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Abstract11

Understanding how the metabolic rates of prokaryotes respond to temperature is fun-12

damental to our understanding of how ecosystem functioning will be altered by climate13

change, as these micro-organisms are major contributors to global carbon efflux. Ecological14

metabolic theory suggests that species living at higher temperatures evolve higher growth15

rates than those in cooler niches due to thermodynamic constraints. Here, using a global16

prokaryotic dataset, we find that maximal growth rate at thermal optimum increases with17

temperature for mesophiles (temperature optima . 45◦C), but not thermophiles (& 45◦C).18

Furthermore, short-term (within-day) thermal responses of prokaryotic metabolic rates are19

typically more sensitive to warming than those of eukaryotes. Given that climatic warming20

will mostly impact ecosystems in the mesophilic temperature range, we conclude that as21

microbial communities adapt to higher temperatures, their metabolic rates and therefore,22

carbon efflux, will inevitably rise. Using a mathematical model, we illustrate the potential23

global impacts of these findings.24

Introduction25

A general understanding of how individual organisms respond to changing environmental temperature26

is necessary for predicting how populations, communities and ecosystems will respond to a changing27

climate1,2,3,4. Because fundamental physiological rates of ectotherms are directly affected by environ-28
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mental temperature3,5,6, climatic warming may be expected to lead to ectotherm communities with29

higher metabolic rates on average3,7. How environmental temperature drives metabolic rates of prokary-30

otes (bacteria and archaea) is of particular importance because they are globally ubiquitous, estimated31

to comprise up to half of the planet’s global biomass8, and consume (respire) the majority of net primary32

production9,10. Therefore, climate-driven changes in prokaryotic metabolic rates are expected to signif-33

icantly alter ecosystem productivity, nutrient cycling, and carbon flux9,10,11,12,13,14. Indeed, increased34

carbon efflux has been observed in experimental measures of soil CO2 loss to warming15,16, as well as35

the responses of other microbial metabolic processes to increased temperature such as methanogenesis17.36

However, whether the short-term (timescales of minutes to days) thermal responses of prokaryotes can be37

compensated by acclimation (physiological phenotypic plasticity) or longer-term (timescales of years or38

months, years or longer) evolutionary adaptation18,19,20 is currently unclear. The most recent study to39

investigate this idea concluded that both short- and long-term responses of ecosystem-level heterotrophic40

respiration were similar21. However, this study quantified short-term responses by aggregating day-level41

carbon fluxes across sites, and did not have data on the direct respiratory contributions of prokaryotyes42

per se.43

The short term, or “instantaneous” response of metabolic traits of individual organisms to changing44

temperature (the intra-specific thermal response) is typically unimodal, with the thermal performance45

curve (TPC) of the trait increasing with temperature up to a peak value (Tpk), before decreasing as high46

temperature becomes detrimental to metabolic or cellular processes2,22 (Fig. 1C). The Tpk for maximal47

population growth rate (a direct measure of fitness, often called the thermal optimum) is expected to cor-48

respond to the typical thermal environment in which the organism’s population has evolved (the long-term49

response)22,23. The Hotter-is-Better (HiB) hypothesis posits that trait performance at Tpk (henceforth50

denoted by Ppk) is also expected to increase inevitably in a similar manner to the short-term intra-51

specific response, because of the positive temperature-dependence of rate-limiting enzymes operating at52

their thermal optimum (a thermodynamic constraint), i.e. Ppk increases with Tpk (Fig 1A)22,23,24. Thus53

this hypothesis essentially links the short term TPC of trait performance to the longer-term performance54

mediated by evolution. The HiB hypothesis is also implicit in the universal temperature dependence con-55

cept of the Metabolic Theory of Ecology (MTE)5,6,25. However, whether the HiB hypothesis holds across56

organisms and environments is a question that is still debated24,26,27. Deviations from a HiB pattern57

would indicate that thermodynamic constraints are compensated for by other mechanisms. In particular,58

an alternative hypothesis is that natural selection acts to override thermodynamic constraints, allowing59

peak trait performance and fitness to be, on average, equalised across different adaptation temperatures60

