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Abstract

The publication of Liang et al. (2016, Science) seems to demonstrate very clearly that increasing
tree species richness substantially increases forest productivity. To combine data from very di�er-
ent ecoregions, the authors constructed a relative measure of tree species richness. This relative
richness however confounds plot-level tree species richness and the polar-tropical gradient of tree
species richness. We re-analysed their orginal data, computing a regional measure of tree species
richness and addressing several other issues in their analysis. We �nd that there is virtually no ef-
fect of relative tree species richness on productivity when computing species richness at the local
scale. Also, di�erent ecoregions have very di�erent relationships between tree species richness and
productivity. Thus, neither the “global” consistency nor the actual e�ect can be con�rmed.

Observational studies of the species-richness-ecosystem functioning relationship are correlational
and not causal. Observing a consistent correlative e�ect of tree species richness on forest productiv-
ity (TSP-P) across a wide range of biomes, however, would make this relationship a reliable principle
on which to build recommendations for forestry and forest conservation. The publication of Liang
et al. (2016) report on such a consistent, global TSP-P-relationship, based on forest inventory data
from over 600,000 plots in 12 di�erent ecoregions.

There are several logical and technical �aws in their analysis; correcting them also removes
the reported global relationship and thus its role as principle for forest management. We identi�ed
the following problems with the original analysis: (1) The authors computed “relative tree species
richness” as proportion of the maximum value. Thereby it represents a gradient from boreal to trop-
ical plots, rather than in local species richness. When instead computing species richness relative
to the maximum value in the region the e�ect of species richness on productivity is dramatically
reduced. (2) Plots are overwhelmingly from temperate forest; indeed only some 2500 plots are from
the tropics (equivalent to 0.4%), despite these forests representing around 30% of the world’s for-
est. Stratifying the plots accordingly weakens the TSR-P-relationship. (3) In the spatial regression
model, distances between plots were computed without taking the spherical nature of earth into
account. This had little e�ect on the slope estimate of the TSR-P-relationship. (4) The computa-
tional burden of the spatial model required subsampling the data to 500 data points. The authors
did not correctly compute con�dence intervals for this approach, wrongly interpreting subsam-
pling as bootstrapping and additionally incorrectly computing bootstrap standard errors. A correct
subsampling-based estimation led to approximate trippling of the reported con�dence interval. (5)
As noted earlier (Schulze et al., 2018), some 4% of the plots had productivity values (far) beyond
what is biologically plausible (Stape et al., 2010). The likely reason is that small plots with large in-
ventory errors in the productivity may lead to erratically high values. Not taking this into account
in the analysis, e.g. by down-weighting plots with productivities above 30 m2ha−1y−1 at least in-
dicates an unre�ected use of data. It also leads to an overestimation of the absolute productivity.
Whether that is the main reason for productivity increases dramatically higher than any reported
from experimental setups (Zhang et al., 2012a; Vilà et al., 2013; Huang et al., 2018; Jactel et al., 2018;
Ammer, 2019) is unclear.
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Figure 1: Comparison of reproduced analysis of Liang et al. (2016) (black) and corrected analysis of the
same data (green), left, and re-analysis of the estimated species richness e�ect (θ̂) for each ecoregion
separately, right. Red and green lines, right, are the original and the global re-analysis, respectively.

0 20 40 60 80 100

0

2

4

6

8

10
tropMoist

0 20 40 60 80 100

0

2

4

6

8

10
tropDry

0 20 40 60 80 100

0

5

10

15 tempBroadleaf

0 20 40 60 80 100

0

2

4

6

8

10
tempConifer

0 20 40 60 80 100

0

1

2

3

4
boreal

0 20 40 60 80 100

0

1

2

3

4

5
tropGrass

0 20 40 60 80 100

0

1

2

3

4
tempGrass

0 20 40 60 80 100

0

2

4

6

8
floodedGrass

0 20 40 60 80 100

0

2

4

6

8

10 montaneGrass

0 20 40 60 80 100

0

1

2

3

4
MediterrForest

0 20 40 60 80 100

0.0

0.2

0.4

0.6

0.8

1.0
desert

relative local tree species richness

pr
od

uc
tiv

ity
 [m

3   h
a−1

  y
−1

]

0 100 200 300 400

0

5

10

15 tropMoist

2 4 6 8 12

0

2

4

6

8

10
tropDry

0 50 100 150

0

10

20

30

40 tempBroadleaf

0 20 60 100

0

5

10

15

20

25

30 tempConifer

2 4 6 8 10

0

1

2

3

4

5

6

7
boreal

0 10 20 30 40 50

0

2

4

6

8
tropGrass

0 5 10 15 20 25

0

1

2

3

4

5

6
tempGrass

2 4 6 8 10

0

2

4

6

8

10
floodedGrass

5 10 15

0

2

4

6

8

10
montaneGrass

5 10 15

0

1

2

3

4

5

6

7
MediterrForest

5 10 15

0.0

0.2

0.4

0.6

0.8

1.0
desert

absolute tree species richness

pr
od

uc
tiv

ity
 [m

3   h
a−1

  y
−1

]

Figure 2: Biome-speci�c observed tree-species richness-productivity relationships (and 95% con�dence
interval). (Left) Species richness expressed as percentage of regional maximum. (Right) Productivity as
changing with absolute species richness. Note that the shape of the curves can change when re-scaling
species richness, as the values enter the analysis log-transformed.

Combining corrections for these points led to a new global analysis, with a negligible e�ect of
tree species richness on a site’s volumetric productivity (Fig. 1 left; see supplementary material for
the full analysis including R-code). Furthermore, �tting the model to the 11 ecoregions with su�-
cient data separately shows that the global model is not consistent and provides a poor description
of the ecoregions’ speci�c TSR-P-relationships (Fig. 1 right). Also, there is no obvious bene�t of
scaling species richness, as the curves are more di�cult to interpret when displayed as percentage
of some maximal value (Fig. 2). Indeed, using a relative scale makes the species richness-e�ect (the
θ-estimate) harder to compare across biomes and insigni�cant in several cases.

In summary, the analysis presented by Liang et al. (2016) is �awed in several respects, leading
to a spuriously strong e�ect of tree species richness on forest productivity at the global level. While
a re-analysis correlatively con�rms a positive TSR-P-relationship for most ecoregion, these e�ects
vary substantially in their strength and should be examined for each system separately. Overall, the
original publication has thus added very little to our understanding, as both positive and biome-
speci�c e�ects of species richness were already known before their publication (see, e.g., Whittaker
& Heegaard, 2003; Vilà et al., 2007; Paquette & Messier, 2010; Whittaker, 2010; Zhang et al., 2012b),
and the global consistency could not be upheld.
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Appendix: Reproducible analysis with comments and conclu-
sions for each step

Contents

A Introduction 3

B Reproducing the original tree richness-productivity relationship 4
B.1 Data preparation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
B.2 Spatial model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

C Corrections and improvements 11
C.1 Do implausible productivity values distort the analysis? . . . . . . . . . . . . . . . . 12
C.2 Aggregated subsets vs using the entire data set: do parameter estimates match? . . 13

C.2.1 Scaling standard errors from subsamples to full data . . . . . . . . . . . . . 15
C.2.2 Increasing the size of the subsamples for the GLS . . . . . . . . . . . . . . . 16

C.3 Strati�ed sampling of subsets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
C.4 Compute distances between plots as Great Circle distances, rather than Euclidean

(thereby accommodating the spherical nature of earth) . . . . . . . . . . . . . . . . 19
C.5 De�ne species richness relative to what is regionally possible . . . . . . . . . . . . . 22
C.6 Use relative, rather than absolute, productivity . . . . . . . . . . . . . . . . . . . . . 24

D A new analysis 26

E Comparison with ecoregion-speci�c �ts 28
E.1 Analysis with actual species richness as predictor . . . . . . . . . . . . . . . . . . . 31

F Conclusion 33

Bibliography 33

A Introduction

The positive e�ect of species richness on various measure of ecosystem functioning is generally
undisputed (Cardinale et al., 2012), even though this e�ect levels o� fairly rapidly as the number
of species beyond “few” (Cardinale et al., 2006; Isbell et al., 2011). Such fundamental understanding
does not necessarily translate into applicable knowledge, and hence the publication of Liang et al.
(2016) is a landmark step in converting academic biodiversity-ecosystem functioning into on-the-
ground forest management. They claim to describe a globally applicable relationship between tree
species richness and forest productivity, which, if correct, could guide forest management around
the world without speci�c understanding of local or regional speci�cs.

On re-analysing the excellent data base compiled by Liang et al. (2016), we were originally curi-
ous to investigate an unanswered question, namely whether the global tree-richness-productivity-
relationship is actually anywhere near as good as one built, on the same data, for a speci�c biome.
Furthermore, we were also concerned with describing a partial dependence plot for the e�ect of
tree species richness, rather than the conditional plot presented by Liang et al. (2016); the di�er-
ence being that in their plot, the environmental predictors used in the model (such as basal area,
temperature, precipitation and elevation) must be known, while in a partial dependency plot the
marginal e�ect of tree species richness, independent of the actual local setting, would be depicted.

During the analysis, we realised that these initial questions were of secondary importance, as
we discovered conceptual and statistical issues that cast substantial doubt on the results presented
by Liang et al. (2016). Since the �rst author initially did not provide his code, we had to rely on the
method description and guessing to reproduce the analysis.1 From the reconstruction we modi�ed
the original model to correct for some mistakes, as detailed below, to derive our new version of the
global relationship. In the next step, we predicted from the global model to the average conditions

1This R-code of Liang is now available here: https://github.com/jingjingliang2018/GFB1/blob/master/R_
script_Github10312008.R
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of each biome, and compared this prediction with those of a biome-speci�c model from the same
data base.

In the following, we present �rst the original analysis, then the modi�cations we introduce. We
close with a new global and a biome-speci�c analysis.

B Reproducing the original tree richness-productivity relationship

B.1 Data preparation

The data are available under https://figshare.com/articles/GFB1_data_figshare_xlsx/
4286552 for all countries except New Zealand, whose data are available from https://datastore.
landcareresearch.co.nz/dataset/new-zealand-forest-plot-data-in-global-forest-
biodiversity-dataset, both as Excel �les. Upon downloading and merging the �les, here is a
summary of its content (in the following, code used for checking is outcommented):
l i b r a r y ( r e a d x l )
b p r _ d a t a _ g l o b a l ← r e a d _ e x c e l ( " . . / L i a n g 2 0 1 6 S c i e n c e _ G F B 1 _ d a t a _ f i g s h a r e . x l s x " )
# dim(bpr_data_global) # check dimensions: 773100 x 21
# summary(bpr_data_global)
b p r _ d a t a _ n z ← r e a d _ e x c e l ( " . . / g f b 1 d a t a n z . x l s x " , s h e e t = 2 )
# summary(bpr_data_nz) dim(bpr_data_nz) # check dimensions: 4026 x 21
# intersect(bpr_data_global$FID, bpr_data_nz$FID) # no overlap in FID
# intersect(bpr_data_global$PLOT, bpr_data_nz$PLOT) # no overlap in
# PLOT all.equal(colnames(bpr_data_global), colnames(bpr_data_nz)) #
# TRUE
b p r _ d a t a ← r b i n d ( b p r _ d a t a _ g l o b a l , b p r _ d a t a _ n z )
# dim(bpr_data) # check dimensions: 777126
summary ( b p r _ d a t a )

FID Country dataset PLOT
Min. : 0 Length:777126 Min. : 1.00 Min. : 0
1st Qu.:194281 Class :character 1st Qu.: 1.00 1st Qu.:193761
Median :388562 Mode :character Median : 1.00 Median :388042
Mean :388562 Mean : 7.95 Mean :388043
3rd Qu.:582844 3rd Qu.: 8.00 3rd Qu.:582324
Max. :777125 Max. :45.00 Max. :776605

Lon Lat G S
Min. :-170.80 Min. :-52.00 Min. : 0.00 Min. : 0.000
1st Qu.: -92.10 1st Qu.: 34.50 1st Qu.: 5.32 1st Qu.: 2.000
Median : -83.70 Median : 40.20 Median : 15.58 Median : 4.000
Mean : -64.31 Mean : 39.46 Mean : 19.00 Mean : 5.786
3rd Qu.: -70.30 3rd Qu.: 45.90 3rd Qu.: 27.46 3rd Qu.: 7.000
Max. : 178.46 Max. : 72.50 Max. :1239.63 Max. :405.000

P I1 I2 T1
Min. :-358.360 Min. :0.0000 Min. :0.000 Min. :-165.0
1st Qu.: 1.830 1st Qu.:0.0000 1st Qu.:1.000 1st Qu.: 64.0
Median : 4.730 Median :0.0000 Median :1.000 Median : 106.0
Mean : 7.574 Mean :0.2315 Mean :1.426 Mean : 108.3
3rd Qu.: 8.780 3rd Qu.:0.0000 3rd Qu.:1.000 3rd Qu.: 156.0
Max. :1090.880 Max. :1.0000 Max. :4.000 Max. : 276.0

T2 T3 C1 C2
Min. : 0.00 Min. : 0 Min. : 0 Min. : 0.00
1st Qu.:30.00 1st Qu.: 6342 1st Qu.: 751 1st Qu.: 16.00
Median :36.00 Median : 7473 Median :1024 Median : 21.00
Mean :35.43 Mean : 7787 Mean :1020 Mean : 27.55
3rd Qu.:40.00 3rd Qu.: 9083 3rd Qu.:1251 3rd Qu.: 36.00
Max. :92.00 Max. :22147 Max. :5875 Max. :124.00

C3 E PET IAA
Min. : 0 Min. : -80.0 Min. : 0 Min. : 0
1st Qu.: 220 1st Qu.: 117.0 1st Qu.: 835 1st Qu.: 8388
Median : 291 Median : 288.0 Median :1016 Median : 9317
Mean : 282 Mean : 469.1 Mean :1063 Mean : 9915
3rd Qu.: 329 3rd Qu.: 515.0 3rd Qu.:1312 3rd Qu.:10661
Max. :1550 Max. :3876.0 Max. :1846 Max. :92589

Ecoregion
Min. : 0.000
1st Qu.: 4.000
Median : 4.000
Mean : 5.127
3rd Qu.: 5.000
Max. :98.000
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The meaning of the di�erent column titles is provided in the meta-data to the �gshare download.
Most importantly, the response, productivity [m3ha−1y−1] is given in column P, and the number
of tree species observed in a plot is given in column S. As we can see from the summary, produc-
tivity ranges from −360 to 1090 m3ha−1y−1, with most data between 1 and 9 m3ha−1y−1. Species
numbers range from 0 to 405 (we cannot provide a density here, as plot sizes are not provided and
range from < 100 to > 1100 m2, only the 95% sampling interval was provided in the paper), with
most plots between 2 and 7 species.

Liang et al. (2016) excluded plots with harvest volume > 50% of stocking volume (page 5), but
do not provide the IDs of these plots. We thus excluded all plots with negative productivity and
also those with productivity of 0 (as our model including them has a very di�erent AIC to those
reported by the authors).

