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Abstract

Molecular quantitative trait locus (QTL) analyses are increasingly popular to explore the genetic
architecture of complex traits, but existing studies do not leverage shared regulatory patterns and
suffer from a large multiplicity burden, which hampers the detection of weak signals such as trans
associations. Here, we present a fully multivariate proteomic QTL (pQTL) analysis performed with
our recently proposed Bayesian method LOCUS on data from two clinical cohorts, with plasma protein
levels quantified by mass-spectrometry and aptamer-based assays. Our two-stage study identifies 136
pQTL associations in the first cohort, of which > 80% replicate in the second independent cohort and
have significant enrichment with functional genomic elements and disease risk loci. Moreover, 78%
of the pQTLs whose protein abundance was quantified by both proteomic techniques are confirmed
across assays. Our thorough comparisons with standard univariate QTL mapping on (1) these data
and (2) synthetic data emulating the real data show how LOCUS borrows strength across correlated
protein levels and markers on a genome-wide scale to effectively increase statistical power. Notably,
15% of the pQTLs uncovered by LOCUS would be missed by the univariate approach, including
several trans and pleiotropic hits with successful independent validation. Finally, the analysis of
extensive clinical data from the two cohorts indicates that the genetically-driven proteins identified by
LOCUS are enriched in associations with low-grade inflammation, insulin resistance and dyslipidemia
and might therefore act as endophenotypes for metabolic diseases. While considerations on the clinical
role of the pQTLs are beyond the scope of our work, these findings generate useful hypotheses to be
explored in future research; all results are accessible online from our searchable database. Thanks
to its efficient variational Bayes implementation, LOCUS can analyse jointly thousands of traits
and millions of markers. Its applicability goes beyond pQTL studies, opening new perspectives for

large-scale genome-wide association and QTL analyses.
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Author summary

Exploring the functional mechanisms between the genotype and disease endpoints in view of identifying
innovative therapeutic targets has prompted molecular quantitative trait locus studies, which assess
how genetic variants (single nucleotide polymorphisms, SNPs) affect intermediate gene (eQTL), protein
(pQTL) or metabolite (mQTL) levels. However, conventional univariate screening approaches do not
account for local dependencies and association structures shared by multiple molecular levels and markers.
Conversely, the current joint modelling approaches are restricted to small datasets by computational
constraints. We illustrate and exploit the advantages of our recently introduced Bayesian framework
LOCUS in a fully multivariate pQTL study, with ~ 300K tag SNPs (capturing information from 4M
markers) and 100 — 1,000 plasma protein levels measured by two distinct technologies. LOCUS identifies
novel pQTLs that replicate in an independent cohort, confirms signals documented in studies 2 — 18
times larger, and detects more pQTLs than a conventional two-stage univariate analysis of our datasets.
Moreover, some of these pQTLs might be of biomedical relevance and would therefore deserve dedicated
investigation. Our extensive numerical experiments on these data and on simulated data demonstrate that
the increased statistical power of LOCUS over standard approaches is largely attributable to its ability
to exploit shared information across outcomes while efficiently accounting for the genetic correlation

structures at a genome-wide level.

Introduction

Questioning the genetic contribution to human diseases has become a critical step towards predicting
health risks and developing effective therapies [IH3]. However the functional network of interacting
pathways between the genotype and disease endpoints largely remains a “black box”, so the expected
transformation of medicine has only begun. The analysis of endophenotypes such as gene, protein or
metabolite levels, via molecular quantitative trait locus (QTL) studies may provide deeper insight into the
biology underlying clinical traits [3]. While eQTL studies are now routinely performed, pQTL studies have
emerged only recently [4H9]. These studies allow the exploration of the genetic bases of several diseases,
as certain proteins may act as proxies for specific clinical endpoints [I0]. However two major hurdles
hamper pQTL analyses. First, owing to the number of tests that they entail, conventional univariate
approaches lack statistical power for uncovering weak associations, such as trans and pleiotropic effects
[ITHI3], while better-suited multivariate methods fail to scale to the dimensions of QTL studies. Second,
the clinical data complementing QTL data are often very limited, restricting subsequent investigation
to external information from unrelated populations, health status or study designs, and rendering some
degree of speculation unavoidable.

In this paper, we demonstrate that both concerns can be addressed using statistical approaches and
data tailored to the problem under consideration: we present an integrative genome-wide pQTL study of
two clinical cohorts performed with our Bayesian joint QTL method LOCUS [14], which simultaneously
accounts for all the genetic variants and proteomic outcomes, thereby leveraging the similarity across
proteins controlled by shared functional mechanisms. We employ a two-stage design, using data from the

Ottawa cohort (n = 1,644) [I5] for discovery and replicating our findings in the independent DiOGenes
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cohort (n = 789) [16]. Each dataset involves protein plasma levels quantified by mass-spectrometry
(MS) and aptamer-based (SomalLogic, [I7]) assays, which permits thorough cross- and intra-platform
validation.

Our work aims to illustrate the utility and feasibility of multivariate Bayesian QTL analyses. Notably,
we show the gain in statistical power achieved by LOCUS on our data by confronting the validated hits
with those of a classical two-stage univariate design. We also assess the performance of both approaches
in simulations mimicking real data conditions.

Pertinent interpretation of pQTL loci in the context of complex diseases hinges on a careful exam-
ination of metabolic and clinical parameters from the same subjects or, at a minimum, from a pop-
ulation presenting similar clinical characteristics. Using comprehensive data from the two pQTL co-
horts, we evaluate the enrichment of the proteins under genetic control for associations with clinical
parameters; this assessment suggests that our pQTL findings may ease the identification of proteomic
biomarkers and calls for further dedicated research. All results are available from our online browser

https://locus-pqtl.epfl.ch/db.

Results

Two-stage pQTL analyses

We analyzed the pQTL data from the Ottawa and the DiOGenes cohorts in a two-stage study. The
DiOGenes cohort recruited overweight/obese, non-diabetic subjects, while the Ottawa study was led
in a specialized obesity practice where subjects had severe obesity, dyslipidemia and insulin resistance
disorders (S1 Table).

We used LOCUS ([14], Material and methods and Fig [Th-c) for joint analyses of both proteomic
datasets from the Ottawa cohort, quantified by MS and the multiplexed aptamer-based technology So-
malogic [I7], respectively. We adjusted all analyses for body mass index (BMI), age and gender. At
FDR 5%, LOCUS identified 18 pQTL associations from the MS analysis, corresponding to 14 unique
proteins and 18 SNPs, and 118 pQTLs from the Somal.ogic analysis, corresponding to 99 proteins and
111 SNPs (S2 Table). We then undertook to replicate all uncovered pQTLs in the independent DiOGenes
cohort, using MS and Somalogic data. We validated 15 of the 18 discovered MS pQTLs, and 98 of the
118 discovered SomaLogic pQTLs at FDR 5% (S3 Table), yielding a replication rate of 83% in both cases
(Fig [IH).

