34 536 

8be4f08a4c290c121885c6d3abc32186 Ruminococcaceae Oscillospira 2215 13.5 1217 1 455 

b54e516c620e7b11f1f267f154efe1f6 Lachnospiraceae  2212 13 464 1 150 

4949d5468cabaae7de1a985e6a479a6a Lachnospiraceae Coprococcus 
catus 

2234 14.5 154 1 146 
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ebf3c3237392738d0fdeb35e9bb35bcd Alcaligenaceae Sutterella 2407 21 1527 1 137 

efeef69c255be9b873b917707495b22f Lachnospiraceae  2243 1 154 1 105 

2d1be5a482c6d0a6b58a5d9b5f3c5b3d Ruminococcaceae Oscillospira 2355 24 235 1 101 

40a904445b77cf5125c51fb01f785193 Lachnospiraceae  2248 1 279 1 97 

a Feature identities equal the MD5 hashes of the 16S rRNA gene sequences identified as being 169 

differentially abundant between paired stool and swab samples. 170 

b Genus and species name are shown where available. Any feature missing a genus and/or 171 

species label was classified as belonging to a species that is missing a genus and/or species 172 

annotation in the Greengenes 16S rRNA gene sequence reference database. 173 

c W equals the number of ANCOM sub-hypotheses that have passed for each individual taxon, 174 

indicating that the ratio of that taxon and W other taxa were detected to be significantly different 175 

between stool and swab samples. 176 

. 177 

 178 

Discussion 179 

This study has demonstrated the accuracy of swabs for approximating the composition of stool 180 

samples, and evaluated the effect of transport time. Previous authors have examined the 181 

reproducibility and accuracy of fresh swabs for approximating stool microbiota measurements 182 

(5). We extend these prior studies by demonstrating the impact of storage time on swab 183 

similarity to stool. This corroborates earlier findings that swab and stool samples yield similar 184 

biological conclusions (3, 5). 185 
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We show that swabs provide an accurate approximation of stool microbiota diversity, 186 

composition, and structure, provided that the swabs are processed as freshly as possible (≤ 2 187 

days). Stool samples and swabs could not be reliably distinguished by supervised learning 188 

classification, indicating close resemblance between these collection methods. Long transport 189 

times are associated with overrepresentation of Enterobacteriaceae (probably due to growth 190 

under aerobic conditions), decreasing accuracy of microbiota profiles. Prospectively, this finding 191 

could be used to further enhance the use of swabs for fecal microbiota profiling. Except in 192 

scenarios where high levels of Enterobacteriaceae are a normal constituent of the intestinal 193 

microbiota, such as following gastric bypass surgery (13, 14), Enterobacteriaceae could be used 194 

as a marker for validating swab integrity, e.g., to reject outliers that may have experienced 195 

inadequate shipping or storage; modeling compositional changes over time could also support 196 

development of algorithms to correct for biases arising from collection and storage issues. 197 

Stool collection is not always easy or convenient. This may be due to logistical constraints (e.g., 198 

at-home collection or busy clinical settings), sample characteristics (e.g., fecal incontinence), or 199 

subject comfort. Stool swabs represent a viable alternative for measurement of distal gut 200 

microbial composition and diversity. Swabs are also considerably easier to handle and process 201 

than stool samples, streamlining collection and DNA extraction protocols. Although we find that 202 

stool and fresh swab samples could not be reliably distinguished by supervised learning 203 

classification, we do not recommend mixing stool and swab collection methods within the same 204 

study, in order to avoid introduction of experimental variation and potential sampling biases. For 205 

example, contamination and other artifactual biases could differ between collection methods 206 

and different brands of swabs, and variation should be minimized as much as possible. In 207 

studies where different collection methods become necessary, investigators should test to 208 

ensure that collection methods do not covary with other sample characteristics or metadata. 209 
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Materials and methods 210 

Data availability 211 

This study re-analyzed a previously published 16S rRNA gene sequence dataset (3), which is 212 

available in the open-source microbiome database Qiita (qiita.microbio.me) under the study ID 213 

number 10532. 214 

Sample collection and processing 215 

Stool samples and swabs were collected and processed as previously described in a study of 216 

autistic children receiving microbiota transfer therapy (3). Stool samples and fecal swabs were 217 

collected by subjects’ parents. Fecal samples were stored in dry ice and collected by a driver, 218 

and frozen at -80˚C immediately upon arrival at the laboratory. Swabs were shipped to the lab 219 

by standard postal mail. After defecation, fecal matter was collected from toilet paper using a 220 

sterile swab (Fisher Scientific BD Culture Swab item number B4320135), taking care not to 221 

contact the paper or overload the swab. Samples were shipped at room temperature and frozen 222 

at -80˚C immediately upon arrival at the laboratory. Swab samples were primarily shipped within 223 

Arizona at different times of year, so temperatures (and hence shipping effects) may be slightly 224 

greater than other regions. The time between shipping and receipt was logged as “days in 225 

transit”, as used to perform statistical analyses described below. DNA extraction and 226 

sequencing were performed as previously described, following the earth microbiome project 227 

standard protocol for 16S V4 rRNA gene sequencing with 515f-806r primers (15). A total of 123 228 

stools and 355 swabs were collected and analyzed in the current study, including 98 pairs of 229 

stool and swab samples that were collected from the same source stool. Swab transport times 230 

varied from 0 to 68 days; however, only days 1-8 contained sufficient sample size (minimum N = 231 
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3 stool-swab pairs) and were used for assessing the impact of transport time on swab 232 

composition accuracy compared to paired stools. 233 

Microbiome analysis 234 

Sequence data were processed and analyzed using QIIME 2 (7). Raw sequences were quality-235 

filtered using DADA2 (16) to remove PhiX, chimeric, and erroneous reads. Sequence variants 236 

were aligned using mafft (17) and used to construct a phylogenetic tree using fasttree2 (18). 237 

Taxonomy was assigned to sequence variants using q2-feature-classifier (19) against the 238 

GreenGenes 16S rRNA reference database 13_8 release (20). 239 

Statistical analysis 240 

QIIME 2 was used to measure the following microbiota alpha diversity metrics: richness (as 241 

observed sequence variants), Shannon diversity and evenness, and Phylogenetic Diversity (9). 242 

Microbiome beta diversity was estimated in QIIME 2 using weighted and unweighted UniFrac 243 

distance (8). Feature tables were evenly subsampled at 5,000 sequences per sample prior to 244 

alpha or beta diversity analyses. 245 

 246 

Alpha diversity differences and UniFrac distances between paired stool and swab samples from 247 

identical source samples (paired samples) were calculated using q2-longitudinal (21). ANCOM 248 

(12) was used to test whether the abundances of individual taxa differed between paired 249 

samples. Balance trees analysis and ordinary least squares regression on balances was 250 

performed using the q2-gneiss plugin (22). Spearman correlation coefficients were computed 251 

between transport time and median alpha diversity metrics, UniFrac distance, and 252 

Enterobacteriaceae relative abundance. Mann-Whitney U tests were used to test whether 253 

relative abundances of family Enterobacteriaceae were significantly different between stool 254 
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samples and swab samples exposed to different transport times. Supervised learning 255 

classification was performed in q2-sample-classifier (23), using random forests classifiers (11) 256 

grown with 500 trees, trained on a random subset of the data (80%) and validated on the 257 

remaining samples. 258 

 259 
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