Additionally, we remove plots with a species richness of 0, basal area of 0, those with a T3-value
of 0 (temperature seasonality as standard deviation times 1000, making a value of 0 indicating no
data, rather than no seasonality), IAA (indexed annual aridity times 10−4)-values of 0, and manu-
ally assigned four plots with an ecoregion value > 13 based on their coordinates in googleEarth.
(Although there are 14 ecoregions in WWF’s de�nition, the 14th in this data set was wrongly coded
in the data and in fact plots were in rainforests.)
b p r _ d a t a ← b p r _ d a t a [ b p r _ d a t a $P > 0 , ] # Remove P values ≤ 0
b p r _ d a t a ← b p r _ d a t a [ b p r _ d a t a $S ! = 0 , ] # Delete species richness == 0
b p r _ d a t a ← b p r _ d a t a [ b p r _ d a t a $G ! = 0 , ] # remove plots with basal area == 0
b p r _ d a t a ← b p r _ d a t a [ b p r _ d a t a $T3 ! = 0 , ] # Delete rows where T3 == 0
b p r _ d a t a ← b p r _ d a t a [ b p r _ d a t a $IAA ! = 0 , ] # Delete rows where IAA and PET == 0
dim ( b p r _ d a t a )

[1] 637710 21

# reassign ecoregions > 13 by their LonLat values LonLat = -48.7?,
# -26.2? Santa Catarina Rain forest, Brasil
b p r _ d a t a [ b p r _ d a t a $ E c o r e g i o n == 1 4 , ] [ 1 : 3 , ] $ E c o r e g i o n ← 1
# LonLat = -67.1?, 18.0? Llanos lajas Dry forest , Puerto Rico
b p r _ d a t a [ b p r _ d a t a $ E c o r e g i o n == 1 4 , ] $ E c o r e g i o n ← 2
# LongLat = 30.5?, 1.3? Ituri forest, Rainforest
b p r _ d a t a [ b p r _ d a t a $ E c o r e g i o n == 9 8 , ] $ E c o r e g i o n ← 1
# key to ecoregions: see Liang et al. Fig. 1
rm ( b p r _ d a t a _ g l o b a l , b p r _ d a t a _ n z )

Some 1139 plots were recorded as ecoregion 0, which, when plotted, were distributed along the
coasts across the world, i.e. belonging to very di�erent ecoregions. We have no idea why these
are classi�ed as “0”, but excluded them rather than manually and labouriously assigning them to
appropriate ecoregions. Some plots were recorded repeatedly in the database (e.g. plot 0 occurs
370 times), but we kept them all in the data, as FIDs were unique, and so are their geographical
coordinates.
l i b r a r y ( maptoo l s )
d a t a ( w r l d _ s i m p l )
# plot(wrld_simpl) # show where ecoregion 0 is
# with(bpr_data[bpr_data$Ecoregion==0,], points(Lon, Lat, col=’green’,
# pch=16, cex=0.5))
b p r _ d a t a ← b p r _ d a t a [ b p r _ d a t a $ E c o r e g i o n ! = 0 , ]
dim ( b p r _ d a t a )

[1] 636616 21

# show all ecoregions:
l i b r a r y ( maptoo l s )
d a t a ( w r l d _ s i m p l )
par ( mar = c ( 0 , 0 , 0 , 0 ) )
p l o t ( w r l d _ s i m p l )
c o l s ← rainbow ( 1 3 )
f o r ( i i n c ( 1 , 2 , 4 : 1 3 ) ) {

# there is no #3
with ( b p r _ d a t a [ b p r _ d a t a $ E c o r e g i o n == i , ] , p o i n t s ( Lon , Lat , c o l = c o l s [ i ] ,

pch = 1 6 , cex = 0 . 2 ) )
}
t a b l e ( b p r _ d a t a $ E c o r e g i o n )

1 2 4 5 6 7 8 9 10 11
2409 111 358551 177145 22651 2389 15146 547 1269 9

12 13
39844 16545
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At the end we are left with a data set of 636616 rows, heavily relying on the forest inventory data
of temperate forests (ecoregions 4 and 5 comprise 615576 plots, i.e. 97% of all data points). Since for
tundra, ecoregion 11, only 9 data points are available, we exclude it from the biome-speci�c analyses
lateron.

Before analysing these data, let’s have a look at them, separately for each ecoregion:
# add information on tree proportions and biome names to data set:
b i o m e _ t r e e s ← c b i n d . d a t a . f r a m e ( c ( 1 , 2 , 4 : 1 3 ) , c ( " t r o p M o i s t " , " t ropDry " , " t e m p B r o a d l e a f " ,

" t empConi fe r " , " b o r e a l " , " t r o p G r a s s " , " tempGrass " , " f l o o d e d G r a s s " ,
" montaneGrass " , " t u ndra " , " M e d i t e r r F o r e s t " , " d e s e r t " ) ,
c ( 7 9 9 . 4 , 156 . 4 , 362 . 6 , 150 . 6 , 749 . 3 , 3 1 8 , 148 . 3 , 64 . 6 , 60 . 3 , 94 . 9 ,

53 . 4 , 5 3 ) ) # in billions of trees, from Crowther et al. 2015
colnames ( b i o m e _ t r e e s ) ← c ( " E c o r e g i o n " , " biomeName " , " nOfTrees " )
par ( mfrow=c ( 3 , 4 ) , mar=c ( 3 , 3 , 1 , 0 ) , oma=c ( 4 , 4 , 0 , 0 ) , l a s =1 )
f o r ( i i n c ( 1 , 2 , 4 : 1 3 ) ) {

with ( b p r _ d a t a [ b p r _ d a t a $ E c o r e g i o n == i , ] , s m o o t h S c a t t e r ( P ∼ S ,
co lramp = c o l o r R a m p P a l e t t e ( c ( " whi te " , c o l s [ i ] ) ) , pch= " . " , c o l = c o l s [ i ] , x l a b = " " ,
y l a b = " " , main= b i o m e _ t r e e s $biomeName [ b i o m e _ t r e e s $ E c o r e g i o n == i ] ) )

}
mtext ( s i d e =1 , t e x t = " number o f t r e e s p e c i e s per p l o t " , cex =1 . 5 , l i n e =1 , o u t e r =T )
mtext ( s i d e =2 , t e x t = e x p r e s s i o n ( p a s t e ( " p r o d u c t i v i t y [ " , m∧ { 3 } ∼∼ ha∧ {−1 } ∼∼ y∧ {−1 } , " ] " ) ) ,

cex =1 . 5 , l i n e =1 , o u t e r =T , l a s =0 )
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It is visible, at �rst glance, that these data are suspicious. The highest volume productivity ever
measured in situ (rather than estimated from inventories), in a fertilised Eucalypt plantation in
Brazil, was around 30 m3ha−1y−1 (Stape et al., 2010). In this data set, the highest value is over
1000 m3ha−1y−1, and there are 23561 points with values larger than 30 m3ha−1y−1 (over 15000
of those are from the US, but Germany, France and Japan also contribute thousands of data points,
respectively):
sum ( b p r _ d a t a $P > 3 0 )

[1] 23561

t a b l e ( b p r _ d a t a $ Country [ which ( b p r _ d a t a $P > 3 0 ) ] )

AU BR CA CG CL CM CN CR DE EC ES FR
465 4 15 4 3 1 5 1 2803 1 678 2199
GA GF ID JP KR LA MG NL NZ PE PL PT
1 1 1 1435 10 13 2 6 150 12 149 75

RO SY TZ UG US US_AK US_PR US_VI
2 2 1 4 15498 3 16 1

t a b l e ( b p r _ d a t a $ E c o r e g i o n [ which ( b p r _ d a t a $P > 10 & b p r _ d a t a $P < 3 0 ) ] )

1 2 4 5 6 7 8 9 10 12 13
667 19 91379 37742 555 174 992 76 329 2945 51

Moreover, as the last �gure shows, some unlikely ecosystems contributed to high productivity sites
(even after excluding obviously wrong data points): tundra, Mediterranean forest and deserts con-
tributed dozens to thousands of plots with productivity exceeding 10 m3ha−1y−1. It is possible
that the authors did remove some of these plots before the analysis without mentioning it explic-
itly in the methods (p. 5: “Intensively managed forests with harvests exceeding 50 percent of the
stocking volume were excluded from this study.”; there is no indication in the data, which plots are
concerned).2

Nevertheless, as we are able to reproduce the analysis to a large extent (see below), we assume
that many of these data points were still in the data set analysed.

2We have sent this document on 19 Sept 2018 to the �rst author and, in response, subsequently (on 31 Oct 2018) he made
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B.2 Spatial model

Liang et al. (2016) employ a Generalised Least Squares (GLS) approach to accommodate spatial
autocorrelation. Since the GLS is rather time-consuming, and it cannot handle data sets beyond
a few thousand data points (depending on computer memory), they took random subsamples of
500 plots from the above data and ran the GLS on that subsample.3 For each such subsample, a new
variable Š was computed as Ši = Si

max(Ssubsample)
. The actual model is at the log-log-scale (i.e. both P and

Š were log-transformed). Š is interpreted as “relative species richness” and is claimed to “facilitate
inter-biome comparison” (p. 7).4

So the actual steps of the analysis are:
1. Draw a random subsample of 500 data points (without replacement).
2. Compute Š for this sample.
3. Log-transform P and Š.
4. Run a GLS with log(P) as response and log(Š), G (basal area), T3 (standard deviation of tem-

perature), C1 (annual precipitation), C3 (precipitation of warmest quarter), PET (potential
evapotranspiration), IAA (indexed annual aridity) and E (elevation) as predictors.5 The spatial
distances are implicitly computed from geographic coordinates using the corSpher correla-
tion structure.6 Since coordinates of the released data were rounded, we jitter them slightly
to avoid distances of zero.

5. Store model estimates and repeat.
While Liang et al. (2016) run 10000 bootstraps, we only do 50, as the results do not change substan-
tially anymore after that. (Note that our code is not made for speed but for intellegibility.) Also, as
the authors kept the nugget and range �xed in their �nal run, we use these values here (0.8 and 50,
respectively).

As illustration, here is a single model run:
l i b r a r y ( nlme ) # for gls
b p r _ d a t a $ l a t ← j i t t e r ( b p r _ d a t a $ La t )
b p r _ d a t a $ lon ← j i t t e r ( b p r _ d a t a $Lon )
s e t . s e e d ( 1 2 )
index ← sample ( nrow ( b p r _ d a t a ) , 5 0 0 )
s u b s e t ← b p r _ d a t a [ index , ]
s u b s e t $ Sbreve ← s u b s e t $ S / max ( s u b s e t $S )
f g l s ← g l s ( l o g ( P ) ∼ l o g ( Sbreve ) + G + T3 + C1 + C3 + PET + IAA + E , c o r r e l a t i o n = c o r S p h e r ( c ( 5 0 ,

0 . 8 ) , form = ∼l on + l a t , nugget = T , f i x e d = T ) , d a t a = s u b s e t )
summary ( f g l s )

Generalized least squares fit by REML
Model: log(P) ∼ log(Sbreve) + G + T3 + C1 + C3 + PET + IAA + E
Data: subset

AIC BIC logLik
1639.374 1681.338 -809.6869

Correlation Structure: Spherical spatial correlation
Formula: ∼lon + lat
Parameter estimate(s):
range nugget
50.0 0.8

R-code of (the main part of) their analysis avaiable under https://github.com/jingjingliang2018/GFB1/blob/
master/R_script_Github10312008.R. In that code it is clear that plots with productivity larger than 533 m3ha−1yr−1

and with species richness larger than 270 species were removed. The reasoning behind these values is not communicated in
that document. Going through their code, we are pleased to notice that we have correctly interpreted their methods section
and that our points of content are not mere misunderstandings.

3Liang et al. (2016) invent the name “spatial random forest” for this procedure, which is rather misleading. First, the
randomForest algorithm (Breiman, 2001) uses classi�cation and regression trees as building blocks, hence the name “forest”
as a large group of “trees”. Second, in randomForest the actual model is altered in each tree, by randomly selecting the variables
trialed at each node. Third, while randomForest samples data points, it does so with replacement, i.e. as a bootstrap. As a result,
the number of data points are the same as the full data set in each tree. What the subsampling approach of Liang et al. (2016)
and the randomForest have in common is the use of aggregating many models. Since these are not actual bootstraps (because
Liang et al. subsample), this is not proper “bagging” either. Thus, the term “spatial random forest” is misleading and suggests
a sampling theory which actually does not apply to this approach. Accordingly, we shun this term, and also will not use the
term “bootstrapping” unless sampling is carried out with replacement.

4We will return to the computation of relative species richness as a critical �aw later.
5Sources for each are given in the metadata to the New Zealand data.
6We will return to the misinterpretation of this correlation as being computed on a sphere later.
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Coefficients:
Value Std.Error t-value p-value

(Intercept) 4.578043 1.1995697 3.816405 0.0002
log(Sbreve) 0.322772 0.0827239 3.901805 0.0001
G 0.023619 0.0036675 6.439911 0.0000
T3 -0.000119 0.0000646 -1.836109 0.0669
C1 0.000918 0.0004701 1.953651 0.0513
C3 0.001763 0.0008737 2.017603 0.0442
PET -0.002111 0.0006586 -3.205601 0.0014
IAA -0.000094 0.0000333 -2.832398 0.0048
E -0.000617 0.0001474 -4.188606 0.0000

Correlation:
(Intr) lg(Sb) G T3 C1 C3 PET IAA

log(Sbreve) 0.357
G -0.175 -0.211
T3 -0.790 -0.130 0.106
C1 -0.079 -0.284 -0.039 0.264
C3 0.089 0.093 -0.054 -0.188 -0.169
PET -0.751 0.001 0.083 0.425 -0.419 -0.123
IAA -0.358 0.137 0.011 0.128 -0.793 -0.160 0.688
E -0.378 0.001 -0.067 0.229 0.101 -0.058 0.332 0.080

Standardized residuals:
Min Q1 Med Q3 Max

-4.814311 -0.181500 0.354186 0.902762 3.180726

Residual standard error: 1.19801
Degrees of freedom: 500 total; 491 residual

cor ( p r e d i c t ( f g l s ) , l o g ( s u b s e t $P ) )∧2 # R2

[1] 0.3696743

The part after setting the seed will be repeated below, and from the summary we only keep the
coe�cient estimates.
repea tedGLS ← f u n c t i o n (N= 5 0 0 ) { # function running one random subset GLS

i ndex ← sample ( nrow ( b p r _ d a t a ) , N)
s u b s e t ← b p r _ d a t a [ index , ]
s u b s e t $ Sbreve ← s u b s e t $ S / max ( s u b s e t $S )
f g l s ← g l s ( l o g ( P ) ∼ l o g ( Sbreve ) + G + T3 + C1 + C3 + PET + IAA + E ,

c o r r e l a t i o n = c o r S p h e r ( c ( 5 0 , 0 . 8 ) , form=∼l on + l a t , nugget =T , f i x e d =T ) ,
d a t a = s u b s e t )

r2 ← cor ( p r e d i c t ( f g l s ) , l o g ( s u b s e t $P ) )∧2 # R2
r e t u r n ( c ( e l l = l o g L i k ( f g l s ) , AIC=AIC ( f g l s ) , BIC=BIC ( f g l s ) , R2=r2 , c o e f ( f g l s ) ) )