We evaluated replication rates separately for cis and trans effects. With the MS data, all 15 cis
Ottawa pQTLs replicated in DiOGenes, while the 3 trans pQTLs did not. With the Somal.ogic data, 78
of 81 cis and 20 of 37 trans pQTLs could be validated (Fig ) The overall replication rates reached
97% for the cis pQTLs and 50% for the trans pQTLs; the trans-pQTL rate is in line with other pQTL
studies [4, [7, [§]. Finally, 35 of our validated pQTLs are, to our knowledge, new, i.e., they do not overlap
with pQTLs previously identified in the general population [4, [6H9], and this number drops to 20 using
proxy search 72 > 0.8; four of these 20 hits have isoforms involved in known pQTLs, see S4 Table for the

complete list.
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Figure 1: LOCUS model overview and study workflow. (a) Inputs to LOCUS are an n x p design matrix X of
p SNPs, and an n X g outcome matrix y of g molecular traits, e.g., gene, protein, lipid, metabolite or methylation levels,
for n individuals. The model accounts for all the SNPs and molecular traits jointly. (b) Graphical model representation of
LOCUS. The effect between a SNP s and a trait ¢ is modelled by Ss¢, and s is a latent variable taking value unity if they are
associated, and zero otherwise. The parameter ws controls the pleiotropic level of each SNP, i.e., the number of traits with
which it is associated. The parameter o represents the typical size of effects, and the parameter 7¢ is a precision parameter
that relates to the residual variability of each trait ¢. (c¢) Outputs of LOCUS are posterior probabilities of associations,
pr(vst = 1| y), for each SNP and each trait (p X ¢ panel), and posterior means for the pleiotropy propensity of each SNP,
E (ws | y) (Manhattan plot). (d) Workflow of the pQTL study. The MS and SomaLogic pQTL data are analyzed in parallel.
LOCUS is applied on the Ottawa data for discovery, and 83% of the 18 and 118 pQTL associations discovered with the
MS and Somal.ogic data replicate in the independent study DiOGenes. The possible relevance of the validated pQTLs for
disease endpoints is explored via analyses of clinical parameters from the Ottawa and DiOGenes cohorts. Further support

is obtained by evaluating the overlap with eQTLs, epigenomic marks and GWAS risk loci.

Cross-assay validation

The relative merits of MS untargeted and multiplexed aptamer-based techniques for quantifying protein
abundance have been a subject of active debate over the past years [see, e.g., [I8, [19]. On one hand,
the former usually demonstrate very high specificity, but are limited in dynamic range and in their
sensitivity to detect low abundance proteins. On the other hand, the latter — and in particular the recent
SOMAscan technology provided by SomaLogic [I7] — can target proteins across a wide dynamic range

and include lowly expressed proteins not accessible to MS approaches, but are more subject to binding
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Figure 2: Overview of LOCUS validated pQTL hits (a) Venn diagram for the locus-protein hits identified by the
GEMMA and LOCUS two-stage analyses. The hits uncovered by GEMMA but not by LOCUS (left) and the hits uncovered
by LOCUS but not by GEMMA (right) are listed; the stars indicate that the former were not tagged so not detectable by the
LOCUS analyses. When multiple SNPs correspond to the same locus-protein hit, the SNP(s) with the top association(s) in
the Ottawa cohort is/are shown. The novel hits (2 > 0.8-proxy search) are in bold and the hits with dual replication in the
alternative proteomic platform are marked with a cross (4 over the 4 quantified with both platforms). (b) Estimated effects
(regression coefficients with standard errors) in DiOGenes for the validated pQTLs whose controlled protein is quantified
by both technology (S3 Table). (c) Circular plot for the trans-pQTL associations uncovered by LOCUS (FDR < 5% for
discovery and validation). Each arrow starts from the pQTL SNP with label indicating its closest gene (grey) and points to
the gene (black) coding for the controlled protein. The proteins whose trans pQTLs are missed by GEMMA are highlighted

in green.

artefacts caused by the multiplexing. Hence, although rapidly improving, the two techniques remain
complementary, and the combination of measurements by both approaches offers a convenient balance
between specificity and sensitivity.

In the Ottawa and DiOGenes studies, a subset of 72 proteins was quantified by both the MS and
SomalLogic techniques (S1 Appendix). For the pQTLs whose protein had dual measurement, this enabled
an additional layer of validation with the alternative assay, on top of direct within-assay validation. Eight
of the MS pQTLs could be assessed with SomaLogic (i.e., had protein levels available), and 7 of them

replicated at FDR 5%. Likewise, of the 20 Somal.ogic associations having MS measurements, 14 were
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confirmed (S3 Table). Moreover, the cross-assay correlation of estimated effects for the pQTLs with
successful dual validation was high, p = 0.93, providing further support to our findings (Fig )
Specificity issues and experimental platform-inherent variability might explain why the remaining
seven pQTLs could not be confirmed using the alternative technology. Indeed, although most protein
expression patterns quantified by the two technologies were in good agreement, some were not, in partic-
ular, the between-technology correlation for the genetically-driven protein levels HEMO, HGFA, LYSC
and PON1 was lower than 0.25 in the two cohorts (S1 Appendix). In line with this hypothesis, recent
work by Kim and colleagues [19] concluded on an overall good reproducibility with SomaLogic, yet with
some non-negligible technical variability (intra-class correlation coefficient ~ 0.4 for 91 of the proteins

that they tested).

Comparison with a standard univariate pQTL analysis

There is a broad consensus in the biostatistical community about the benefits of collectively accounting
for the SNPs while leveraging information across multiple correlated outcomes [e.g., 20H22]. However,
many also acknowledge the mathematical and computational difficulties hampering these practices in
genome-wide association or QTL studies [e.g., 23] 24]. Pilot simulation experiments using LOCUS [14]
have indicated that its flexible hierarchical sparse regression model coupled with a scalable variational
inference scheme (Fig [h—c) can effectively increase statistical power at the scale required by current
molecular QTL studies. Here we provide sound practical evidence — in the context of the Ottawa and
DiOGenes studies and based on thorough comparisons with the classical univariate screening design —
that this tailored multivariate framework can lead to higher replication rates and novel pQTL discoveries.
Namely, we compare LOCUS with the univariate linear mixed model approach GEMMA [25, 26] in
two complementary ways. First, we use synthetic data to repeatedly evaluate their variable selection
performance for a series of data scenarios where the ground truth (here QTL associations) is known since
simulated. Second, we confront the findings (number of cis/trans locus-protein hits detected, replication
rates) of LOCUS two-stage analysis to those obtained by re-analyzing the Ottawa and DiOGenes datasets
with GEMMA.

Simulations

Simulation studies can be far from reflecting real data scenarios. To best emulate our study and obtain
a realistic assessment of the relative performance of the multivariate and univariate approaches, special
care was taken to use synthetic data that resemble the real data and embody accepted principles of
population genetics (Material and methods). In particular, we employed real SNPs from our study as
candidate predictors and we simulated proteomic levels by replicating the block-correlation structure and
variability of the 133 MS protein levels, using our freely available data generator echoseq. A comparison
of the synthetic and real proteomic levels is provided in S2 Appendix.