}
s e t . s e e d ( 1 2 3 )
coefMat ← t ( r e p l i c a t e ( 5 0 , repea tedGLS ( ) ) )
l i b r a r y ( m a t r i x S t a t s ) # for colSds
s i g n i f ( r b i n d ( mean= colMeans ( coefMat ) , s e = c o l S d s ( coefMat ) ) , 3 )

ell AIC BIC R2 (Intercept) log(Sbreve) G T3
mean -817.0 1650.0 1700.0 0.3470 4.760 0.3020 0.01740 -6.70e-05
se 20.3 40.5 40.5 0.0418 0.981 0.0921 0.00426 4.73e-05

C1 C3 PET IAA E
mean 0.001650 0.001100 -0.002710 -1.27e-04 -0.000618
se 0.000663 0.000812 0.000636 5.21e-05 0.000144

# for comparison, there the results from 5000 replicates:
i f ( " c o e f M a t 5 0 0 0 . R d a t a " %i n% d i r ( ) ) {

l o a d ( " c o e f M a t 5 0 0 0 . R d a t a " )
} e l s e {

coe fMat5000 ← t ( r e p l i c a t e ( 5 0 0 0 , repea tedGLS ( ) ) )
s ave ( coefMat5000 , f i l e = " c o e f M a t 5 0 0 0 . R d a t a " )

}
s i g n i f ( r b i n d ( mean= colMeans ( coe fMat5000 ) , s e = c o l S d s ( coe fMat5000 ) ) , 3 )

ell AIC BIC R2 (Intercept) log(Sbreve) G T3
mean -817.0 1650.0 1700.0 0.3450 4.78 0.3010 0.01710 -7.50e-05
se 21.7 43.3 43.3 0.0482 1.07 0.0907 0.00426 5.23e-05

C1 C3 PET IAA E
mean 0.001670 0.001120 -0.002710 -1.30e-04 -0.000602
se 0.000652 0.000761 0.000703 4.91e-05 0.000139
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# results are similar enough to allow us to work with 50 repetitions of the subsampling

This approximates the results of Liang et al. (2016)’s Table 2, with the exception of the standard
errors for the model coe�cients, which Liang computed as incorrectly as standard deviation divided
by the square root of the number of replicate models: correctly computed, the standard deviation of a
bootstrap is the standard error of the statistic (here the goodness of �t measures and the coe�cients).
Hence, the row “SE” in the authors’ table 2 must be multiplied by 100 to get to the correct values.7

Finally, we plot this relationship with the “correct” error bars. As parameter estimates are cor-
related, we cannot simply use the above standard errors to compute an error interval around the
line. Instead, we predict with each of the 50 parameter sets the curve and compute 95% quantiles
from them as con�dence intervals.8

b e t a ← coefMat [ , 5 : 1 3 ]
# set all values but log(Sbreve) to their mean:
X ← a s . m a t r i x ( d a t a . f r a m e ( I n t e r c e p t = 1 , Sbreve = l o g ( seq ( 0 . 0 1 , 1 , by = 0 . 0 1 ) ) ,

t ( colMeans ( b p r _ d a t a [ , c ( "G" , " T3 " , " C1 " , " C3 " , " PET " , " IAA " , " E " ) ] ) ) ) )
p r e d s ← X % ∗% t ( b e t a )
par ( mar = c ( 5 , 4 , 1 , 1 ) )
p l o t ( 1 : 1 0 0 , exp ( rowMeans ( p r e d s ) ) , type = " l " , l a s = 1 , lwd = 3 , y l im = c ( 0 ,

1 0 ) , x l a b = " r e l a t i v e s p e c i e s r i c h n e s s [%] " , y l a b = " p r o d u c t i v i t y " )
b e t a L i a n g ← c ( 3 . 8 1 6 , 0 . 2 6 2 5 , 0 . 0 1 4 6 , −0.00011 , 0 . 0 0 1 6 , 0 . 0 0 1 7 4 , −0.002566 ,

−0.000134 , −0 .000809 )
X l i a n g ← X
X l i a n g [ , 2 ] ← l o g ( seq ( 0 . 0 1 , 1 , by = 0 . 0 1 ) ∗ 1 0 0 ) # uses %, not fraction
l i a n g L i n e ← X l i a n g % ∗% b e t a L i a n g
l i n e s ( 1 : 1 0 0 , exp ( l i a n g L i n e ) , c o l = " red " , lwd = 2 )
l e g e n d ( " t o p l e f t " , l e g e n d = c ( " L iang " , " r e− a n a l y s i s " ) , c o l = c ( " red " , " b l a c k " ) ,

lwd = 2 , l t y = 1 , b ty = " n " , cex = 1 . 5 )

0 20 40 60 80 100

0

2

4

6

8

10

relative species richness [%]

pr
od

uc
tiv

ity

Liang
re−analysis

We were thus able to reproduce the analysis of Liang et al. relatively faithfully, at least with
respect to the expectation (we shall return to the error envelop in due course).

7We shall return to the computation of error bars in a few sections. For now, please note that the classical boostrap’s idea is
to use the entire data set when bootstrapping; only then will the bootstrapped standard errors be correct. Using the bootstrap
on subsamples, in the way done by Liang et al. (2016), does not constitute a valid statistical approach for computing standard
errors for the full data set, neither in their way, nor in the way presented here (with the multiplication by 100). What this
subsampling-bootstrapped standard errors deliver is an estimate of where the line would be with 500 data points, not for the
full data set.
There are subsampling procedures (see Politis et al., 1999), but they require additional corrections on top of the subsampling
itself.

8We do not know how Liang computed these, as he did not reply to our emails on this topic.
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Since their log-likelihood is 50 units higher, we suspect that in their analysis further plots were
excluded.

C Corrections and improvements

In summary, we have been able to reproduce the analysis of Liang et al. (2016).
During this �rst step, we may already have noticed some issues with the analysis. Here is our

list of things we improve on in the next sections, starting with the most important ones �rst:
1. Evaluate the e�ect of unreasonably large values of productivity on the result.
2. Aggregating analyses of subsets, which comprise only a permille of the full data set, may

introduce a bias relative to the full dataset. The mechanism behind this bias is the same that
we criticised as �rst point, i.e. the computation of Š on the basis of highest tree species richness
in the subset, thereby ranging Š di�erently for each subset.

3. Minor point: The GLS can easily accommodate more than 500 points, so we can run sub-
samples of 1000, 2000 and 5000 points. This will slightly increase the chance of plots being
relatively close to each other, and hence allows for a better estimation of the short-range spa-
tial autocorrelation, possibly improving the estimates for nugget and range of the variogram.

4. Strati�ed draws of plots in proportion to the area this ecoregion’s forests cover on the world.
Currently only some 2500 points (out of 636000) are representing the tropical forests (labelled
1 and 2 below), despite their proportion of the world’s forests being over 30%.
t a p p l y ( b p r _ d a t a $ FID , b p r _ d a t a $ Ecoreg ion , l e n g t h )

1 2 4 5 6 7 8 9 10 11
2409 111 358551 177145 22651 2389 15146 547 1269 9

12 13
39844 16545

t ( b i o m e _ t r e e s [ , 1 : 2 ] ) # labels

[,1] [,2] [,3] [,4] [,5]
Ecoregion " 1" " 2" " 4" " 5" " 6"
biomeName "tropMoist" "tropDry" "tempBroadleaf" "tempConifer" "boreal"

[,6] [,7] [,8] [,9] [,10]
Ecoregion " 7" " 8" " 9" "10" "11"
biomeName "tropGrass" "tempGrass" "floodedGrass" "montaneGrass" "tundra"

[,11] [,12]
Ecoregion "12" "13"
biomeName "MediterrForest" "desert"

5. The corSpher-structure used by Liang et al. (2016) suggests, in its name, that it would be
appropriate for data on a sphere. That is not the case. The spherical model is only the name
for a di�erent shape of how spatial autocorrelation decreases with distance (Pinheiro & Bates,
2000), but it does not correct for the fact that on a sphere geographic distances cannot be
computed from coordinates as Euclidean distance. To do so, we have to compute the so-called
great-circle (or orthodromic) distance.

6. Calculate relative species richness Š relative to what is the maximal species richness in that
region. Currently, the de�nition of relative species richness is not intuitive. Since only the
tropics have plots with dozens to hundreds of species, Š is e�ectively representing a gradient
from cold to tropical plots.9

p l o t ( l o g 1 0 ( S ) ∼ a s . f a c t o r ( E c o r e g i o n ) , d a t a = bpr_da ta , b o r d e r = " grey70 " ,
c o l = " grey30 " , l a s = 1 )

9This is crucial to understand, thus we try to repeat with other words. If we draw 500 plots randomly, with 97% of them
coming from temperate forests, then the highest species richness will be set by the very few plots from the tropics, more pre-
cisely ecoregion 1: tropical moist broadleaf forest. Thus, we divide the species richness of our temperate plots, say something
between 1 and 10, by 80-400. Thus, low Š-values will inevitably be from the temperate or boreal forests, while high Š-values
will be from the tropics.
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Thus, the so-called species richness gradient is in fact a latitudinal gradient. This is, in our
opinion, a serious problem and leads to fundamental misinterpretation of the results. We
propose to compute Š di�erently, namely relative to what is possible for a given plot. We could
choose the maximal value for an ecoregion to scale tree species richness of each plot, or even
more locally, the maximal species richness observed in, say, 100 km radius around a plot. This
would lead to plots from any ecoregion being able to occupy the upper end of the relative
species richness gradient, if they are species rich relative to their wider neighbourhood.10

In the following, we demonstrate the e�ect of each of these improvements separately, always
comparing it to our analysis of the data presented above. Arguably, as the data set changed, we may
have to re-estimate the coe�cients of the spatial autocorrelation, which we did not.

C.1 Do implausible productivity values distort the analysis?

As shown above, some 23,000 data points, around 4% of the entire data set, have productivity values
above the largest measured in the �eld. The probably reason is that forest inventories measure
with a certain error, and if the error is large relative to the increase in biomass, it is easy to get
unrealistically high productivity estimates, particularly in small plots with harvesting.

There are, essentially, two ways to accommodate values that are clearly implausible: (i) omit
them, or (ii) give the lower weight in the model. We only investigate the e�ect of omitting all
values where P>30 as the strongest, not necessarily most appropriate, way.
b p r _ d a t a _ l e s s 3 0 ← b p r _ d a t a [ b p r _ d a t a $P ≤ 3 0 , ]
r e p e a t e d G L S l e s s 3 0 ← f u n c t i o n (N = 5 0 0 ) {

# function running one random subset GLS
i ndex ← sample ( nrow ( b p r _ d a t a _ l e s s 3 0 ) , N)
s u b s e t ← b p r _ d a t a _ l e s s 3 0 [ index , ]
s u b s e t $ Sbreve ← s u b s e t $ S / max ( s u b s e t $ S )
f g l s ← g l s ( l o g ( P ) ∼ l o g ( Sbreve ) + G + T3 + C1 + C3 + PET + IAA + E ,

c o r r e l a t i o n = c o r S p h e r ( c ( 5 0 , 0 . 8 ) , form = ∼l on + l a t , nugget = T ,
f i x e d = T ) , d a t a = s u b s e t )

r2 ← cor ( p r e d i c t ( f g l s ) , l o g ( s u b s e t $P ) )∧2 # R2
r e t u r n ( c ( e l l = l o g L i k ( f g l s ) , AIC = AIC ( f g l s ) , BIC = BIC ( f g l s ) , R2 = r2 ,

c o e f ( f g l s ) ) )
}
s e t . s e e d ( 1 2 3 )
c o e f M a t l e s s 3 0 ← t ( r e p l i c a t e ( 5 0 , r e p e a t e d G L S l e s s 3 0 ( ) ) )
l i b r a r y ( m a t r i x S t a t s ) # for colSds
s i g n i f ( r b i n d ( mean = colMeans ( c o e f M a t l e s s 3 0 ) , s e = c o l S d s ( c o e f M a t l e s s 3 0 ) ) ,

3 )

ell AIC BIC R2 (Intercept) log(Sbreve) G T3
mean -790.0 1600 1640 0.375 4.76 0.307 0.01830 -6.97e-05
se 22.5 45 45 0.047 1.07 0.088 0.00349 4.75e-05

C1 C3 PET IAA E
mean 0.001690 0.001160 -0.002770 -1.34e-04 -0.000619
se 0.000581 0.000628 0.000694 4.41e-05 0.000135

10Clearly, this is still not an ideal relative species richness, as we can imagine local conditions to vary at relatively small
scale. However, we think that this step is already a major improvement in the actual meaning and interpretability of “relative
species richness” and will come closer to what we think most of the authors actually understood Š to be.
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b e t a l e s s 3 0 ← c o e f M a t l e s s 3 0 [ , 5 : 1 3 ]
p r e d s l e s s 3 0 ← X % ∗% t ( b e t a l e s s 3 0 )
par ( mar = c ( 5 , 4 , 1 , 1 ) )
p l o t ( 1 : 1 0 0 , exp ( rowMeans ( p r e d s l e s s 3 0 ) ) , type = " l " , l a s = 1 , lwd = 3 , y l im = c ( 0 ,

1 3 ) , x l a b = " r e l a t i v e s p e c i e s r i c h n e s s [%] " , y l a b = " p r o d u c t i v i t y " )
b e t a L i a n g ← c ( 3 . 8 1 6 , 0 . 2 6 2 5 , 0 . 0 1 4 6 , −0.00011 , 0 . 0 0 1 6 , 0 . 0 0 1 7 4 , −0.002566 ,

−0.000134 , −0 .000809 )
X l i a n g ← X
X l i a n g [ , 2 ] ← l o g ( seq ( 0 . 0 1 , 1 , by = 0 . 0 1 ) ∗ 1 0 0 ) # uses %, not fraction
l i a n g L i n e ← X l i a n g % ∗% b e t a L i a n g
l i n e s ( 1 : 1 0 0 , exp ( l i a n g L i n e ) , c o l = " red " , lwd = 2 )
l e g e n d ( " t o p l e f t " , l e g e n d = c ( " L iang " , " P > 30 o m i t t e d " ) , c o l = c ( " red " ,

" b l a c k " ) , lwd = 2 , l t y = 1 , b ty = " n " , cex = 1 . 5 )
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Excluding the high-value plots leads to the expected drop in the absolute values of the TSR-P-
relationship, but it does not substantially a�ect the slope estimate.

C.2 Aggregated subsets vs using the entire data set: do parameter estimates match?

As sample size of a regression problem increases, standard errors of model parameters decrease,
typically as a function of

√
n. Thus, the 500-data point subset is likely to have much wider error bars

than an analysis of the full 636616 data points. How much wider is somewhat di�cult to estimate, as
data are spatially autocorrelated, making the

√
n an optimistic estimate. Following the logic of data

cloning (Lele et al., 2010), who show that repeating their data set 100 times yields
√
100 = 10 times

to narrow standard errors, one can argue that the standard error computed from the subset-models
will be

√
636616/

√
500 = 34.6 times too wide.

We cannot test this idea on the GLS, as we have no computer at our disposal that can invert
a 600000 × 600000 matrix as required by the GLS. Thus, we cannot �t a GLS on the full data set
(otherwise Liang et al. would have done that, too). Instead, we use the non-spatial linear model,
which is biased due to spatial autocorrelation, as we shall see. Still, if our 35-fold correction worked
for the non-spatial regression (the ordinary least square: OLS), we would be happy to use it for the
GLS.
repeatedOLS ← f u n c t i o n (N = 5 0 0 ) {

# function running one random subset GLS
i ndex ← sample ( nrow ( b p r _ d a t a ) , N)
s u b s e t ← b p r _ d a t a [ index , ]
s u b s e t $ Sbreve ← s u b s e t $ S / max ( s u b s e t $ S )
f lm ← lm ( l o g ( P ) ∼ l o g ( Sbreve ) + G + T3 + C1 + C3 + PET + IAA + E ,

d a t a = s u b s e t )
r2 ← cor ( p r e d i c t ( f lm ) , l o g ( s u b s e t $P ) )∧2 # R2
r e t u r n ( c ( e l l = l o g L i k ( f lm ) , AIC = AIC ( f lm ) , BIC = BIC ( f lm ) , R2 = r2 ,

c o e f ( f lm ) ) )
}
s e t . s e e d ( 1 2 3 )
coefMatOLS ← t ( r e p l i c a t e ( 5 0 , repeatedOLS ( ) ) )
s i g n i f ( r b i n d ( mean = colMeans ( coefMatOLS ) , s e = c o l S d s ( coefMatOLS ) ) , 3 )
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ell AIC BIC R2 (Intercept) log(Sbreve) G T3
mean -774.0 1570.0 1610.0 0.3810 6.03 0.2710 0.0168 -1.47e-04
se 21.1 42.1 42.1 0.0365 0.75 0.0861 0.0044 2.71e-05

C1 C3 PET IAA E
mean 0.001780 0.002160 -0.003110 -1.66e-04 -0.000921
se 0.000681 0.000771 0.000632 5.41e-05 0.000137

# full data set:
Sbreve ← b p r _ d a t a $ S / max ( b p r _ d a t a $ S )
summary ( f u l l f m ← lm ( l o g ( P ) ∼ l o g ( Sbreve ) + G + T3 + C1 + C3 + PET + IAA +

E , d a t a = b p r _ d a t a ) )

Call:
lm(formula = log(P) ∼ log(Sbreve) + G + T3 + C1 + C3 + PET +

IAA + E, data = bpr_data)

Residuals:
Min 1Q Median 3Q Max

-17.6776 -0.6125 0.0694 0.7169 5.7970

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 6.368e+00 2.196e-02 289.9 <2e-16 ***
log(Sbreve) 2.793e-01 2.295e-03 121.7 <2e-16 ***
G 1.514e-02 8.205e-05 184.5 <2e-16 ***
T3 -1.510e-04 9.050e-07 -166.9 <2e-16 ***
C1 1.748e-03 1.393e-05 125.5 <2e-16 ***
C3 2.111e-03 1.781e-05 118.6 <2e-16 ***
PET -3.023e-03 1.297e-05 -233.1 <2e-16 ***
IAA -1.609e-04 1.032e-06 -155.9 <2e-16 ***
E -9.123e-04 2.868e-06 -318.1 <2e-16 ***
---
Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Residual standard error: 1.159 on 636607 degrees of freedom
Multiple R2: 0.3654, Adjusted R2: 0.3654
F-statistic: 4.582e+04 on 8 and 636607 DF, p-value: < 2.2e-16

Resampling OLS and full data set analysis yield similar parameter estimates (apart from the inter-
cept). As result, the estimated e�ect of increasing “relative species richness” is substantially
lower in the subsampling approach than in the full model. We are con�dent that this e�ect will be
similarly present in the GLS analysis and return to this issue in the section on increasing sample
size of the subsampling.

Let’s plot the results:
betaOLS ← coefMatOLS [ , 5 : 1 3 ]
predsOLS ← X % ∗% t ( betaOLS )
# CIsOLS ← apply(predsOLS, 1, quantile, c(0.025, 0.975))
par ( mar = c ( 5 , 4 , 1 , 1 ) )
# subsample CIs:
p l o t ( 1 : 1 0 0 , exp ( rowMeans ( predsOLS ) ) , type = " l " , l a s = 1 , lwd = 3 , y l im = c ( 0 ,

1 7 ) , x l a b = " r e l a t i v e s p e c i e s r i c h n e s s [%] " , y l a b = " p r o d u c t i v i t y " )
# GLS
l i n e s ( 1 : 1 0 0 , exp ( rowMeans ( p r e d s ) ) , lwd = 3 , c o l = " orange " )
# full data
X f o r f u l l ← d a t a . f r a m e ( I n t e r c e p t = 1 , Sbreve = seq ( 0 . 0 1 , 1 , by = 0 . 0 1 ) ,

t ( colMeans ( b p r _ d a t a [ , c ( "G" , " T3 " , " C1 " , " C3 " , " PET " , " IAA " , " E " ) ] ) ) )
predsLM ← p r e d i c t ( f u l l f m , newdata = X f o r f u l l , s e . f i t = T )
l i n e s ( 1 : 1 0 0 , exp ( predsLM $ f i t ) , c o l = " b l u e " , lwd = 3 )
# Liang line
l i n e s ( 1 : 1 0 0 , exp ( l i a n g L i n e ) , c o l = " red " , lwd = 2 )
l e g e n d ( " t o p l e f t " , b ty = " n " , c o l = c ( " red " , " orange " , " b l u e " , " grey " ) ,

l e g e n d = c ( " L iang " , " r e− a n a l y s i s " , " f u l l OLS " , " OLS−subs " ) , lwd = 2 ,
l t y = 1 )
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The take-home message of this is: subsampling causes bias, at least for the speci�c way Š is
computed by Liang et al. (2016).

C.2.1 Scaling standard errors from subsamples to full data

To take the subsampling correction a step further, we now run subsamples of di�erent size and try
to identify a relationship between their (subsampling-derived) standard error for θ̂ and size of the
subsample, B. As it happens, this relationship is best presented as a straight line on a log-log-plot.
SEQ ← c ( 1 0 0 , 5 0 0 , 1 0 0 0 , 5 0 0 0 , 1 0 0 0 0 , 5 0 0 0 0 , 1 e +05 , 5 e +05 )
s e t . s e e d ( 1 2 3 )
count ← 0
c o e f T h e t a O L S 5 0 0 t o f u l l ← 0
f o r ( i i n SEQ ) {

count ← count + 1
fms ← r e p l i c a t e ( 5 0 , repeatedOLS (N = i ) [ 6 ] ) # value 6 is theta
c o e f T h e t a O L S 5 0 0 t o f u l l [ count ] ← sd ( fms )
c a t ( i , " " )
rm ( fms )

}

100 500 1000 5000 10000 50000 1e+05 5e+05

s e f u l l ← summary ( f u l l f m ) $ c o e f f i c i e n t s [ 2 , 2 ] # se of theta
p l o t ( c ( SEQ , 6 3 6 6 1 6 ) , c ( c o e f T h e t a O L S 5 0 0 t o f u l l , s e f u l l ) , l o g = " xy " , x l a b = " B " ,

y l a b = " s d _ t h e t a " , pch = 1 6 , l a s = 1 )
summary ( lm ( l o g ( c ( c o e f T h e t a O L S 5 0 0 t o f u l l , s e f u l l ) ) ∼ l o g ( c ( SEQ , 6 3 6 6 1 6 ) ) ) )

Call:
lm(formula = log(c(coefThetaOLS500tofull, sefull)) ∼ log(c(SEQ,

636616)))

Residuals:
Min 1Q Median 3Q Max

-0.44880 -0.09864 0.08049 0.08931 0.26604

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 1.04955 0.25037 4.192 0.00408 **
log(c(SEQ, 636616)) -0.53995 0.02553 -21.146 1.33e-07 ***
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---
Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Residual standard error: 0.2229 on 7 degrees of freedom
Multiple R2: 0.9846, Adjusted R2: 0.9824
F-statistic: 447.2 on 1 and 7 DF, p-value: 1.331e-07
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The standard error of the estimate of θ clearly decreases nicely as a power-law function of
sample size, and �ts well to the observed values:
exp ( 1 . 0 5 − 0 . 5 4 ∗ l o g ( 6 3 6 6 1 6 ) ) # coefs from regression

[1] 0.002098531

s e f u l l

[1] 0.002295168

To apply this to the GLS, we have to make the assumption that the same proportionality holds
for the GLS as for the OLS. If so, we can compute the standard error of the GLS, based on the
subsampling of size B = 500, as follows (as a simple rule of three):

ŝGLS = e
ln(sOLSfull)
ln(sOLS500)

ln(sGLS500) = e
ln(0.002295)
ln(0.07239)

ln(sGLS500) = e2.314 ln(sGLS500)

Thus, for the observed standard error of the GLS for subsampling size B = 500 we have sGLS500 =
0.0921 (see section B.2), which leads to an estimated standard error of the full model of ŝGLSfull =
0.00263:
exp ( l o g ( s e f u l l ) / l o g ( c o e f T h e t a O L S 5 0 0 t o f u l l [ 2 ] ) ∗ l o g ( c o l S d s ( coefMat ) [ 6 ] ) )

[1] 0.002632888

This is (obviously) dramatically better than the “bootstrap” estimate presented above, but still thrice
the 0.0009 of Liang et al. (2016).

C.2.2 Increasing the size of the subsamples for the GLS

As another step, we can brie�y check whether increasing the size of the subsample from 500 to 5000
for the GLS makes an appreciable di�erence.11

i f ( " c o e f M a t G L S 5 0 0 t o 5 0 0 0 . R d a t a " %i n% d i r ( ) ) {
l o a d ( " c o e f M a t G L S 5 0 0 t o 5 0 0 0 . R d a t a " )

} e l s e {
s e t . s e e d ( 1 2 3 )
s y s t e m . t i m e ( coefMatGLS500 ← t ( r e p l i c a t e ( 1 0 , repea tedGLS (N = 5 0 0 ) ) ) ) #5s
s y s t e m . t i m e ( coefMatGLS1000 ← t ( r e p l i c a t e ( 1 0 , repea tedGLS (N = 1 0 0 0 ) ) ) ) # 1000: 72s

11Beyond 5000 the GLS becomes extremely time consuming, running for many hours per model run.

16

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted January 20, 2019. ; https://doi.org/10.1101/524363doi: bioRxiv preprint 

https://doi.org/10.1101/524363
http://creativecommons.org/licenses/by/4.0/


s y s t e m . t i m e ( coefMatGLS2000 ← t ( r e p l i c a t e ( 1 0 , repea tedGLS (N = 2 0 0 0 ) ) ) ) # 2000: 437s
s y s t e m . t i m e ( coefMatGLS5000 ← t ( r e p l i c a t e ( 1 0 , repea tedGLS (N = 5 0 0 0 ) ) ) ) # 5000: 6238s
save ( coefMatGLS500 , coefMatGLS1000 , coefMatGLS2000 , coefMatGLS5000 ,

f i l e = " c o e f M a t G L S 5 0 0 t o 5 0 0 0 . R d a t a " )
}
s i g n i f ( r b i n d ( mean = colMeans ( coefMatGLS500 ) , s e = c o l S d s ( coefMatGLS500 ) ) ,

3 )

ell AIC BIC R2 (Intercept) log(Sbreve) G T3
mean -819.0 1660.0 1700.0 0.3370 5.12 0.312 0.01880 -6.82e-05
se 32.8 65.6 65.6 0.0325 1.13 0.101 0.00415 4.75e-05

C1 C3 PET IAA E
mean 0.001850 0.000933 -0.002900 -1.57e-04 -0.000561
se 0.000829 0.001170 0.000756 5.55e-05 0.000149

s i g n i f ( r b i n d ( mean = colMeans ( coefMatGLS5000 ) , s e = c o l S d s ( coefMatGLS5000 ) ) ,
3 )

ell AIC BIC R2 (Intercept) log(Sbreve) G T3
mean -7520 15100 15100 0.2410 4.140 0.3100 0.01550 -3.65e-05
se 111 223 223 0.0316 0.498 0.0424 0.00289 2.00e-05

C1 C3 PET IAA E
mean 0.001510 0.000209 -0.002300 -1.03e-04 -1.75e-04
se 0.000231 0.000284 0.000232 1.53e-05 6.41e-05

# R2 goes down, as do SEs plot(log10(c(5, 72, 437, 6238)) ∼
# log10(c(500, 1000, 2000, 5000))) runtime increases as power law ...
# plot(c(500, 1000, 2000, 5000), c(0.105, 0.062, .045, 0.0194), log=’’)
# SE goes down as power law ... lm(log10(c(0.105, 0.062, .045, 0.0194))
# ∼ log10(c(500, 1000, 2000, 5000))) # logY=0.955-0.714logX ->
# logY(X=630000) = 0.955-0.714 ∗ 56.799 = -39 -> ∼0

The estimate of θ and most other model parameters is similar for sample size 500 and 5000, while
the intercept and the model’s R2 goes down.

What does that mean?
1. Using small subsamples of a large data set leads to dramatic increases in parameter uncer-

tainty. Thus, the (corrected) “bootstrap” approach of Liang et al. (2016) is likely to be very
pessimistic. Since they did an error in the computation of their standard errors, the uncer-
tainty limits provided in the original paper cannot be trusted.

2. Using the full data set led to very di�erent estimates for the model (comparing OLS for the
resampled and the full data set, i.e. the grey and the blue curves above). By analogy, also the
resampling-based estimates of the GLS are likely to be substantially biased.12

3. Correction for spatial autocorrelation leads to lower estimates for productivity, roughly 80%
of the expected value of P along the tree species richness gradient (orange line).

Although we have introduced a way to estimate the uncertainty around the predicted relationship
from the data by approximation in the previous section, we have not used it until the very end.