The first simulation study uses the SNPs from chromosome one of the Ottawa cohort and the 133
outcomes mimicking the MS proteomic levels, enforcing that the SNPs explain together at most 35% of
each protein variance (Material and methods). The ROC curves (Fig[3h) show a net gain in power for
selections with LOCUS compared to GEMMA. The average standardized partial areas under the curve
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Figure 3: Selection performance of LOCUS and GEMMA on simulated data. (a) Truncated average ROC curves
with 95% confidence intervals (50 replicates) for the detection of SNP-trait associations. (b) Average standardized partial
AUC of LOCUS and GEMMA for a grid of effect sizes (z-axis) and signal sparsity (y-axis, 20 replicates for each scenario).
(c¢) Simulated association pattern and patterns recovered by LOCUS and GEMMA, averaged over the 50 replicates. The
plots display a window of 350 SNPs (z-axis) containing the first three SNPs with simulated associations (blue labels), along
with their LD pattern. (d) Average standardized AUC with 95% confidence intervals for different numbers of proteins
modelled jointly, i.e., the 133 simulated proteins are randomly partitioned into batches of size go (z-axis) and LOCUS is
applied separately on these batches: go = 1 corresponds to modelling the proteins one by one and go = 133 corresponds
to modelling all 133 proteins jointly, as achieved by a classical application of LOCUS. (e) Posterior mean of the LOCUS
parameter representing the propensity for SNPs to be pleiotropic. Its magnitude satisfactorily reflects the number of

simulated associations per SNP (color-coded).
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(pAUC) with 95% confidence intervals are 0.926 +0.005 for LOCUS and 0.840 £ 0.005 for GEMMA. The
second simulation study generalizes this observation to a grid of data generation scenarios with different
effect sizes and numbers of proteins under genetic control: the average standardized pAUCs (Fig Bp)
are greater for LOCUS than for GEMMA in most cases and are comparable for very low proportions of
protein variance explained by the SNPs.

By design, univariate screening approaches do not exploit association patterns common to multiple
outcomes or markers; they analyze the outcomes individually, and do not account for linkage disequi-
librium (LD), which often results in a number of redundant proxy discoveries at loci with strong LD
(Fig ) At a given FDR, this hampers the detection of weak but genuine signals because of the large
multiple testing burden. Post-processing strategies accounting for local LD structures exist [27) 28] and
alleviate the problem to some extent. Instead of applying such corrections, LOCUS anticipates and ad-
dresses the question by enforcing sparsity directly at the modelling stage. It better discriminates truly
associated SNPs from their correlated neighbours (Fig )7 owing to its simulated annealing procedure.
We do not claim that LOCUS can provide direct information on the regulatory potential of individual
variants in real data settings, as this always requires follow-up studies at the level of loci, e.g., using
fine-mapping analyses or in-lab experiments. We do argue however that its effective handling the LD
structures can improve the selection of candidate variants for these subsequent functional studies, which
may save substantial research investment.

Finally, the improvement over GEMMA and other classical approaches also comes in large part from
the capacity of LOCUS to handle all correlated outcomes jointly, thereby borrowing strength across them.
This is illustrated in our third simulation study (Fig ), whereby LOCUS is applied separately to multiple
outcome batches of increasing sizes, from one protein per batch, corresponding to a univariate treatment
of each proteomic outcome, to all 133 simulated proteins, corresponding to a regular application of our
method. The AUCs indicate a significant increase of power when the outcomes are modelled jointly,
as shared information across them can be effectively exploited to enhance the detection of weak effects.
Technically, this shared information feature is mainly achieved via a specific model parameter, w; (Fig ),
which directly reflects the propensity of each SNP to be pleiotropic, i.e., to be associated with multiple
outcomes (Fig[3g); we will return to the practical value of this parameter in the discussion of a pleiotropic
locus identified in the real data study. Finally, we emphasize that our fully joint analysis is only possible
thanks to the efficient variational inference implementation of LOCUS which supersedes the prohibitively
slow Markov chain Monte Carlo (MCMC) routines traditionally employed for Bayesian inference.

These simulations tailored to the real data at hand prefigure the gain of power achieved by LOCUS

over standard methods for our pQTL study, as we next discuss.

Performance on the real data

We now compare LOCUS and GEMMA on the real data under the typical two-stage GWA scenario
employed in pQTL studies [4], [8, ©]. Namely, we contrast the results of LOCUS with those of GEMMA
applied to the Ottawa and DiOGenes data, but this time considering all 4M SNPs available before LD

pruning and employing a standard genome-wide Bonferroni correction of o = 0.05. We acknowledge that
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the 0.05-Bonferroni correction may be overly conservative and also discuss the results using a permissive
0.2-Bonferroni threshold (Material and methods).

The number of locus-protein hits identified and replicated with at least one of the two methods
was 100, using Bonferroni correction of 0.05 for GEMMA (full list of SNP-protein hits in S5 Table and
summarized by sentinel SNPs in S6 Table). Among these 100 hits, GEMMA missed 15 hits validated by
LOCUS (9 with the permissive Bonferroni correction of 0.2). As many as 5 of these 15 hits were trans
associations and 6/15 hits were not previously described in the literature using a r? > 0.5-proxy search
(Fig and S5 Table); these two observations highlight again the ability of LOCUS to identify weak/trans
effects that may go unnoticed by univariate analysis, in line with the above simulation studies. Moreover,
all 4 hits whose protein was quantified by both proteomic technologies had a successful dual replication
using the alternative technology.

Inspecting the estimates for the loci missed by GEMMA and validated by the LOCUS two-stage
analyses indicates that some univariate signal is present but is too weak to be detected after multiplicity
correction. In contrast, the multiplicity-adjusted LOCUS analyses could effectively single out and validate
individual hits among the strongest GEMMA signals. The S3 Appendix provides regional association
plots for six such examples: three loci associated with the CO7, ECM1 and ITIH3 MS levels, and three
loci associated with the I17RB, PROC and TENA SomalLogic levels. Moreover, the superiority of LOCUS
appears to be robust to the p-value threshold used for the univariate analysis: the replication rates and
number of loci validated by GEMMA univariate design for a range of thresholds are inferior to those of
LOCUS multivariate design (S3 Appendix).

Finally, LOCUS missed 6 locus-protein hits identified by GEMMA, but, importantly, these hits were
not detectable by LOCUS. Indeed, all 115 SNPs selected by GEMMA had been removed by the 2 > 0.95
pruning employed to define the tag SNP panel used for the LOCUS study. To assess whether LOCUS
would have identified these hits were their corresponding loci included in the primary analysis, we reran
our method after adding to our original panel all 115 SNPs and their neighbours (1Mb span). LOCUS
could successfully identify all 6 locus-protein hits with very high posterior probabilities of inclusion (PPI
> 0.99). The sentinel SNPs selected by LOCUS are reported in the “LOCUS extended panel” column of
S6 Table.

In summary, the improvement seen by simulation of the multivariate design over the classical univari-
ate design is confirmed on the real data: LOCUS achieves higher replication rates, uncovers 15 pQTL loci
missed by univariate screening (and does not miss any univariate signal when the corresponding SNPs
are properly included in the tag-SNP panel). Among the hits missed by the univariate design but vali-
dated by LOCUS two-stage analysis, several are trans signals (proteins: INSR, PROC, SEM3A, TENA,
XRCCG6, i.e., 5/15), novel signals (CYTN, CYTT, FA12, FCN3, ITTH3, XRCC6, i.e., 6/15) and have
successful cross-assay validation using the MS and SomaLogic measurements of their protein if available

(CFAB, CO7, ECM1, XRCC6, i.e., 4/4).

Two examples: a pleiotropic locus and a trans-acting locus

In this section we examine the advantages of our multivariate analysis for the detection of two loci, i.e.,

the notorious pleiotropic locus ABO and a novel locus on chromosome 11 trans-acting on the XRCC6
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Figure 4: Two examples of pQTL signal estimation in the discovery set. (a) The pleiotropic locus ABO: The
panel “LOCUS pleiotropy parameter in ABO” shows the posterior mean E (w; | y) for a 1 Mb region around the gene ABO.
This quantity attributes weight to two SNPs, rs8176741 and rs2519093, which LOCUS finds associated with the proteins
CADHS5, CD209, TIE1, resp., CD209, INSR, LYAM2. For each of these proteins, the colored panel displays the —log;q
nominal p-values obtained when re-analyzing the Ottawa data with GEMMA [25] [26]; the dashed and dotted horizontal
lines show the Bonferroni level of o« = 0.05, resp. a = 0.2. The pleiotropic SNP identified by LOCUS is marked with a green
triangle (rs8176741 left column, rs2519093 right column), and its correlation in 72 with the surrounding SNPs is indicated
by the yellow to red colors. The top SNP found by GEMMA is shown by a black star; the univariate signal for INSR does
not pass the p-value significance thresholds yet is detected by LOCUS multivariate analyses. (b) A locus trans-acting on

XRCC6 (same labelling as in (a)).

levels. These two examples are representative of the types of signals which LOCUS tends to better detect,
namely weaker signals, possibly involving a shared control from a single locus. We also formulate some
hypotheses on the involvement of these pQTLs in metabolic health, to be explored in dedicated studies.