C.3 Strati�ed sampling of subsets

Each ecoregion has a certain share of the terrestrial surface, but within each ecoregion, not all area
is forested. Crowther et al. (2015) provide estimates of the total land area as well as the number of
trees for each ecoregion. We use the latter as means of strati�cation, i.e. draw plots proportional to
the number of trees in that ecoregion.
l i b r a r y ( nlme )
l i b r a r y ( m a t r i x S t a t s )
b i o m e _ t r e e s $ s t r a t P r o b ← b i o m e _ t r e e s $ nOfTrees / sum ( b i o m e _ t r e e s $ nOfTrees )
b p r _ d a t a ← merge ( bpr_da ta , b i o m e _ t r e e s )
# head(bpr_data)

r e p e a t e d G L S s t r a t ← f u n c t i o n (N = 5 0 0 ) {
# function running one stratified random subset GLS sample the
# Ecoregion-ID according to its probability:
ecoSample ← sample ( b i o m e _ t r e e s $ Ecoreg ion , N , prob = b i o m e _ t r e e s $ s t r a t P r o b ,

12The origin of this bias has probably to do with the re-scaling of species richness in each subset. If no high-diversity plot
is present, then the left part of the relationship is stretched out to the right hand side without higher P-values, thereby pulling
the entire curve down.
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r e p l a c e = T ) # how many samples from all ecoregions
# table(ecoSample) Now, for each ecoregion, take a random subset from
# the full data set and rbind them:
s u b s e t ← NA
f o r ( i i n b i o m e _ t r e e s $ E c o r e g i o n ) {

subs ← b p r _ d a t a [ b p r _ d a t a $ E c o r e g i o n == i , ] # only this biome
s u b s e t 2 n d ← subs [ subs $ FID %i n% sample ( subs $ FID , sum ( ecoSample ==

i ) , r e p l a c e = {
i f ( sum ( ecoSample == i ) > l e n g t h ( subs $ FID ) )

TRUE e l s e FALSE
} ) , ]
# sorry for this convoluted expression ...
s u b s e t ← r b i n d ( s u b s e t , s u b s e t 2 n d )

}
s u b s e t ← s u b s e t [−1 , ] # remove the NA-row
# re-jitter geographical coordinates, if data points we resampled !
i f ( sum ( ecoSample == i ) > l e n g t h ( subs $ FID ) ) {

s u b s e t $ l a t ← j i t t e r ( s u b s e t $ L a t )
s u b s e t $ lon ← j i t t e r ( s u b s e t $Lon )

}
# Compute Sbreve as before and run GLS:
s u b s e t $ Sbreve ← s u b s e t $ S / max ( s u b s e t $ S )
f g l s ← g l s ( l o g ( P ) ∼ l o g ( Sbreve ) + G + T3 + C1 + C3 + PET + IAA + E ,

c o r r e l a t i o n = c o r S p h e r ( c ( 5 0 , 0 . 8 ) , form = ∼l on + l a t , nugget = T ,
f i x e d = F ) , d a t a = s u b s e t )

r2 ← cor ( p r e d i c t ( f g l s ) , l o g ( s u b s e t $P ) )∧2 # R2
r e t u r n ( c ( e l l = l o g L i k ( f g l s ) , AIC = AIC ( f g l s ) , BIC = BIC ( f g l s ) , R2 = r2 ,

c o e f ( f g l s ) ) )
}

i f ( " c o e f M a t S t r a t . R d a t a " %i n% d i r ( ) ) {
l o a d ( " c o e f M a t S t r a t . R d a t a " )

} e l s e {
s e t . s e e d ( 1 2 3 4 )
c o e f M a t S t r a t ← t ( r e p l i c a t e ( 5 0 , r e p e a t e d G L S s t r a t ( ) ) )
s ave ( c o e f M a t S t r a t , f i l e = " c o e f M a t S t r a t . R d a t a " )

}
s i g n i f ( r b i n d ( mean = colMeans ( c o e f M a t S t r a t ) , s e = c o l S d s ( c o e f M a t S t r a t ) ) ,

3 )

ell AIC BIC R2 (Intercept) log(Sbreve) G T3
mean -770.0 1560.0 1610.0 0.2980 3.05 0.2770 0.02060 -1.00e-04
se 26.9 53.7 53.8 0.0463 0.99 0.0797 0.00596 4.01e-05

C1 C3 PET IAA E
mean 5.14e-05 0.001100 -0.000628 -3.36e-05 -0.000238
se 3.27e-04 0.000772 0.000502 3.36e-05 0.000226

l o a d ( " c o e f M a t S t r a t . R d a t a " )
b e t a S t r a t ← c o e f M a t S t r a t [ , 5 : 1 3 ]
# set all values but log(Sbreve) to their mean: X ←
# as.matrix(data.frame(’Intercept’=1, Sbreve=log(seq(0.01, 1,
# by=0.01)), t(colMeans(bpr_data[, c(’G’, ’T3’, ’C1’, ’C3’, ’PET’,
# ’IAA’, ’E’)]))))
p r e d s S t r a t ← X % ∗% t ( b e t a S t r a t )
par ( mar = c ( 5 , 4 , 1 , 1 ) )
p l o t ( 1 : 1 0 0 , exp ( rowMeans ( p r e d s S t r a t ) ) , type = " l " , l a s = 1 , lwd = 3 , y l im = c ( 0 ,

1 0 ) , x l a b = " r e l a t i v e s p e c i e s r i c h n e s s [%] " , y l a b = " p r o d u c t i v i t y " ,
l o g = " " )

# add standard model:
l i n e s ( 1 : 1 0 0 , exp ( rowMeans ( p r e d s ) ) , lwd = 3 , c o l = " red " )
# lines(1:100, exp(rowMeans(predsStrat)), lwd=3, col=’white’)
l e g e n d ( " t o p l e f t " , l e g e n d = c ( " L iang " , " s t r a t i f i e d " ) , c o l = c ( " red " , " b l a c k " ) ,

lwd = 2 , l t y = 1 , b ty = " n " , cex = 1 . 5 )
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The e�ect is moderate, with slightly lower values than the original non-strati�ed approach. This
result suggests that also with non-strati�ed sampling always some tropical plots with high species
richness are drawn, making the original Š robust to unrepresentative sampling.

C.4 Compute distances between plots as Great Circle distances, rather than Euclidean
(thereby accommodating the spherical nature of earth)

In the spatial model, the GLS, the distances between plots are computed from x-y-coordinates as
Euclidean distance.13 On earth, the distance between two points cannot be computed as Euclidean
distance, and instead requires the computation of the so-called Great Circle distance.14

We employ the “halversine” correlation structure provided on stackexchange to implement a
correct distance measure within GLS.15 We de�ne the model and run it repeatedly.
# Calculates the geodesic distance between two points specified by
# radian latitude / longitude using Haversine formula. output in km
h a v e r s i n e ← f u n c t i o n ( x0 , x1 , y0 , y1 ) {

a ← s i n ( ( y1 − y0 ) / 2 )∧2 + cos ( y0 ) ∗ cos ( y1 ) ∗ s i n ( ( x1 − x0 ) / 2 )∧2
v ← 2 ∗ a s i n ( min ( 1 , s q r t ( a ) ) )
6371 ∗ v

}

# function to compute geodesic haversine distance given two-column
# matrix of longitude / latitude input is assumed in form decimal degrees
# if radians = F note fields::rdist.earth is more efficient
h a v e r s i n e D i s t ← f u n c t i o n ( xy , r a d i a n s = F ) {

i f ( n c o l ( xy ) > 2 )
s t o p ( " I n p u t must have two columns ( l o n g i t u d e and l a t i t u d e ) " )

i f ( r a d i a n s == F )
xy ← xy ∗ p i / 180

hMat ← m a t r i x (NA, n c o l = nrow ( xy ) , nrow = nrow ( xy ) )
f o r ( i i n 1 : nrow ( xy ) ) {

f o r ( j i n i : nrow ( xy ) ) {
hMat [ j , i ] ← h a v e r s i n e ( xy [ i , 1 ] , xy [ j , 1 ] , xy [ i , 2 ] , xy [ j ,

2 ] )
}

}
a s . d i s t ( hMat )

}

## for most methods, machinery from corSpatial will work without
## modification
I n i t i a l i z e . c o r H a v e r s i n e ← nlme : : : I n i t i a l i z e . c o r S p a t i a l

13This is implicit in the corSpher-argument (Pinheiro & Bates, 2000). The di�erent correlation structures (exponential,
Gaussian, linear and spherical) describe how the covariance between two locations decreases with their distance. Spherical,
for example, is similar to exponential, but with a more linear shape.

14https://en.wikipedia.org/wiki/Great-circle_distance
15Taken from https://stackoverflow.com/questions/18857443/specifying-a-correlation-structure-

for-a-linear-mixed-model-using-the-ramps-pack.
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r e c a l c . c o r H a v e r s i n e ← nlme : : : r e c a l c . c o r S p a t i a l
V a r i o g r a m . c o r H a v e r s i n e ← nlme : : : V a r i o g r a m . c o r S p a t i a l
c o r F a c t o r . c o r H a v e r s i n e ← nlme : : : c o r F a c t o r . c o r S p a t i a l
c o r M a t r i x . c o r H a v e r s i n e ← nlme : : : c o r M a t r i x . c o r S p a t i a l
c o e f . c o r H a v e r s i n e ← nlme : : : c o e f . c o r S p a t i a l
" c o e f← . c o r H a v e r s i n e " ← nlme : : : " c o e f← . c o r S p a t i a l "

## Constructor for the corHaversine class
c o r H a v e r s i n e ← f u n c t i o n ( v a l u e = numeric ( 0 ) , form = ∼1 , mimic = " c o r S p h e r " ,

nugget = FALSE , f i x e d = FALSE ) {
s p C l a s s ← " c o r H a v e r s i n e "
a t t r ( va lue , " fo rmula " ) ← form
a t t r ( va lue , " nugget " ) ← nugget
a t t r ( va lue , " f i x e d " ) ← f i x e d
a t t r ( va lue , " f u n c t i o n " ) ← mimic
c l a s s ( v a l u e ) ← c ( s p C l a s s , " c o r S t r u c t " )
v a l u e

} # end corHaversine class
environment ( c o r H a v e r s i n e ) ← asNamespace ( " nlme " )

D i m . c o r H a v e r s i n e ← f u n c t i o n ( o b j e c t , groups , . . . ) {
i f ( m i s s i n g ( groups ) )

r e t u r n ( a t t r ( o b j e c t , " Dim " ) )
v a l ← D i m . c o r S t r u c t ( o b j e c t , groups )
v a l [ [ " s t a r t " ] ] ← c ( 0 , cumsum ( v a l [ [ " l e n " ] ] ∗ ( v a l [ [ " l e n " ] ] − 1 ) / 2 ) [−val [ [ "M" ] ] ] )
## will use third component of Dim list for spClass
names ( v a l ) [ 3 ] ← " s p C l a s s "
v a l [ [ 3 ] ] ← match ( a t t r ( o b j e c t , " f u n c t i o n " ) , c ( " c o r S p h e r " , " corExp " ,

" corGaus " , " c o r L i n " , " c o r R a t i o " ) , 0 )
v a l

}
environment ( D i m . c o r H a v e r s i n e ) ← asNamespace ( " nlme " )

## getCovariate method for corHaversine class
g e t C o v a r i a t e . c o r H a v e r s i n e ← f u n c t i o n ( o b j e c t , form = formula ( o b j e c t ) , d a t a ) {

i f ( i s . n u l l ( covar ← a t t r ( o b j e c t , " c o v a r i a t e " ) ) ) {
# if object lacks covariate attribute if object lacks data
i f ( m i s s i n g ( d a t a ) ) {

s t o p ( " need d a t a t o c a l c u l a t e c o v a r i a t e " )
}
covForm ← g e t C o v a r i a t e F o r m u l a ( form )
i f ( l e n g t h ( a l l . v a r s ( covForm ) ) > 0 ) {

# if covariate present if formula includes intercept
i f ( a t t r ( te rms ( covForm ) , " i n t e r c e p t " ) == 1 ) {

covForm ← e v a l ( p a r s e ( t e x t = p a s t e ( "∼" , d e p a r s e ( covForm [ [ 2 ] ] ) ,
"−1" , sep = " " ) ) ) # remove intercept

}
# can only take covariates with correct names
i f ( l e n g t h ( a l l . v a r s ( covForm ) ) > 2 )

s t o p ( " c o r H a v e r s i n e can only t a k e two c o v a r i a t e s , ’ lon ’ and ’ l a t ’ " )
i f ( ! a l l ( a l l . v a r s ( covForm ) %i n% c ( " l on " , " l a t " ) ) )

s t o p ( " c o v a r i a t e s must be named ’ lon ’ and ’ l a t ’ " )
covar ← a s . d a t a . f r a m e ( u n c l a s s ( m o d e l . m a t r i x ( covForm , m ode l . f r ame ( covForm ,

data , d r o p . u n u s e d . l e v e l s = TRUE ) ) ) )
covar ← covar [ , o r d e r ( co lnames ( covar ) , d e c r e a s i n g = T ) ] # order as lon ... lat

} e l s e {
covar ← NULL

}

i f ( ! i s . n u l l ( ge tGroupsFormula ( form ) ) ) {
# if groups in formula extract covar by groups
grps ← getGroups ( o b j e c t , d a t a = d a t a )
i f ( i s . n u l l ( covar ) ) {

covar ← l a p p l y ( s p l i t ( grps , g rps ) , f u n c t i o n ( x ) a s . v e c t o r ( d i s t ( 1 : l e n g t h ( x ) ) ) )
} e l s e {

g i v e D i s t ← f u n c t i o n ( e l ) {
e l ← a s . m a t r i x ( e l )
i f ( nrow ( e l ) > 1 )

a s . v e c t o r ( h a v e r s i n e D i s t ( e l ) ) e l s e numeric ( 0 )
}
covar ← l a p p l y ( s p l i t ( covar , g rps ) , g i v e D i s t )

}
covar ← covar [ s a p p l y ( covar , l e n g t h ) > 0 ] # no 1-obs groups

} e l s e {
# if no groups in formula extract distance
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i f ( i s . n u l l ( covar ) ) {
covar ← a s . v e c t o r ( d i s t ( 1 : nrow ( d a t a ) ) )

} e l s e {
covar ← a s . v e c t o r ( h a v e r s i n e D i s t ( a s . m a t r i x ( covar ) ) )

}
}
i f ( any ( u n l i s t ( covar ) == 0 ) ) {

# check that no distances are zero
s t o p ( " cannot have z e r o d i s t a n c e s i n \ " c o r H a v e r s i n e \ " " )

}
}
covar

} # end method getCovariate
environment ( g e t C o v a r i a t e . c o r H a v e r s i n e ) ← asNamespace ( " nlme " )

s e t . s e e d ( 1 2 )
index ← sample ( nrow ( b p r _ d a t a ) , 5 0 0 )
s u b s e t ← b p r _ d a t a [ index , ]
s u b s e t $ Sbreve ← s u b s e t $ S / max ( s u b s e t $S )
f g l s ← g l s ( l o g ( P ) ∼ l o g ( Sbreve ) + G + T3 + C1 + C3 + PET + IAA + E , c o r r e l a t i o n = c o r H a v e r s i n e ( form = ∼l on +

l a t , mimic = " c o r S p h e r " ) , d a t a = s u b s e t )
summary ( f g l s )

Generalized least squares fit by REML
Model: log(P) ∼ log(Sbreve) + G + T3 + C1 + C3 + PET + IAA + E
Data: subset

AIC BIC logLik
1697.479 1743.64 -837.7396

Correlation Structure: corHaversine
Formula: ∼lon + lat
Parameter estimate(s):

range
0.001371426

Coefficients:
Value Std.Error t-value p-value

(Intercept) 6.264020 0.7383701 8.483578 0.0000
log(Sbreve) 0.341606 0.0833646 4.097728 0.0000
G 0.017556 0.0030472 5.761253 0.0000
T3 -0.000197 0.0000334 -5.876495 0.0000
C1 0.000379 0.0005550 0.682931 0.4950
C3 0.002481 0.0006231 3.981967 0.0001
PET -0.002139 0.0005147 -4.156098 0.0000
IAA -0.000088 0.0000421 -2.089247 0.0372
E -0.001024 0.0001069 -9.578685 0.0000

Correlation:
(Intr) lg(Sb) G T3 C1 C3 PET IAA

log(Sbreve) 0.626
G -0.185 -0.254
T3 -0.680 -0.453 0.140
C1 0.194 -0.332 0.044 0.258
C3 0.046 0.004 0.041 -0.273 -0.250
PET -0.576 0.098 -0.034 0.067 -0.831 -0.045
IAA -0.384 0.235 -0.108 -0.084 -0.931 0.045 0.898
E -0.111 0.058 -0.186 0.057 0.149 0.168 -0.031 -0.119

Standardized residuals:
Min Q1 Med Q3 Max

-3.9392597 -0.5070892 0.0228970 0.5715560 3.5128986

Residual standard error: 1.162089
Degrees of freedom: 500 total; 491 residual

r e p e a t e d G L S h a v e r s i n e ← f u n c t i o n (N = 5 0 0 ) {
# function running one random subset GLS
i ndex ← sample ( nrow ( b p r _ d a t a ) , N)
s u b s e t ← b p r _ d a t a [ index , ]
s u b s e t $ Sbreve ← s u b s e t $ S / max ( s u b s e t $ S )
f g l s ← g l s ( l o g ( P ) ∼ l o g ( Sbreve ) + G + T3 + C1 + C3 + PET + IAA + E ,

c o r r e l a t i o n = c o r H a v e r s i n e ( form = ∼l on + l a t , mimic = " c o r S p h e r " ) ,
d a t a = s u b s e t )

r2 ← cor ( p r e d i c t ( f g l s ) , l o g ( s u b s e t $P ) )∧2 # R2
r e t u r n ( c ( e l l = l o g L i k ( f g l s ) , AIC = AIC ( f g l s ) , BIC = BIC ( f g l s ) , R2 = r2 ,

c o e f ( f g l s ) ) )
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}
s e t . s e e d ( 1 2 3 )
c o e f M a t h a v e r s i n e ← t ( r e p l i c a t e ( 5 0 , r e p e a t e d G L S h a v e r s i n e ( ) ) )
l i b r a r y ( m a t r i x S t a t s ) # for colSds
s i g n i f ( r b i n d ( mean = colMeans ( c o e f M a t h a v e r s i n e ) , s e = c o l S d s ( c o e f M a t h a v e r s i n e ) ) ,

3 )

ell AIC BIC R2 (Intercept) log(Sbreve) G T3
mean -830.0 1680.0 1730.0 0.3770 6.050 0.2630 0.01580 -0.000155
se 20.6 41.1 41.1 0.0387 0.779 0.0896 0.00441 0.000031

C1 C3 PET IAA E
mean 0.001800 0.002010 -0.003050 -1.65e-04 -0.000942
se 0.000636 0.000808 0.000547 4.78e-05 0.000105

b e t a h a v e r s i n e ← c o e f M a t h a v e r s i n e [ , 5 : 1 3 ]
p r e d s h a v e r s i n e ← X % ∗% t ( b e t a h a v e r s i n e )
par ( mar = c ( 5 , 4 , 1 , 1 ) )
p l o t ( 1 : 1 0 0 , exp ( rowMeans ( p r e d s h a v e r s i n e ) ) , type = " l " , l a s = 1 , lwd = 3 ,

y l im = c ( 0 , 1 0 ) , x l a b = " r e l a t i v e s p e c i e s r i c h n e s s [%] " , y l a b = " p r o d u c t i v i t y " ,
l o g = " " )

# add standard model:
l i n e s ( 1 : 1 0 0 , exp ( rowMeans ( p r e d s ) ) , lwd = 3 , c o l = " red " )
l e g e n d ( " t o p l e f t " , l e g e n d = c ( " L iang " , " g r e a t c i r c l e " ) , c o l = c ( " red " , " b l a c k " ) ,

lwd = 2 , l t y = 1 , b ty = " n " , cex = 1 . 5 )
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In this case, the correct representation of spatial distances increases overall productivity estimates
a bit, but leaves the TSP-P-relationship unchanged.

C.5 De�ne species richness relative to what is regionally possible

The de�nition of Š in the subsets is relative to the largest value in the subset. When analysing the full
data set, by the same logic, all tree species richness values are a fraction of the most diverse plot with
405 species. Thus, the reported relationship must be read as: “If we increase whatever number of
species we currently have in a plot to 400, then we are moving on this curve.” Ecologically, this makes
no sense. Whatever the reason why there are only a handful species in a plot of 1/10th of a hectare
in temperate and boreal forests, it also prevents a “tropic richness” in these sites. Thus, one cannot
meaningfully increase species richness outside the tropics to a tropical level. As a consequence, the
depicted �gure lacks ecological interpretability.

What the reader, and we suspect also some of the authors, probably interpret into the x-axis is
“species richness relative to what would be possible at this site”. There are di�erent ways to de�ne
“what is possible at this site”: (a) relative to what the maximum recorded value for this biome is, (b)
relative to the richness of plots in the vicinity, (c) relative to the number of trees in the local/regional
species pool, and possibly others. In the following, we use approach (b), relative to other plots in the
region. The biome is, in our opinion, too large, while the third approach would require an analysis
far beyond what current data allow us to do.

We de�ne the “region” around a plot as being within a raster cell of 100 × 100 km2.
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l i b r a r y ( r a s t e r )
l i b r a r y ( sp )
# do everything in equal-area Mollweide projection:
p r j ← " + p r o j = mol l + lon_0 =0 +x_0 =0 +y_0 =0 + e l l p s =WGS84"
# set up a raster grid for the world:
wrld_mol l ← spTransform ( wr ld_s impl , CRS = p r j )
w r l d _ m o l l _ r a s t e r ← r a s t e r ( wr ld_mol l , r e s = 1 e +05 )
# transform plot coordinates into Mollweide:
p l o t s ← S p a t i a l P o i n t s ( c o o r d s = b p r _ d a t a [ , c ( " Lon " , " La t " ) ] , p r o j 4 s t r i n g = c r s ( w r l d _ s i m p l ) )
p l o t s _ m o l l ← spTransform ( p l o t s , CRS = p r j )
# rasterise the data into it:
b p r _ m o l l _ r a s t e r ← r a s t e r i z e ( x = p l o t s _ m o l l , y = w r l d _ m o l l _ r a s t e r , f i e l d = b p r _ d a t a $S ,

fun = max )
b p r _ m o l l _ r a s t e r

class : RasterLayer
dimensions : 178, 355, 63190 (nrow, ncol, ncell)
resolution : 1e+05, 1e+05 (x, y)
extent : -17702743, 17797257, -9052898, 8747102 (xmin, xmax, ymin, ymax)
coord. ref. : +proj=moll +lon_0=0 +x_0=0 +y_0=0 +ellps=WGS84
data source : in memory
names : layer
values : 1, 405 (min, max)

# plot(bpr_moll_raster) # check extract Smax of the cell into which a
# plot falls
SmaxPerP lo t ← e x t r a c t ( b p r _ m o l l _ r a s t e r , p l o t s _ m o l l )
S b r e v e L o c a l ← b p r _ d a t a $ S / SmaxPerP lo t
b p r _ d a t a $ S b r e v e L o c a l ← S b r e v e L o c a l

# plot(bpr_data$S / max(bpr_data$S), bpr_data$SbreveLocal, pch=’.’,
# cex=2) #slow !
l i b r a r y ( hexb in )
p l o t ( hexb in ( b p r _ d a t a $S / max ( b p r _ d a t a $S ) , b p r _ d a t a $ S b r e v e L o c a l ) )
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The local relative species richness (Šlocal) shows substantially more variability for low-richness
plots.

Now we can repeat the above analysis with a di�erent relative tree species richness as response:
r e p e a t e d G L S l o c a l S b r e v e ← f u n c t i o n (N = 5 0 0 ) {

# function running one random subset GLS
i ndex ← sample ( nrow ( b p r _ d a t a ) , N)
s u b s e t ← b p r _ d a t a [ index , ]
f g l s ← g l s ( l o g ( P ) ∼ l o g ( S b r e v e L o c a l ) + G + T3 + C1 + C3 + PET + IAA +

E , c o r r e l a t i o n = c o r S p h e r ( c ( 5 0 , 0 . 8 ) , form = ∼l on + l a t , nugget = T ,
f i x e d = T ) , d a t a = s u b s e t )

r2 ← cor ( p r e d i c t ( f g l s ) , l o g ( s u b s e t $P ) )∧2 # R2
r e t u r n ( c ( e l l = l o g L i k ( f g l s ) , AIC = AIC ( f g l s ) , BIC = BIC ( f g l s ) , R2 = r2 ,

c o e f ( f g l s ) ) )
}
s e t . s e e d ( 1 2 3 )
c o e f M a t l o c a l S b r e v e ← t ( r e p l i c a t e ( 5 0 , r e p e a t e d G L S l o c a l S b r e v e ( ) ) )
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l i b r a r y ( m a t r i x S t a t s ) # for colSds
s i g n i f ( r b i n d ( mean = colMeans ( c o e f M a t l o c a l S b r e v e ) , s e = c o l S d s ( c o e f M a t l o c a l S b r e v e ) ) ,

3 )

ell AIC BIC R2 (Intercept) log(SbreveLocal) G
mean -818.0 1660.0 1700.0 0.3360 3.870 0.2370 0.01710
se 19.8 39.7 39.7 0.0406 0.979 0.0995 0.00433

T3 C1 C3 PET IAA E
mean -7.03e-05 0.002090 0.001160 -0.002790 -1.51e-04 -0.000641
se 5.49e-05 0.000583 0.000695 0.000643 4.04e-05 0.000122

b e t a l o c a l S b r e v e ← c o e f M a t l o c a l S b r e v e [ , 5 : 1 3 ]
p r e d s l o c a l S b r e v e ← X % ∗% t ( b e t a l o c a l S b r e v e )
par ( mar = c ( 5 , 4 , 1 , 1 ) )
p l o t ( 1 : 1 0 0 , exp ( rowMeans ( p r e d s l o c a l S b r e v e ) ) , type = " l " , l a s = 1 , lwd = 3 ,

y l im = c ( 0 , 1 0 ) , x l a b = " r e l a t i v e s p e c i e s r i c h n e s s [%] " , y l a b = " p r o d u c t i v i t y " ,
l o g = " " )

# add standard model:
l i n e s ( 1 : 1 0 0 , exp ( rowMeans ( p r e d s ) ) , lwd = 3 , c o l = " red " )
l e g e n d ( " t o p l e f t " , l e g e n d = c ( " L iang " , " l o c a l r e l a t i v e r i c h n e s s " ) , c o l = c ( " red " ,

" b l a c k " ) , lwd = 2 , l t y = 1 , b ty = " n " , cex = 1 . 5 )
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Representing species richness relative to what is possible in that region substantially reduces the
e�ect of species richness on productivity, as well as the error margin of this relationship.

To repeat the message of this last plot: When moving from a plot that only comprises, say, 10%
of the potential local tree species to one that contains all 100%, productivity increases from around
2.2 to 4.5 m3ha−1y−1 (much less than the increase from 2.5 to 8 m3ha−1y−1 reported by Liang et al.
2016).

C.6 Use relative, rather than absolute, productivity

It appears a bit odd to scale species richness relativ to what is locally possible, but not also produc-
tivity. Tropical forests can be expected to be far more productive than boreal ones, but the e�ect of
relative species richness on relative productivity may be similar.

To explore this idea, we follow the same approach as with local relative species richness and
compute local relative productivity, Plocal. This we then analyse with the local relative species rich-
ness (Šlocal).

Again we de�ne the “region” around a plot as being within a raster cell of 100 × 100 km2.
l i b r a r y ( r a s t e r )
l i b r a r y ( maptoo l s )
d a t a ( w r l d _ s i m p l )
# do everything in equal-area Mollweide projection:
p r j ← " + p r o j = mol l + lon_0 =0 +x_0 =0 +y_0 =0 + e l l p s =WGS84"
# set up a raster grid for the world:
wrld_mol l ← spTransform ( wr ld_s impl , CRS = p r j )
w r l d _ m o l l _ r a s t e r ← r a s t e r ( wr ld_mol l , r e s = 1 e +05 )
# transform plot coordinates into Mollweide:
p l o t s ← S p a t i a l P o i n t s ( c o o r d s = b p r _ d a t a [ , c ( " Lon " , " La t " ) ] , p r o j 4 s t r i n g = c r s ( w r l d _ s i m p l ) )
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p l o t s _ m o l l ← spTransform ( p l o t s , CRS = p r j )
# rasterise the data into it:
b p r _ m o l l _ r a s t e r ← r a s t e r i z e ( x = p l o t s _ m o l l , y = w r l d _ m o l l _ r a s t e r , f i e l d = b p r _ d a t a $P ,

fun = max )
b p r _ m o l l _ r a s t e r

class : RasterLayer
dimensions : 178, 355, 63190 (nrow, ncol, ncell)
resolution : 1e+05, 1e+05 (x, y)
extent : -17702743, 17797257, -9052898, 8747102 (xmin, xmax, ymin, ymax)
coord. ref. : +proj=moll +lon_0=0 +x_0=0 +y_0=0 +ellps=WGS84
data source : in memory
names : layer
values : 0.01, 952.02 (min, max)

# plot(bpr_moll_raster) # check extract Smax of the cell into which a
# plot falls
PmaxPerPlot ← e x t r a c t ( b p r _ m o l l _ r a s t e r , p l o t s _ m o l l )
PL oc a l ← b p r _ d a t a $P / PmaxPerPlot
b p r _ d a t a $ P L oc a l ← PL oc a l

l i b r a r y ( hexb in )
p l o t ( hexb in ( b p r _ d a t a $P / max ( b p r _ d a t a $P ) , b p r _ d a t a $ P L o c a l ) )
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Now we can repeat the above analysis with a di�erent relative (local) productivity as response:
r e p e a t e d G L S l o c a l P ← f u n c t i o n (N = 5 0 0 ) {

# function running one random subset GLS
i ndex ← sample ( nrow ( b p r _ d a t a ) , N)
s u b s e t ← b p r _ d a t a [ index , ]
f g l s ← g l s ( l o g ( P L o c a l ) ∼ l o g ( S b r e v e L o c a l ) + G + T3 + C1 + C3 + PET +

IAA + E , c o r r e l a t i o n = c o r S p h e r ( c ( 5 0 , 0 . 8 ) , form = ∼l on + l a t ,
nugget = T , f i x e d = T ) , d a t a = s u b s e t )

r2 ← cor ( p r e d i c t ( f g l s ) , l o g ( s u b s e t $P ) )∧2 # R2
r e t u r n ( c ( e l l = l o g L i k ( f g l s ) , AIC = AIC ( f g l s ) , BIC = BIC ( f g l s ) , R2 = r2 ,

c o e f ( f g l s ) ) )
}
s e t . s e e d ( 1 2 3 )
c o e f M a t l o c a l P ← t ( r e p l i c a t e ( 5 0 , r e p e a t e d G L S l o c a l P ( ) ) )
l i b r a r y ( m a t r i x S t a t s ) # for colSds
s i g n i f ( r b i n d ( mean = colMeans ( c o e f M a t l o c a l P ) , s e = c o l S d s ( c o e f M a t l o c a l P ) ) ,

3 )

ell AIC BIC R2 (Intercept) log(SbreveLocal) G T3
mean -859 1740 1780 0.1350 -0.308 0.358 0.0127 -2.07e-05
se 19 38 38 0.0449 1.170 0.100 0.0036 6.66e-05

C1 C3 PET IAA E
mean -0.000752 0.003310 -0.001900 -1.18e-06 -0.000598
se 0.000809 0.000905 0.000876 5.86e-05 0.000147

# plot(hexbin(log10(bpr_data$S), log10(bpr_data$PLocal)))
# plot(hexbin(bpr_data$S / 405, bpr_data$PLocal))
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b e t a l o c a l P ← c o e f M a t l o c a l P [ , 5 : 1 3 ]
p r e d s l o c a l P ← X % ∗% t ( b e t a l o c a l P )
par ( mar = c ( 5 , 4 , 1 , 1 ) )
p l o t ( 1 : 1 0 0 , exp ( rowMeans ( p r e d s l o c a l P ) ) , type = " l " , l a s = 1 , lwd = 3 , y l im = c ( 0 ,

0 . 1 2 ) , x l a b = " r e l a t i v e s p e c i e s r i c h n e s s [%] " , y l a b = " r e l a t i v e l o c a l p r o d u c t i v i t y " ,
l o g = " " )
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This does not look like an improvement, as the model �t is poorer (R2 of 0.135 compared to 0.34).
Interestingly, however, (a) the e�ect of species richness is stronger (larger value of θ); and (b) even
at maximal species richness only 10% of maximal productivity is reached.