The recovery of the ABO signals by LOCUS was facilitated by its tailored parametrization that
directly models pleiotropy via ws, as discussed in the simulation section and shown in Fig [Be. Fig [dh
indicates that LOCUS piled up evidence on the two sentinels SNPs rs2519093 and rs8176741. Althougth
the functional relevance of these two SNPs is by no means guaranteed and would need to be inspected in
proper wet-lab or fine-mapping experiments, LOCUS could capitalize on the pleiotropic potential of these
SNPs to effectively exploit the shared associations across the five proteins. Presumably because GEMMA
does not leverage joint patterns across proteins, the univariate estimates failed to reach significance for
the INSR protein, even using a loose Bonferroni threshold of o = 0.2.

ABO is a well-known pleiotropic locus associated with coronary artery diseases, type 2 diabetes, liver
enzyme levels (alkaline phosphatase) and lipid levels [, Bl [7]. Our analyses highlighted two independent
sentinel SNPs in the ABO region: rs2519093 and rs8176741 (r? = 0.03). The former SNP is trans-acting
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on E-selectin (protein LYAM?2 encoded by SELE), the Insulin Receptor and the CD209 antigen. The
latter SNP is trans-acting on the Tyrosine-protein kinase receptor (Tie-1), Cadherin-5 and CD209. Both
SNPs were reported as cis-acting eQTL variants for ABO, OBP2B and SURF1, and further queries in
public databases indicated that rs8176741 may affect the binding sites for three transcription factors
(Myc, MYC-MAX and Arnt), suggesting a complex gene regulation circuitry.

Our analyses of the clinical parameters measured in the Ottawa and DiOGenes studies found signif-
icant associations of the controlled proteins with several clinical variables, such as triglycerides, visceral
fat, fasting insulin, fasting glucose and HDL (Fig; this suggests that the ABO locus might have a role
in metabolic health, although further research is needed to confirm this. In particular, the CD209 protein
could be a secreted protein, released by M2 macrophages from adipose tissue, with a beneficial role in
controlling lipid levels, thereby possibly protecting from developing dyslipidemia and related metabolic
complications; see S4 Appendix for further discussion.

Finally, some proteins had been reported as associated with the ABO locus [4] and yet did not pop up
in our analyses (nor in the GEMMA analyses), namely, BCAM, LYAM3 (SELP), MET, NOTC1, OX2G
(CD200), TIE2 (TEK), VGFR2 (KDR), VGFR3 (FLT4), VWF. Multiple reasons could explain this lack
of significance, including but not only: the use of samples from the obese population where these signals
may be absent, a lack of statistical power and/or a poor quality of the SomaLogic measurements. For
TIE2 and VGFR3, LOCUS reported very weak signals (PPI < 0.1) suggesting insufficient power. As for
the other absent signals, the hypothesis of poorly quantified SomaLogic levels is not unlikely but difficult
to assess since all seven proteins were measured only in the SomalLogic assay only and could therefore
not be compared to corresponding MS measurements.

Our second example concerns the variant rs4756623 identified by LOCUS as a novel trans pQTL
for the XRCCG6 levels (X-Ray Repair Complementing Defective Repair In Chinese Hamster Cells; also
known as Ku70). Proxy searches (down to 72 = 0.5 in European ancestry panels) did not reveal any
tag SNP previously reported as a QTL (including e-, p-, or m-QTL). Again, the univariate screening
results indicated some trans signal between rs4756623 and XRCC6, but the effect did not survive the
multiplicity correction (Fig )

The XRCC6 gene activates DNA-dependent protein kinases (DNA-PK) to repair double-stranded
DNA breaks by nonhomologous end joining. DNA-PKs have been linked to lipogenesis in response to
feeding and insulin signaling [29]. DNA-PK inhibitors may reduce the risk of obesity and type 2 diabetes
by activating multiple AMPK targets [30]. A recent review discussed the role of DNA-PK in energy
metabolism, and in particular, the conversion of carbohydrates into fatty acids in the liver, in response
to insulin [3I]. It described increased DNA-PK activity with age, and links with mitochondrial loss
in skeletal muscle and weight gain. Finally, XRCC6 functions have been reported as associated with
regulation of beta-cell proliferation, islet expansion, increased insulin levels and decreased glucose levels
[30, 32].

We found that XRCC6 was significantly associated with decreased HDL, increased triglycerides, in-
sulin levels and visceral adiposity in our studies, while rs4756623 is located within the LRRC4C gene
a binding partner for Netrin G1, which has a known role in metabolism (S4 Appendix); the regulatory

11


https://doi.org/10.1101/524405

bioRxiv preprint doi: https://doi.org/10.1101/524405; this version posted May 23, 2020. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

mechanisms between the rs4756623 locus and the XRCC6 levels should be clarified, and functional studies
will be required to understand their physiological impact.

The next three sections provide a general characterization of the pQTLs identified by LOCUS in
terms of their functional enrichment, overlapping patterns with known loci and clinical relevance of their

associated proteins.

Overlap with eQTLs and evidence for regulatory impact

We assessed the overlap of the 113 validated pQTLs with known eQTLs (S7 Table). Seventy-seven of the
104 sentinel SNPs involved in our pQTL associations had one or more eQTL associations in at least one
tissue. These SNPs have been implicated in 83 eQTL associations, representing a significant enrichment
(p < 2.2 x 10716). Forty-nine of these 77 SNPs were eQTL variants for the gene coding for the protein
with which they were associated in our datasets. Our pQTLs were also enriched in epigenome annotation
marks (p = 9.20 x 10~%) and significantly closer to transcription start sites compared to randomly chosen
SNP sets (p = 9.99 x 107%). These observations suggest potential functional consequences for our pQTL
hits.

Overlap with GWAS risk loci

A total of 217 previously reported genome-wide associations overlapped our validated pQTL loci, corre-
sponding to 139 unique traits mapping to 68 distinct regions (based on LD r2 > 0.8). Nineteen SNPs were
directly involved in these associations (S8 Table) representing a significant enrichment (p < 2.2 x 10716).

This suggests that studying the genetic associations with the proteome may serve as starting point
to elucidate the molecular processes between the genotype and certain clinical endpoints whose genetic
control has been confirmed, and acquire mechanistic insights on the pathways involved. Colocalization
analyses are first step towards this end. The next section also paves the way for a discussion on the clinical
relevance of our pQTL results by studying associations with metabolic parameters directly measured in

the Ottawa and DiOGenes studies.

Proteins as endophenotypes to study the genetic architecture of clinical traits

As briefly illustrated in the discussion of the XRCCG6 trans effect and the A BO pleiotropy, the large panel
of clinical variables pertaining to metabolic health measured in both the Ottawa and DiOGenes studies
is a rich resource for evaluating the possible biomedical value of the validated pQTLs.

We performed a meta-analysis of the DiOGenes and Ottawa clinical and proteomic data, and found
that 35 of the 88 proteins under genetic control had associations with dyslipidemia, insulin resistance or
visceral fat-related measurements at FDR 5%. These associations should be attributable metabolic factors
independently of overall adiposity, as we controlled for BMI as a potential confounder; they are listed and
displayed as a network in S4 Appendix. We observed consistent directions of effects in the two cohorts
(see examples of Fig |5 and S9 Table for full details). Based on these associations, S4 Appendix expands

on the possible biomedical relevance of a selection of pQTLs in the context of metabolic complications.
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Figure 5: Forest plots for associations between proteins under genetic control and clinical parameters.
Analyses were adjusted for age, gender and BMI (Material and methods) and the selection of proteins shown covers the
ABO and XRCC6 pQTLs discussed in the main text as well as other examples discussed in S4 Appendix. All endpoints are
measured in both the Ottawa and DiOGenes cohorts; they correspond to total lipid levels (first row: total cholesterol, HDL,
LDL, triglycerides), glucose/insulin resistance (second row: fasting glucose, fasting insulin, HOMA-IR) and the visceral
adiposity index (VAI). In each case, regression coefficients with 95% confidence intervals are shown for the Ottawa and
DiOGenes analyses, and for the meta-analysis. The stars indicate associations with meta-analysis FDR < 5% (correction
applied across all proteins under genetic control, not only those displayed). For proteins with measurements in the MS and

SomalLogic platforms, association results are displayed for both; trans-regulated proteins are in bold.

Importantly, the set of 88 genetically-driven proteins was significantly more associated with the clin-
ical variables compared to protein sets chosen randomly among all proteins quantified by our MS and
SomalLogic panels (p = 0.014), with this background adjustment accounting for the bias of SomaLogic
proteins towards specific inflammation and oncology-related pathways (S10 Table). This enrichment
therefore supports that the primary pQTL analyses can help uncover potential proteomic biomarkers for
the Metabolic Syndrome and related pathologies; the full pQTL results of S4 Table and meta-analysis

clinical associations of S9 Table constitute a useful resource towards this end.

Discussion

Despite important technological advances, large-scale pQTL studies remain infrequent, owing to their
high costs [4H9]. To date, due to a lack of scalable multivariate methods, current QTL analyses rely on
single-SNP /single-protein mapping, which inherently limits their findings to loci displaying strong effect

sizes.
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Here, we described the first integrative pQTL study that analyzes jointly all SNPs and proteomic
levels from complementary MS and aptamer-based assays. Our Bayesian approach LOCUS confirmed
93 pQTLs (75 distinct proteins) highlighted in previous studies [4l, 6H9], despite our sample sizes 2.5
to 18 times smaller, and revealed 20 novel pQTLs (18 distinct proteins, S4 Table) with sound evidence
for functional relevance and possible implications in the development of the Metabolic Syndrome. Our
two-stage analysis achieved very high replication rates (83%), and appreciable cross-technology validation
for the pQTLs whose proteins had dual-assay measurements (78%). Importantly, 15% of the validated
findings would have been missed by a standard univariate design.

This corroborates our extensive simulation studies, which demonstrated the improved QTL detection
of LOCUS compared to univariate approaches on synthetic data mimicking the real data. In particular,
these experiments indicated that the joint modelling of all outcomes leads to a significant increase of power
in scenarios where a shared regulatory architecture governs groups of molecular levels. They also showed
that accounting for local linkage disequilibrium using simulated annealing further enhances the detection
of weak effects and drastically reduces the multiplicity burden. These advantages were exemplified for
the pleiotropic locus ABO and a novel locus trans-acting on XRCC6, and can be particularly important
on datasets with small sample sizes.

Finally, our analyses indicated that proteins under genetic control are enriched in associations with
metabolic parameters, which supports a genetic basis of these parameters and emphasizes the advantages
of pQTL studies for elucidating their underlying functional mechanisms. Evaluating the genetic control
of plasma protein levels has the potential to reveal circulating biomarkers of direct interest for diagnostic
applications but clearly, large pQTL studies in adipose tissues or liver may provide further, more specific
insights on the role of the proteome in metabolic health. Although still at their early stages, pQTL
studies are also intrinsically limited by the invasive nature of accessing tissues in humans. We hope
that future progress in the availability of tissue-specific proteomic samples will reveal new mechanisms
unavailable from plasma studies. As it is likely that sample sizes will remain limited, our well-powered
joint approach will be a useful tool to this end. In the meantime, our complete plasma pQTL and clinical
association results offer opportunities to study functional mechanisms and possible therapeutic options;
they are accessible from the searchable online database https://locus-pqtl.epfl.ch/dbl

Our work presents a direct illustration of a fully joint QTL analysis at scale and highlights concrete
biological findings that take advantage of our tailored statistical approach. A central ambition was to
showcase that LOCUS can bridge the gap between Bayesian multivariate inference and its practical use for
analyzing current molecular QTL data. Indeed, the applicability of LOCUS goes beyond pQTL studies,
as it is tailored to any genomic, proteomic, lipidomic, metabolic or methylation QTL analyses and can
be used for genome-wide association with several clinical endpoints. The computational burden involved
in the most Bayesian inference approaches has hampered the use of multivariate hierarchical modelling
on large molecular QTL datasets thus far; our joint framework overcomes this with a scalable batch-wise
variational algorithm and an effective C++/R implementation. It therefore offers a direct alternative to
univariate screening approaches whose drawbacks for uncovering weak QTL effects are the object of a
broad consensus [TTHI3]. Performance profiling for LOCUS demonstrated that it can analyze millions of

SNPs and thousands of molecular levels (S2 Appendix). To our knowledge, no other fully multivariate
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method is applicable to large molecular QTL studies without drastic preliminary dimension reduction;

our pilot study therefore opens new perspectives for uncovering weak and complex effects.

Material and methods

Ethics approval and consent to participate

The Ottawa and DiOGenes studies were approved by the local human research ethic committees. Par-
ticipants provided informed written consent, and all procedures were conducted in accordance with the

Declaration of Helsinki. Trial registration number: NCT00390637. Registered 20 October 2006.

Study samples

The Ottawa study was a medically supervised program set up by the Weight Management Clinic of
Ottawa [I5]. Subjects under medication known to affect weight, glucose homeostasis or thyroid indices
were excluded from all analyses.

The DiOGenes study was a multi-center pan-European program [I6]. Eight partner states participated
to the study: Bulgaria, the Czech Republic, Denmark, Germany, Greece, the Netherlands, Spain and the
United Kingdom. Participants were overweight/obese (BMI between 27 and 45 kg/m?), non-diabetic and
otherwise healthy.

For both studies, subjects who were not under fasting conditions at plasma sample collection were
excluded from the proteomic analyses. The main clinical characteristics of the cohorts are given in

S1 Table.

Proteomic data

Plasma protein expression data were obtained using two types of technologies: mass-spectrometry (MS)
and a multiplexed aptamer-based assay developed by SomaLogic [I7]. Samples were randomized, ensuring
that the plate numbers were not associated with age, gender, ethnicity, weight-related measures, glycemic
indices, measures of chemical biochemistry, and, for the DiOGenes samples, collection centers.