Note that we used the local relative species richness ((̌S)local); the model with the original Š is
similarly bad, and with a lower value for θ (around 0.213). While this may actually be interesting in
itself, we do not pursue this line of thought further here.

D A new analysis

In summary, our explorations above have shown substantial e�ects of (in that order)
1. computing Š relative to maximal local species richness;
2. stratifying the data proportional to an ecoregion’s share of global forest cover;
3. computing spatial distances on a sphere;
4. strati�cation of samples by ecoregion forest cover;
5. correcting for spatial autocorrelation;
6. correcting standard errors for subsampling.

The relative scaling of productivity did not improve the global model and is not further considered
here.

It is quite possible that these alterations of the original model interact, i.e. that the substantial
bias we have seen introduced by strati�cation may be caused by the way Š is computed, and would
be removed with a locally computed Šlocal. Exploring all these option combinations is beyond the
scope of this re-analysis.

So, in a nutshell, the new global model uses a locally-scaled species richness as predictor, com-
putes spatial distances on a sphere when correcting for spatial autocorrelation in the data and strat-
i�es sampling by each ecoregion’s forest cover.
repeatedGLSnew ← f u n c t i o n (N = 5 0 0 ) {

# function running one stratified random subset GLS sample the
# Ecoregion-ID according to its probability:
ecoSample ← sample ( b i o m e _ t r e e s $ Ecoreg ion , N , prob = b i o m e _ t r e e s $ s t r a t P r o b ,

r e p l a c e = T ) # how many samples from all ecoregions
# table(ecoSample) Now, for each ecoregion, take a random subset from
# the full data set and rbind them:
s u b s e t ← NA
f o r ( i i n b i o m e _ t r e e s $ E c o r e g i o n ) {

subs ← b p r _ d a t a [ b p r _ d a t a $ E c o r e g i o n == i , ] # only this biome
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s u b s e t 2 n d ← subs [ subs $ FID %i n% sample ( subs $ FID , sum ( ecoSample ==
i ) , r e p l a c e = {
i f ( sum ( ecoSample == i ) > l e n g t h ( subs $ FID ) )

TRUE e l s e FALSE
} ) , ]
# sorry for this convoluted expression ...
s u b s e t ← r b i n d ( s u b s e t , s u b s e t 2 n d )

}
s u b s e t ← s u b s e t [−1 , ] # remove the NA-row
# re-jitter geographical coordinates, if data points we resampled !
i f ( sum ( ecoSample == i ) > l e n g t h ( subs $ FID ) ) {

s u b s e t $ l a t ← j i t t e r ( s u b s e t $ L a t )
s u b s e t $ lon ← j i t t e r ( s u b s e t $Lon )

}
f g l s ← g l s ( l o g ( P ) ∼ l o g ( S b r e v e L o c a l ) + G + T3 + C1 + C3 + PET + IAA +

E , c o r r e l a t i o n = c o r H a v e r s i n e ( form = ∼l on + l a t , mimic = " c o r S p h e r " ) ,
d a t a = s u b s e t )

r2 ← cor ( p r e d i c t ( f g l s ) , l o g ( s u b s e t $P ) )∧2 # R2
r e t u r n ( c ( e l l = l o g L i k ( f g l s ) , AIC = AIC ( f g l s ) , BIC = BIC ( f g l s ) , R2 = r2 ,

c o e f ( f g l s ) ) )
}
s e t . s e e d ( 1 2 3 )
coefMatNew ← t ( r e p l i c a t e ( 5 0 , repeatedGLSnew ( ) ) )
s i g n i f ( r b i n d ( mean = colMeans ( coefMatNew ) , se = c o l S d s ( coefMatNew ) ) , 3 )

ell AIC BIC R2 (Intercept) log(SbreveLocal) G
mean -819.0 1660.0 1710.0 0.326 2.970 0.0646 0.03020
se 23.9 47.8 47.8 0.032 0.826 0.1050 0.00579

T3 C1 C3 PET IAA E
mean -1.16e-04 0.000649 0.001610 -0.001300 -1.05e-04 -0.000661
se 3.53e-05 0.000250 0.000437 0.000407 2.76e-05 0.000189

Here we add the correction for subsampling, speci�cally computing SDs of the predictions from
the subsamples and correcting them to the full data. We �rst do that for the �ts provided by the
re-analysis in the original form.
predsMeansGLS ← rowMeans ( p r e d s )
CIsdGLS ← app ly ( preds , 1 , sd )
CIsdGLScorr ← exp ( 2 . 3 4 1 ∗ l o g ( CIsdGLS ) )
CIsGLS ← r b i n d ( predsMeansGLS + 2 ∗ CIsdGLScorr , predsMeansGLS − 2 ∗ CIsdGLScorr )

Now we plot the new model, and as comparison the original.
betaNew ← coefMatNew [ , 5 : 1 3 ]
predsNew ← X % ∗% t ( betaNew )
predsMeans ← rowMeans ( predsNew )
CIsd ← app ly ( predsNew , 1 , sd )
C I s d c o r r ← exp ( 2 . 3 4 1 ∗ l o g ( CIsd ) )
CIsNew ← r b i n d ( predsMeans + 2 ∗ C I s d c o r r , predsMeans − 2 ∗ C I s d c o r r )

par ( mar = c ( 5 , 4 , 1 , 1 ) )
p l o t ( 1 : 1 0 0 , exp ( rowMeans ( predsNew ) ) , type = " l " , l a s = 1 , lwd = 3 , y l im = c ( 0 ,

1 0 ) , x l a b = " r e l a t i v e l o c a l s p e c i e s r i c h n e s s [%] " , y l a b = " p r o d u c t i v i t y " ,
l o g = " " )

polygon ( c ( 1 : 1 0 0 , 1 0 0 : 1 ) , c ( exp ( CIsNew [ 1 , ] ) , r ev ( exp ( CIsNew [ 2 , ] ) ) ) , b o r d e r = " green " ,
c o l = " green " )

# add standard model:
polygon ( c ( 1 : 1 0 0 , 1 0 0 : 1 ) , c ( exp ( CIsGLS [ 1 , ] ) , r ev ( exp ( CIsGLS [ 2 , ] ) ) ) , b o r d e r = NA,

c o l = rgb ( 2 5 5 , 1 6 5 , 0 , 1 0 0 , maxColorValue = 2 5 5 ) )
l i n e s ( 1 : 1 0 0 , exp ( predsMeansGLS ) , lwd = 1 )
l i n e s ( 1 : 1 0 0 , exp ( predsMeans ) , lwd = 1 , c o l = " whi te " )
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As we can clearly see, the pattern observed by Liang et al. (2016) does not hold up to scrutiny
when correcting the mistakes of their analysis. The overall e�ect of increasing species richness to
the maximum possible at that site is negligible and levels o� at less than 10%.16

The absolute levels of productivity presented in the above �gure are conditional on the values
choosen for environmental covariates and are thus not interpretable “globally”. To do so would
require a marginal, rather than a conditional approach. As already the conditional e�ect at the
mean value of the covariates is practically absent, so would probably be the marginal.17 Although
that was one of our initial questions, it is not worth pursuing under these conditions.

E Comparison with ecoregion-speci�c �ts

The lack of species richness-e�ect begs the question whether within ecoregions such a species
richness-e�ect is present. It could well be that the variation in species-richness e�ects across ecore-
gions leads to a dilution of this signal at the global scale and the overall lack of e�ect in the full
analysis.

We thus recompute with the same approach the �ts to each ecoregion separately.
repeatedGLSbiome ← f u n c t i o n (N = 5 0 0 , d a t a = NULL ) {

# function running random subset GLS take subset
s u b s e t ← d a t a [ sample ( nrow ( d a t a ) , min (N , nrow ( d a t a ) ) ) , ]
# fit model
f g l s ← t r y ( g l s ( l o g ( P ) ∼ l o g ( S b r e v e L o c a l ) + G + T3 + C1 + C3 + PET +

IAA + E , c o r r e l a t i o n = c o r H a v e r s i n e ( form = ∼l on + l a t , mimic = " c o r S p h e r " ) ,
d a t a = s u b s e t ) )

i f ( i n h e r i t s ( f g l s , " t r y−e r r o r " ) ) {
r e t u r n ( rep (NA, 1 3 ) )

} e l s e {
r2 ← cor ( p r e d i c t ( f g l s ) , l o g ( s u b s e t $P ) )∧2 # R2
r e t u r n ( c ( e l l = l o g L i k ( f g l s ) , AIC = AIC ( f g l s ) , BIC = BIC ( f g l s ) ,

R2 = r2 , c o e f ( f g l s ) ) )
}

}

r e g i o n a l F i t s ← l i s t ( )
s e t . s e e d ( 1 2 3 )
f o r ( i i n c ( 1 , 2 , 4 : 1 0 , 1 2 , 1 3 ) ) {

# 3: no data; 11: only 9 data points select region:
t h i s E c o r e g i o n ← b p r _ d a t a [ b p r _ d a t a $ E c o r e g i o n == i , ]

16As written above, it is probably in the interaction of the changes that the e�ect disappears. Changing, for example, the
Haversine back to corSpher has hardly any e�ect in itself. One could now start to remove the changes one at a time to identify
the step(s) that caused the original signal to disappear.

17The marginal e�ect asks the question: “I’m in a forest somewhere on this planet. I know that this plot has 50% of its
potential tree species richness. How productive is this plot?” In other words, the marginal e�ect is ignorant of the values of
the environmental covariates, and as a consequences is far less certain. The conditional e�ect (“I’m standing in a forest patch in
north Sumatra, with that much rainfall, tree density and so forth, and tree species richness is at 50% of its maximum potential:
How productive is this site?”) obviously requires more information, but is thereby, by de�nition, not global anymore.
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# fit new model:
coefMatNew ← t ( r e p l i c a t e ( 5 0 0 , repeatedGLSbiome (N = 5 0 0 , d a t a = t h i s E c o r e g i o n ) ) )
r e g i o n a l F i t s [ [ i ] ] ← coefMatNew
c a t ( i , " " )
rm ( coefMatNew )

}

1 2 4 5 6 7 8 9 10 12 13

t h e t a m a t ← s a p p l y ( r e g i o n a l F i t s , f u n c t i o n ( x ) c ( mean ( x [ , 6 ] , na .rm = T ) ,
sd ( x [ , 6 ] , na .rm = T ) ) )

s a m p l e S i z e ← t a b l e ( b p r _ d a t a $ E c o r e g i o n )
par ( mar=c ( 3 , 3 , 0 , 1 ) , mfrow=c ( 3 , 4 ) , oma=c ( 4 , 4 , 0 , 0 ) )
f o r ( i i n c ( 1 , 2 , 4 : 1 0 , 1 2 , 1 3 ) ) {

XReg ← a s . m a t r i x ( d a t a . f r a m e ( " I n t e r c e p t " =1 , " S b r e v e L o c a l " = l o g ( seq ( 0 . 0 1 , 1 , by =0 . 0 1 ) ) ,
t ( colMeans ( b p r _ d a t a [ b p r _ d a t a $ E c o r e g i o n == i , c ( "G" , " T3 " , " C1 " , " C3 " , " PET " ,
" IAA " , " E " ) ] ) ) ) )

i f ( i % i n% c ( 2 , 9 ) ) {
# Ecoregion 2 has only 111 plots, 9: 547; here we use the full model !
s u b S e t ← b p r _ d a t a [ b p r _ d a t a $ E c o r e g i o n == i , −c ( 2 , 6 ) ]
# apparently predictSE cannot handle the log() in a formula:
s u b S e t $ l o g S b r e v e L o c a l ← l o g ( s u b S e t $ S b r e v e L o c a l )
f g l s R e g ← nlme : : g l s ( l o g ( P ) ∼ l o g S b r e v e L o c a l + G + T3 + C1 + C3 + PET + IAA + E ,

c o r r e l a t i o n = c o r H a v e r s i n e ( form=∼l on + l a t , mimic= " c o r S p h e r " ) ,
d a t a = s u b S e t )

t h e t a m a t [ , 2 ] ← c ( c o e f ( f g l s R e g ) [ " l o g S b r e v e L o c a l " ] ,
s q r t ( d i a g ( summary ( f g l s R e g ) $ v a r B e t a ) ) [ " l o g S b r e v e L o c a l " ] )

# somehow knitr didn’t like this line:
#XReg ← as.matrix(data.frame("logSbreveLocal"=log(seq(0.01, 1, by=0.01)),
# t(colMeans(subSet))))
XReg ← a s . m a t r i x ( d a t a . f r a m e ( " l o g S b r e v e L o c a l " = l o g ( seq ( 0 . 0 1 , 1 , by =0 . 0 1 ) ) ,

"G" =mean ( s u b S e t $G ) , " T3 " =mean ( s u b S e t $T3 ) , " C1 " =mean ( s u b S e t $C1 ) ,
" C3 " =mean ( s u b S e t $C3 ) , " PET " =mean ( s u b S e t $PET ) ,
" IAA " =mean ( s u b S e t $IAA ) , " E " =mean ( s u b S e t $E ) ) )

predsReg ← AICcmodavg : : : p r e d i c t S E ( f g l s R e g , newdata=XReg , s e . f i t =T )
predsRegMeans ← predsReg $ f i t
C I s d c o r r R e g ← predsReg $ s e . f i t # no need to correct

} e l s e {
be taReg ← r e g i o n a l F i t s [ [ i ] ] [ , 5 : 1 3 ]
predsReg ← XReg % ∗% t ( be taReg )
predsRegMeans ← rowMeans ( predsReg , na .rm =T )
CIsdReg ← app ly ( predsReg , 1 , sd , na .rm =T )
C I s d c o r r R e g ← exp ( l o g ( 5 0 0 ) / l o g ( s a m p l e S i z e [ names ( s a m p l e S i z e ) == i ] ) ∗ l o g ( CIsdReg ) )