The MS proteomic quantification used plasma samples spiked with protein standard lactoglobulin
(LACB). Samples were immuno-depleted, reduced, digested, isobarically 6-plex labeled and purified.
They were analyzed in duplicates on two separate but identical systems using linear ion trap with Or-
bitrap Elite analyzer and Ultimate 3000 RSLCnano System (Thermo Scientific). Protein identification
was done with the UniProtKB/Swiss-Prot database [33], using Mascot 2.4.0 (Matrix Sciences) and Scaf-
fold 4.2.1 (Proteome Software). Both peptide and protein false discovery rates (FDR) were set to 1%,
with a criterion of two unique peptides. The relative quantitative protein values corresponded to the
log,-transformation of the protein ratio fold changes with respect to their measurements in the biolog-
ical plasma reference sample. The sample preparation and all other manipulations relative to the MS
measurements are detailed further in previous work [34H36].

The SomalLogic protein measurements were characterized using the SOMAscan assay [I7], which

relies on fluorescent labelling of poly-nucleotide aptamers targeting specific protein epitopes. Protein
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measurements were obtained in relative fluorescence unit and were then log,-transformed. The SomaLogic
panel targetted 1,129 proteins; the KEGG and Reactome pathways covered by this panel are listed in
S10 Table (enrichment using a 5% FDR threshold).

We discarded MS-based proteins if their measurements were missing for more than 5% of the samples,
leaving 210 proteins in the Ottawa cohort and 136 in the DiOGenes cohort; we restricted all downstream
analyses to the 133 proteins available for both cohorts. The Somalogic measurements had no missing
values. Totals of 1,100 and 1,129 proteins were assayed in the Ottawa and DiOGenes cohorts. All our
analyses focused on the 1,096 proteins quantified for both cohorts. The overlap between the MS and
SomalLogic panels was of 72 proteins for 397 and 389 subjects in Ottawa and DiOGenes respectively.

We excluded samples with extreme expression values in more than 5% of the proteins, i.e., values
beyond the outer fences of the empirical distribution (¢; — 3 x IQR, ¢3 + 3 x IQR, where ¢, g3 are the
lower and upper quartiles, and IQR is the interquartile range). After this quality control procedure, 577
and 428 Ottawa samples remained in the MS and Somalogic datasets, respectively, and 481 and 563

DiOGenes samples remained in the MS and SomaLogic datasets, respectively.

Genotyping

Genotypes were generated using HumanCoreExome-12 v1.1 Illumina SNP arrays (Illumina, Inc., San
Diego, CA), according to their manufacturer’s instructions and were called with the GenomeStudio Soft-
ware provided by Ilumina. Preprocessing steps, including imputation and quality control, have been
previously documented [37]. We discarded SNPs with call rate < 95%, violating Hardy—Weinberg equi-
librium (FDR < 20%), and we discarded subjects with low call rate (< 95%), abnormally high autosomal
heterozygosity (FDR < 1%), an XXY karyotype, or gender inconsistencies between genotype data and
clinical records. For subjects with identity-by-state IBS> 95%, we kept only the one with the highest
call rate. A table detailing these quality control filters for the Ottawa and DiOGenes studies is given in
S5 Appendix. The subjects from both cohorts were of European ancestry and the two cohorts had similar
genetic structure. We used principal component analyses separately on each cohort to exclude subjects
that were extremely heterogeneous genetically. We performed genotype imputation using SHAPEIT [38]
and IMPUTE2 [39], based on the European reference panel from the 1,000 Genome project (March 2012
release, phase 1 version 3). We then discarded SNPs with INFO score < 0.8, which left 4.9M imputed
SNPs in both datasets. We applied a light LD pruning with PLINK [40] using pairwise r? threshold
0.95 and used a minor allele frequency threshold of 5% after having restricted the genotype data to the
subjects with available proteomic data.

The above steps were performed separately for the Ottawa and the DiOGenes cohorts, so in order
to define a common set of SNPs for discovery and replication, we restricted each dataset to the SNPs
available for both cohorts. After all genetic quality controls, and in both cohorts, p = 275,485 tag SNPs
remained for the SomalLogic analysis and p = 275,297 tag SNPs remained for the MS analysis. As SNPs
were imputed, the 0.95-r2 pruning led to a drastic cut of “redundant” markers: without this pruning step,
the number of SNPs was ~ 4M. Such a reduction is not surprising considering the nature of the underlying
SNP arrays (essentially based on tag SNPs) and indicates that little information was discarded. In the
Ottawa cohort n = 376 subjects had both genotype and MS proteomic data, and n = 394 subjects had
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both genotype and Somal.ogic proteomic data. In the DiOGenes cohort, these numbers were n = 400

and 548.

Clinical data

Both cohorts had records on age, gender, anthropometric traits (weight and BMI), glycemic variables
(fasting glucose, fasting insulin, HOMA-IR), and total lipid levels obtained from blood biochemistry
(total cholesterol, triglycerides, HDL). We derived LDL values using the Friedewald formula [41], and
obtained gender-specific wvisceral adiposity index (VAI) values using the formula of Amato et al. [42].
In each cohort and for each clinical variable, we removed a few samples with extreme measurements,

similarly as for the proteomic data quality control.

LOCUS: fast Bayesian inference for joint QTL analysis

LOCUS is a variational inference approach for joint mapping analysis at the scale required by current
molecular QTL studies (Fig [th) [14]. It implements a hierarchical model that involves a collection of
sparse regressions,

yt:X/Bt+€t7 EtNNn (OyTtilIn), t::|.7...,(]7

where y = (y1,. .., Yq) is an n x ¢ matrix of ¢ centered outcomes (e.g., genomic, proteomic or metabolomic
levels), and X is an n X p matrix of p centered candidate predictor SNPs, for each of n samples. Each
outcome, y;, is related linearly to all p candidate SNPs, and has a specific residual precision, 7, to which
we assign a Gamma prior, 7z ~ Gamma(n;, ). The association between each pair of SNP and outcome

is modelled using a spike-and-slab prior, namely, for s=1,...,pand t =1,...,q,
ﬂst | Vst 0-2’ Tt ~ fy.stN (Oa 02 Ttil) + (1 - Vst) 60a Vst | Wg ~ Bernoulli (ws) )

where Jq is the Dirac distribution. Hence, to each regression parameter B4 corresponds a binary latent
parameter s, which acts as a “predictor-outcome association indicator”: the predictor X is associated
with the outcome vy, if and only if v5; = 1. The parameter o represents the typical size of nonzero effects

1/2

and is modulated by the residual scale, 7, ', of the outcome concerned by the effect; it is inferred

2

from the data using a Gamma prior specification, 07 ~ Gamma (A, ). Finally, we let the probability

parameter wy have a Beta distribution,
ws ~ Beta (as, bs) ,

where a, and by are set so as to enforce sparsity as described in Ruffieux et al. [I4]. Since it is involved
in the Bernoulli prior specification of all 7,1,...,7sq, the parameter w, controls the proportion of out-
comes associated with the predictor X, and hence directly represents the propensity of predictors to
be pleiotropic “hotspots”. Both ws and o2 allow the leveraging of shared association patterns across all
molecular variables, which enhances the estimation of QTL effects; see the graphical representation of the
model (Fig ) Thanks to this joint tailored modelling, the inclusion of cis regions does not mask the
weaker trans effects, but rather modelling altogether cis and trans effects, possibly governed by shared

mechanisms, contributes to boost the detection of trans signals. LOCUS estimates interpretable posterior
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probabilities of association for all SNP-outcome pairs (Fig ), from which Bayesian false discovery rates
are easily calculated.

The Bayesian framework of LOCUS can be flexibly extended to account for population structure,
using a dedicated random effect parameter. Alternatively, adding genotypic principal components as
fixed covariates in our model may suffice in some cases.