}
CIsNewReg ← r b i n d ( predsRegMeans + 2 ∗ CIsdcorrReg , predsRegMeans − 2 ∗ C I s d c o r r R e g )
yl imUpper ← c e i l i n g ( exp ( max ( CIsNewReg ) ) )
p l o t ( 1 : 1 0 0 , exp ( predsRegMeans ) , type = " n " , l a s =1 , y l im =c ( 0 , y l imUpper ) ,

#xlab="relative local species richness [%]", ylab="productivity", log="",
main= " " , x l a b = " " , y l a b = " " )

polygon ( c ( 1 : 1 0 0 , 1 0 0 : 1 ) , c ( exp ( CIsNewReg [ 1 , ] ) , r ev ( exp ( CIsNewReg [ 2 , ] ) ) ) ,
b o r d e r = c o l s [ i ] , c o l = c o l s [ i ] )

l i n e s ( 1 : 1 0 0 , exp ( predsRegMeans ) , lwd =3 )
l e g e n d ( " t o p l e f t " , l e g e n d = b i o m e _ t r e e s $biomeName [ b i o m e _ t r e e s $ E c o r e g i o n == i ] ,

b ty = " n " , cex =1 )
}
mtext ( s i d e =1 , t e x t = " r e l a t i v e l o c a l t r e e s p e c i e s r i c h n e s s " , cex =1 . 5 , l i n e =1 , o u t e r =T )
mtext ( s i d e =2 , t e x t = e x p r e s s i o n ( p a s t e ( " p r o d u c t i v i t y [ " , m∧ { 3 } ∼∼ ha∧ {−1 } ∼∼ y∧ {−1 } , " ] " ) ) ,

cex =1 . 5 , l i n e =1 , o u t e r =T , l a s =0 )
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As a summary, we can plot the estimates for each ecoregion.
t h e t a m a t ← a s . d a t a . f r a m e ( t h e t a m a t [ , −c ( 3 , 1 1 ) ] )
co lnames ( t h e t a m a t ) ← a s . c h a r a c t e r ( b i o m e _ t r e e s $biomeName [−c ( 1 0 ) ] ) # ’tundra’ excluded
rownames ( t h e t a m a t ) ← c ( " t h e t a " , " s e " )
par ( mar = c ( 5 , 5 , 1 , 1 ) , l a s = 1 )
p l o t ( 1 : 1 1 , t h e t a m a t [ 1 , ] , pch = 1 6 , y l im = c (−0.2 , 0 . 8 ) , y l a b = e x p r e s s i o n ( ha t ( t h e t a ) ) ,

x l a b = " " , axes = F )
a b l i n e ( h = 0 , c o l = " grey " )
a b l i n e ( h = 0 . 0 7 , c o l = " green " )
a b l i n e ( h = 0 . 2 6 2 , c o l = " red " )
arrows ( 1 : 1 1 , u n l i s t ( t h e t a m a t [ 1 , ] − 2 ∗ t h e t a m a t [ 2 , ] ) , 1 : 1 1 , u n l i s t ( t h e t a m a t [ 1 ,

] + 2 ∗ t h e t a m a t [ 2 , ] ) , a n g l e = 9 0 , code = 3 , l e n g t h = 0 . 2 )
a x i s ( 2 )
a x i s ( 1 , t i c k = F , a t = 1 : 1 1 , l a b e l s = colnames ( t h e t a m a t ) , l a s = 3 , l i n e = −2 )

θ̂

−0.2

0.0

0.2

0.4

0.6

0.8

tr
op

M
oi

st

tr
op

D
ry

te
m

pB
ro

ad
le

af

te
m

pC
on

ife
r

bo
re

al

tr
op

G
ra

ss

te
m

pG
ra

ss

flo
od

ed
G

ra
ss

m
on

ta
ne

G
ra

ss

M
ed

ite
rr

F
or

es
t

de
se

rt

In six out of 11 cases (tropical moist rainforest, temperate coniferous forest, temperate grassland,
mountain grassland, Mediterranean forest and desert) the estimates are not signi�cant. All others
point at positive e�ects of relative local species richness of rather di�erent strength (very strong in
tropical dry rainforests and �ooded grasslands). The original global model of Liang et al. (2016) (in
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red) shows a substantially stronger e�ect than our re-analysis (green).

E.1 Analysis with actual species richness as predictor

One of the interpretational problems of the above analyses, and indeed the key neat idea of the
original paper, is that a change from, say, 10 to 30% on the x-axis means completely di�erent things
in di�erent ecoregions. In the tropics, this may be a change in species richness from 30 to 90 species,
while in the boreal system from “less than one” to “just under two”.

As a �nal step, we re-analyse the data with the same model as in the previous section, just with
log(S) as predictor, rather than a somehow corrected species richness.
repeatedGLSbiomeS ← f u n c t i o n (N = 5 0 0 , d a t a = NULL ) {

# function running random subset GLS take subset
s u b s e t ← d a t a [ sample ( nrow ( d a t a ) , min (N , nrow ( d a t a ) ) ) , ]
# fit model
f g l s ← t r y ( g l s ( l o g ( P ) ∼ l o g ( S ) + G + T3 + C1 + C3 + PET + IAA + E ,

c o r r e l a t i o n = c o r H a v e r s i n e ( form = ∼l on + l a t , mimic = " c o r S p h e r " ) ,
d a t a = s u b s e t ) )

i f ( i n h e r i t s ( f g l s , " t r y−e r r o r " ) ) {
r e t u r n ( rep (NA, 1 3 ) )

} e l s e {
r2 ← cor ( p r e d i c t ( f g l s ) , l o g ( s u b s e t $P ) )∧2 # R2
r e t u r n ( c ( e l l = l o g L i k ( f g l s ) , AIC = AIC ( f g l s ) , BIC = BIC ( f g l s ) ,

R2 = r2 , c o e f ( f g l s ) ) )
}

}

r e g i o n a l F i t s S ← l i s t ( )
s e t . s e e d ( 1 2 3 )
f o r ( i i n c ( 1 , 2 , 4 : 1 0 , 1 2 , 1 3 ) ) {

# 3: no data; 11: only 9 data points select region:
t h i s E c o r e g i o n ← b p r _ d a t a [ b p r _ d a t a $ E c o r e g i o n == i , ]
# fit new model:
coefMatNewS ← t ( r e p l i c a t e ( 5 0 , repeatedGLSbiomeS (N = 5 0 0 , d a t a = t h i s E c o r e g i o n ) ) )
r e g i o n a l F i t s [ [ i ] ] ← coefMatNewS
c a t ( i , " " )
rm ( coefMatNewS )

}

1 2 4 5 6 7 8 9 10 12 13

t h e t a m a t S ← s a p p l y ( r e g i o n a l F i t s , f u n c t i o n ( x ) c ( mean ( x [ , 6 ] , na .rm = T ) ,
sd ( x [ , 6 ] , na .rm = T ) ) )

t h e t a m a t S

[,1] [,2] [,3] [,4] [,5] [,6] [,7]
[1,] 0.1933998 3.795883e-01 NA 0.22269353 0.2869328 0.3997394 0.25252600
[2,] 0.0575136 3.520413e-12 NA 0.08655817 0.1021997 0.1029933 0.06319427

[,8] [,9] [,10] [,11] [,12] [,13]
[1,] 0.24952554 0.65938680 -0.01961739 NA 0.276837 0.09878343
[2,] 0.08177586 0.02452337 0.03604797 NA 0.105047 0.18807178

s a m p l e S i z e ← t a b l e ( b p r _ d a t a $ E c o r e g i o n )
par ( mar=c ( 3 , 3 , 0 , 1 ) , mfrow=c ( 3 , 4 ) , oma=c ( 4 , 4 , 0 , 0 ) )
f o r ( i i n c ( 1 , 2 , 4 : 1 0 , 1 2 , 1 3 ) ) {

XReg ← a s . m a t r i x ( d a t a . f r a m e ( " I n t e r c e p t " =1 ,
" S " = l o g ( seq ( 1 , max ( b p r _ d a t a $ S [ b p r _ d a t a $ E c o r e g i o n == i ] ) , by = 1 ) ) ,
t ( colMeans ( b p r _ d a t a [ b p r _ d a t a $ E c o r e g i o n == i , c ( "G" , " T3 " , " C1 " ,

" C3 " , " PET " , " IAA " , " E " ) ] ) ) ) )
i f ( i % i n% c ( 2 , 9 ) ) {

# Ecoregion 2 has only 111 plots, 9: 547; here we use the full model !
s u b S e t ← b p r _ d a t a [ b p r _ d a t a $ E c o r e g i o n == i , −c ( 2 , 6 ) ]
# apparently predictSE cannot handle the log() in a formula:
s u b S e t $ l o g S ← l o g ( s u b S e t $S )
f g l s R e g ← nlme : : g l s ( l o g ( P ) ∼ l o g S + G + T3 + C1 + C3 + PET + IAA + E ,

c o r r e l a t i o n = c o r H a v e r s i n e ( form=∼l on + l a t , mimic= " c o r S p h e r " ) ,
d a t a = s u b S e t )

t h e t a m a t S [ , 2 ] ← c ( c o e f ( f g l s R e g ) [ " l o g S " ] , s q r t ( d i a g ( summary ( f g l s R e g ) $ v a r B e t a ) ) [ " l o g S " ] )
XReg ← a s . m a t r i x ( d a t a . f r a m e ( " l o g S " = l o g ( seq ( 1 , max ( s u b S e t $S ) , by = 1 ) ) ,

"G" =mean ( s u b S e t $G ) , " T3 " =mean ( s u b S e t $T3 ) , " C1 " =mean ( s u b S e t $C1 ) ,
" C3 " =mean ( s u b S e t $C3 ) , " PET " =mean ( s u b S e t $PET ) ,
" IAA " =mean ( s u b S e t $IAA ) , " E " =mean ( s u b S e t $E ) ) )

predsRegS ← AICcmodavg : : : p r e d i c t S E ( f g l s R e g , newdata=XReg , s e . f i t =T )
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predsRegMeansS ← predsRegS $ f i t
C I s d c o r r R e g S ← predsRegS $ s e . f i t # no need to correct
Smax ← max ( s u b S e t $ S )

} e l s e {
Smax ← max ( b p r _ d a t a $ S [ b p r _ d a t a $ E c o r e g i o n == i ] )
be taReg ← r e g i o n a l F i t s [ [ i ] ] [ , 5 : 1 3 ]
predsRegS ← XReg % ∗% t ( be taReg )
predsRegMeansS ← rowMeans ( predsRegS , na .rm =T )
CIsdRegS ← app ly ( predsRegS , 1 , sd , na .rm =T )
C I s d c o r r R e g S ← exp ( l o g ( 5 0 0 ) / l o g ( s a m p l e S i z e [ names ( s a m p l e S i z e ) == i ] ) ∗ l o g ( CIsdRegS ) )

}
CIsNewRegS ← r b i n d ( predsRegMeansS + 2 ∗ CIsdcorrRegS , predsRegMeansS − 2 ∗ C I s d c o r r R e g S )
yl imUpper ← c e i l i n g ( exp ( max ( CIsNewRegS ) ) )
p l o t ( 1 : Smax , exp ( predsRegMeansS ) , type = " n " , l a s =1 , y l im =c ( 0 , y l imUpper ) ,

main= " " , x l a b = " " , y l a b = " " )
polygon ( c ( 1 : Smax , Smax : 1 ) , c ( exp ( CIsNewRegS [ 1 , ] ) , r ev ( exp ( CIsNewRegS [ 2 , ] ) ) ) ,

b o r d e r = c o l s [ i ] , c o l = c o l s [ i ] )
l i n e s ( 1 : Smax , exp ( predsRegMeansS ) , lwd =3 )
l e g e n d ( " t o p l e f t " , l e g e n d = b i o m e _ t r e e s $biomeName [ b i o m e _ t r e e s $ E c o r e g i o n == i ] , b ty = " n " , cex =1 )

}
mtext ( s i d e =1 , t e x t = " a b s o l u t e t r e e s p e c i e s r i c h n e s s " , cex =1 . 5 , l i n e =1 , o u t e r =T )
mtext ( s i d e =2 , t e x t = e x p r e s s i o n ( p a s t e ( " p r o d u c t i v i t y [ " , m∧ { 3 } ∼∼ ha∧ {−1 } ∼∼ y∧ {−1 } , " ] " ) ) ,

cex =1 . 5 , l i n e =1 , o u t e r =T , l a s =0 )
t h e t a m a t S

[,1] [,2] [,3] [,4] [,5] [,6] [,7]
[1,] 0.1933998 0.66151993 NA 0.22269353 0.2869328 0.3997394 0.25252600
[2,] 0.0575136 0.08968898 NA 0.08655817 0.1021997 0.1029933 0.06319427

[,8] [,9] [,10] [,11] [,12] [,13]
[1,] 0.24952554 0.65938680 -0.01961739 NA 0.276837 0.09878343
[2,] 0.08177586 0.02452337 0.03604797 NA 0.105047 0.18807178
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As a summary, we can plot the estimates and their 95%-con�dence interval for each ecoregion.
t h e t a m a t S ← a s . d a t a . f r a m e ( t h e t a m a t S [ , −c ( 3 , 1 1 ) ] )
co lnames ( t h e t a m a t S ) ← a s . c h a r a c t e r ( b i o m e _ t r e e s $biomeName [−c ( 1 0 ) ] ) # ’tundra’ excluded
rownames ( t h e t a m a t S ) ← c ( " t h e t a " , " s e " )
par ( mar = c ( 5 , 5 , 1 , 1 ) , l a s = 1 )
p l o t ( 1 : 1 1 , t h e t a m a t S [ 1 , ] , pch = 1 6 , y l im = c (−0.2 , 0 . 8 ) , y l a b = e x p r e s s i o n ( ha t ( t h e t a ) [ S ] ) ,

x l a b = " " , axes = F )
a b l i n e ( h = 0 , c o l = " grey " )
arrows ( 1 : 1 1 , u n l i s t ( t h e t a m a t S [ 1 , ] − 2 ∗ t h e t a m a t S [ 2 , ] ) , 1 : 1 1 , u n l i s t ( t h e t a m a t S [ 1 ,

] + 2 ∗ t h e t a m a t S [ 2 , ] ) , a n g l e = 9 0 , code = 3 , l e n g t h = 0 . 2 )
a x i s ( 2 )
a x i s ( 1 , t i c k = F , a t = 1 : 1 1 , l a b e l s = colnames ( t h e t a m a t S ) , l a s = 3 , l i n e = −2 )
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We see that in almost all ecoregions higher tree species richness is correlated with higher pro-
ductivity. We also see the common pattern of a quick decrease of a distinguishable diversity e�ect
beyond a few species (in tropical moist forests, “few” in this case means a few dozen, while in all
other systems “few” means less than 10).18

F Conclusion

The “global” relationship between “relative tree species richness” and productivity reported by
Liang et al. (2016) hinges on an analysis with several logical and technical �aws. Removing them
yields essentially a �at line and no such global relationship. It is entirely possible that there are
mistakes in the above analysis, and that is why we provide this document.19

This relationship is not globally consistent; rather, ecosystems vary substantially, but most show
a positive tree-species richness-productivity relationship. Analysing the data with a relative species
richness axis provides no bene�t or insight when compared to absolute species richnes analyses.
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