Inference on high-dimensional Bayesian models is both computationally and statistically difficult. Our
previous joint QTL approaches [20] 43] are based on sampling procedures, such as MCMC algorithms,
and require prohibitive computational times on data with more than few hundreds of SNPs or outcomes.
LOCUS uses a fast deterministic variational inference algorithm, which scales to the typical sizes of
QTL problems. Previous work [I4] compared LOCUS with existing QTL methods, whether stochastic or
deterministic, univariate or multivariate. Here, we augmented our algorithm with a simulated annealing
procedure [44] to enhance exploration of multimodal parameter spaces, as induced by strong linkage-
disequilibrium (LD) structures. The pQTL study of two obesity cohorts described in the present paper
illustrates the strengths of our statistical framework in a concrete and thorough manner and directly
exploits these strengths for uncovering new signals of biological and clinical relevance.

The applicability of a fully multivariate method to large molecular QTL data also hinges on the
effective computational implementation of its algorithmic procedure. The annealed variational updates
of LOCUS are analytical and performed by batches of variables. The software is written in R with C++
subroutines and is publicly available [45]. Our pQTL analyses completed in a few hours for 275K tag
SNPs representing information from about 4M common markers, yet larger SNP panels can be considered
as our method scales linearly in terms of memory and CPU usage. For instance, analyses of 2M SNPs

and 1,000 proteins run in less than 40 hours (see profiling, S2 Appendix).

Simulation study design

We evaluated the performance of LOCUS expected on our data by conducting two simulation studies. We
compared its statistical power to detect pQTL associations with that of the linear mixed model approach
GEMMA [25] [26], which estimates the associations between each SNP and each outcome in a univariate
fashion. We used the R package echoseq [46] to generate synthetic data that emulate real data; see
S2 Appendix.

For the first simulation, we ran LOCUS and GEMMA on the SNPs of all n = 376 Ottawa subjects,
and on simulated expression outcomes with residual dependence replicating that of the ¢ = 133 MS
proteomic levels. We used the SNPs from chromosome one (p = 20,900), and generated associations
between 20 SNPs and 25 proteins chosen randomly, leaving the remaining variables unassociated. Some
proteins were under pleiotropic control; we drew the degree of pleiotropy of the 20 SNPs from a positively-
skewed Beta distribution, so only a few SNPs were hotspots, i.e., were associated with many proteins. We
generated associations under an additive dose-effect scheme and drew the proportions of outcome variance
explained by a given SNP from a Beta(2,5) distribution to give more weight to smaller effect sizes. We
then rescaled these proportions so that the variance of each protein attributable to genetic variation
was below 35%. These choices led to an inverse relationship between minor allele frequencies and effect

sizes, which is to be expected under natural selection. We generated 50 replicates, re-drawing the protein
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expression levels and effect sizes for each. On top of comparing the relative performances of LOCUS and
GEMMA on these data, we also illustrated the benefits of modelling all the proteomic outcomes jointly by
comparing the performance of LOCUS when applied to increasingly larger batches of proteins. Namely,
we split randomly the proteins into batches of given sizes — ranging from 1, for a univariate modelling
of the proteins, to all 133 MS proteins, for a fully multivariate treatment corresponding to a classical
application of LOCUS — and ran LOCUS separately on each batch and all SNPs from chromosome one.
We then aggregated posterior probabilities of inclusion to assess selection performance. This procedure
was repeated for each of the 50 synthetic data replicates.

For the second simulation, we re-assessed the performance of LOCUS for a grid of data generation
scenarios. We considered a wide range of sparsity levels (numbers of proteins under genetic control) and
effect sizes (proportions of outcome variance explained by the genetic variants). Given the large number
of configurations (130), and in order to limit the computational burden, we used the first p = 2,000

SNPs, and ran LOCUS and GEMMA on 20 replicates for each configuration.

pQTL analyses

We performed pQTL analyses separately for each platform, i.e., one analysis for the MS proteomic dataset,
and another for the Somal.ogic proteomic dataset. Each analysis comprised two stages: a discovery stage
using the Ottawa cohort and a replication stage based on the DiOGenes cohort.

For discovery, we used LOCUS on both the MS and the SomalLogic datasets, with an annealing sched-
ule of 50 geometrically-spaced temperatures and initial temperature of 20; pilot experiments indicated
that estimation was not sensitive to these choices. We used a convergence tolerance of 10~2 on the abso-
lute changes in the objective function as the stopping criterion. The algorithm can handle missing data
in the outcome matrix, so no imputation was necessary for the MS proteomic data.

We adjusted all analyses for age, gender, and BMI. No important stratification was observed in the
genotype data; the first ten principal components together explained little of the total variance (< 4%),
so we did not include them as covariates. We derived FDR values from the posterior probabilities of
association obtained between each SNP and each protein, and reported pQTL associations using an FDR
threshold of 5%.

We performed a validation study of the pQTLs discovered using the DiOGenes cohort with GEMMA
[26, [A7], with centered relatedness matrix (default) and p-values from (two-sided) Wald tests. We then
obtained adjusted p-values using Benjamini-Hochberg FDR, and validated our hits using again an FDR
threshold of 5%.

Comparison with a standard two-stage univariate design

To assess the extent to which LOCUS two-stage pQTL analysis discovers more hits than the univariate
procedures routinely applied for e- or pQTL analyses, we re-performed the entire study using GEMMA
[25, 26]. We followed standard practices and ran the method separately for the MS and SomaLogic
analyses on the SNPs without LD pruning, i.e., on roughly 4 million SNPs. We then corrected for
multiple testing using a standard Bonferroni threshold of 0.05 (based on the numbers of tested SNPs and

proteins) and also discussed the results obtained with a more permissive Bonferroni threshold of 0.2.
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To account for proxy hits arising from the SNP LD structure and provide grounds for comparison
between GEMMA and LOCUS, we defined hits at the level of loci as follows: the hits identified by
GEMMA and/or LOCUS as associated with a same protein (quantified by the same proteomic technology)
were considered to be in a same locus if there was no more than 1Mb between two consecutive hits.
The additional hits found by GEMMA at Bonferroni level 0.2 were assigned to the closest existing loci
(mapping to the same protein), provided that the distance was less than 1Mb; new loci were defined for

the remaining hits.

pQTL annotation

We used the Ensembl database [48] (GRCh37, release 94)to retrieve the list of genes within 2Mb of each
sentinel SNP (i.e., involved in the pQTL associations identified by LOCUS), and also listed the SNPs in
LD (r? > 0.8), limiting the search to 500Kb upstream and downstream of the sentinel SNP position. We
called cis pQTLs, all sentinel SNPs located within +1Mb of the gene encoding for the controlled protein,
and trans pQTLs, all other pQTLs.

We evaluated the overlap between our pQTL associations and previously reported pQTL signals with
the PhenoScanner database [49] [50], using the default p-value threshold p < 107> and an LD proxy search
(r? > 0.8, in populations with European ancestry). As queries using the R-package phenoscanner are
limited to 500 returned tuples, we downloaded a local copy of the database (retrieved on 26/03/2019).
Moreover, since protein names in the database do not follow the official UniProt protein names, we
retrieved the annotation files from all individual studies and remapped the protein names onto the official
UniProt identifier, thereby enabling the comparison with our pQTL hits using dbSNP rsIDs and UniProt
IDs.

Epigenomic annotation

We retrieved epigenomic annotations of 1,000 Genomes Project (release 20110521) from Pickrell [51].
The data covered 450 annotation features, each binary-coded according to the presence or absence of
overlap with the SNPs. The features corresponded to DNase-I hypersensitivity, chromatin state, SNP
consequences (coding, non-coding, 5’'UTR, 3'UTR, etc), synonymous and nonsynonymous status and
histone modification marks. We obtained distances to the closest transcription start site from the UCSC
genome browser [52]. Ninety-seven of our 104 validated sentinel SNPs had annotation data; to evaluate
their functional enrichment, we resampled SNP sets of size 97 from our initial SNP panel, and, for each set,
we computed the cumulated number of annotations. We did the same for the distances to transcription

start sites. We repeated this 10° times to derive empirical p-values.

Overlap with known eQTLs and with GWAS risk loci

We evaluated the overlap of our pQTLs with the eQTL variants reported by the GTEx Consortium
53, 4] (release 7) at g-value < 0.05. We considered all 49 tissues listed by GTEx but eQTL SNPs for
several tissues were counted only once. We made both general queries and queries asking whether a

pQTL uncovered by LOCUS was an eQTL for the gene coding for the controlled protein.
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We retrieved known associations between the validated sentinel pQTLs and diseases or clinical traits,
based on the GWAS catalog [55] [56] (v1.0 release €92), and also using an LD proxy search (r2 > 0.8).
We evaluated enrichment for eQTL and risk loci using one-sided Fisher exact tests based on the 104

validated sentinel pQTLs.

Associations with clinical variables

We tested associations between the proteins under genetic control and clinical parameters separately
in each cohort. For the DiOGenes data, we used linear mixed-effect models, adjusting for age, gender
as fixed effects, and center as a random effect. For the Ottawa data, we used linear models, adjusting
for age and gender. Except when testing associations with anthropomorphic traits, all analyses were
also adjusted for BMI. For the clinical variables available in the two cohorts (total cholesterol, HDL,
LDL, fasting glucose, fasting insulin, HOMA-IR, triglycerides and VAI), we performed meta-analyses
using the R package metafor [57]. We used random-effects models to account for inter-study variability,
which may in part result from geographical differences, and employed two-sided Wald tests for fixed
effects, and Cochran @Q-tests for measuring residual heterogeneity; we did not interpret the results if
between-study heterogeneity estimates were high (I2 > 80%), and evaluated the directional consistency
of the effects between Ottawa and DiOGenes. We adjusted for multiplicity using Benjamini—-Hochberg
correction across all tests, i.e., involving the 88 tested proteins and the two proteomic technologies, and
reported associations using a 5% FDR threshold.

We assessed whether the proteins under genetic control were enriched in associations with the clinical
variables. We randomly selected 10° sets of 88 proteins from the panel used for the pQTL analyses and
derived an empirical p-value by counting, for each set, the number of proteins with at least one clinical

association at FDR 5%.

Supporting information

S1 Appendix. Comparison of MS and SomalLogic measurements. Scatterplots for the 72

protein levels with dual-technology quantification for both the Ottawa and the DiOGenes cohorts.

S2 Appendix. Addendum to the simulation studies and computational performance of

LOCUS. Emulation of the MS QTL data; Runtime profiling for different problem sizes.

S3 Appendix. Addendum to the comparison of LOCUS with the univariate analysis GEMMA.
Six examples of pQTL loci found by LOCUS and missed by the univariate analysis; Sensitivity of the

univariate analysis to the p-value threshold.

S4 Appendix. Further examples of pQTL loci with possible implications in metabolic dis-
orders. Clinical associations with proteins controlled by the pleiotropic locus ABO. Clinical associations
with the XRCC6 protein levels. CFAB and RARR2, mediators of adipogenesis are under genetic control;
The importance of ILIAP for Metabolic Syndrome; WFKN2, a TGFg-activity protein with protective
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effect against metabolic disorders; Inflammation mediated proteins and their role in insulin resistance;

Complement /coagulation: a trans-acting insertion linking PROC and its receptor.

S5 Appendix. Addendum to the genotyping quality control. Detailed description of the quality
control performed on the genotyping data for the Ottawa and DiOGenes studies.

S1 Table. Ottawa & DiOGenes cohorts. Average anthropometric, glycemic and total lipid char-

acteristics of the Ottawa and DiOGenes cohorts.

S2 Table. Discovery pQTLs. pQTL associations discovered by LOCUS in the Ottawa cohort, using

the mass-spectrometry and Somalogic datasets.

S3 Table. Validation pQTLs. pQTL associations discovered by LOCUS in the Ottawa cohort and
validated in the DiOGenes cohort.

S4 Table. Overlap with public pQTLs. Overlap of the validated pQTL associations with public

pQTL associations (PhenoScanner).

S5 Table. Comparison with univariate analysis, individual SNP-protein pairs. Comparison

with the univariate two-stage analysis using GEMMA individual hits.

S6 Table. Comparison with univariate analysis, sentinel SNP-protein pairs. Comparison

with the univariate two-stage analysis using GEMMA, hits summarized by loci.

S7 Table. Overlap with public eQTLs. Overlap of the validated pQTL associations with public
eQTL associations (GTEx Consortium).

S8 Table. Overlap with risk loci. Overlap of the validated pQTL associations with disease risk loci
(GWAS Catalog).

S9 Table. pQTLs vs clinical. Associations between proteins under genetic control and clinical
parameters measuring dyslipidemia, insulin resistance and visceral fat, in the Ottawa and DiOGenes

cohorts.

S10 Table. Pathways covered by the Somalogic panel. Enrichment analysis using KEGG
(2019) and Reactome (2016).

Availability of data and materials

The MS proteomic data have been deposited on the ProteomeXchange Consortium [58] via the PRIDE
partner repository, with the dataset identifiers PXD005216 for DiOGenes and PXD009350 for Ottawa.
The SomalLogic proteomic data are available from the Open Science Framework, at https://osf.io/

vBmes/7view_only=13e4ccd127024ee7b4c819385325925¢ and
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https://osf.io/s4v8t/?view_only=90637f2941e14ec986e5888491fbdbbb) respectively for Ottawa and
DiOGenes. All pQTL and clinical association results are available as supplemental tables and can be
browsed from our online database https://locus-pqtl.epfl.ch/db. Other data that support the find-
ings of this study are available from the corresponding authors upon request. All statistical analyses were
performed using the R environment [59] (version 3.3.2). LOCUS and ECHOSEQ are freely available from
GitHub [45, 46].

Web ressources

ECHOSEQ: https://github.com/hruffieux/echoseq

Ensembl: http://grch37.ensembl.org/index.html

GEMMA: http://www.xzlab.org/software.html

GTEx: https://gtexportal.org/home

GWAS Catalog: https://www.ebi.ac.uk/gwas

IMPUTE2: http://mathgen.stats.ox.ac.uk/impute/impute_v2.html

JASPAR: http://jaspar.genereg.net

LOCUS: https://github.com/hruffieux/locus

Metafor: https://cran.r-project.org/web/packages/metafor/index.html
PhenoScanner: http://www.phenoscanner.medschl.cam.ac.uk

PLINK: http://zzz.bwh.harvard.edu/plink

ProteomeXchange: http://www.proteomexchange.org

R: https://www.r-project.org

SHAPEIT: https://mathgen.stats.ox.ac.uk/genetics_software/shapeit/shapeit.html
SNP2TFBS: https://ccg.vital-it.ch/cgi-bin/snp2tfbs/snpviewer_form_parser.cgi
UCSC: https://genome.ucsc.edu

UniProt: https://www.uniprot.org
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