(Fig 1B)24. Intermediate scenarios are also possible, where adaptation of optimal trait performance or61

fitness is only partially constrained thermodynamically (Fig 1C). Moreover, all enzyme families have a62

hard upper bound on the temperature at which they retain their functional integrity (which evolution-63

ary changes cannot overcome), so very hot temperatures may in fact cause depressed maximal fitness64

(Ppk decreasing with Tpk). Indeed, the existence of thermal constraints leading to an upper limit of65

prokaryotic growth rates has been shown recently28,29. However a comparison of short- and long-term66

(HiB) responses of prokaryotic populations has never been made, nor the potential effects of responses67
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at different time-scales on ecosystem fluxes studied.68

Figure 1: Three alternative hypotheses for the short- vs. long-term responses of thermal
performance curves of a fitness-related metabolic trait in response to environmental warm-
ing. A. Hotter-is-Better: organisms adapt around a global, inter-specific, thermal constraint (black line,
Boltzmann-Arrhenius fitted to intra-specific curve peaks), such that the average intra-specific (short-term)
activation energy (ĒS) is statistically indistinguishable from the inter-specific (long-term) activation en-
ergy of the group of organisms (EL), and both are greater than zero. See methods for more details on
the the definition and estimation of ĒS and EL, and the statistical methods used to differentiate between
them. Note that each intra-specific TPC represents the short-term thermal response of each organism’s
population. Inset panel illustrates how this would look in an Arrhenius plot. B. Equalisation of fitness:
selection overrides thermodynamic constraints, such that trait performance at Tpk is on average the same
(EL = 0). Alternatively the same effect of EL = 0 may occur due to or thermodynamic constraints
on enzymes in fact restricting metabolic rate (and therefore fitness) at higher temperatures. C. Weak
biochemical adaptation: an intermediate scenario where EL > 0 but significantly less than ĒS. Panel C
also illustrates the the Sharpe-Schoolfield TPC model parameters (eqn. 1, Methods).

Here we build and analyse a global dataset of TPCs in bacteria and archaea to quantify general patterns69

in both the short-term (intra-specific) response, and to test whether the HiB hypothesis holds (long-term,70

inter-specific response) within and across taxonomic and functional groups adapted to different tempera-71

tures (Fig. 1). These data go far beyond the scope of previous tests of the HiB hypothesis with or without72

microbes24, covering practically the entire range of habitable global temperature niches (from bacteria73

isolated from Antarctic saline lakes at temperatures below 0◦C, to a strain of methanogenic archaea able74

to proliferate at 122◦C under high pressure) and the majority of the phylogenetic diversity of prokaryotes75

(spanning 9 bacterial phyla and the two major archaeal phyla, Euryarchaeota and Crenarchaeota; Fig.76

3). In total we compare 542 growth rate TPCs and an additional 54 metabolic flux TPCs, spanning 48277

unique prokaryotic strains.78

Results79

Adaptation To Culture Conditions80

First, we compared each strain’s thermal optimum (Tpk) with the temperature at which it was cultured81

(Tlab) to determine whether the TPCs reflect adaptation to growth temperature. For both bacteria and82

archaea, we find a strong and significant (p < 0.00001) association between Tpk and Tlab (Fig. S1; bacteria83

R2 = 0.91, archaea R2 = 0.96) indicating that these strains are generally well-adapted to their culturing84

temperature. In both archaea and bacteria data subsets the Tpk vs Tlab line deviates significantly from85

a slope of 1 (bacteria slope = 0.87 ± 0.04, archaea slope = 0.93 ± 0.05) because Tpk tends to fall below86
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culturing temperature at high temperatures (Fig. S1), suggesting a limit to thermal adaptation.87

Comparison of Short- and Long-term Thermal Responses88

Next, we tested the HiB hypothesis by comparing the short-term (intra-specific) and long-term (inter-89

specific) thermal responses (see Fig. 1; Methods). If there is a universal thermodynamic constraint, peak90

fitness (Ppk; rmax at Tpk) across strains’ TPCs should increase with their respective Tpks (parameter EL;91

Fig. 1) at the same rate as rmax would increase with temperature (parameter ES), on average, within92

single strain’s TPC. Our analysis relies on Ppk-Tpk pairs across strains because data within strains are93

largely lacking, and the HiB pattern is expected to apply across strains within monophyletic taxonomic94

groups (such as archaea and bacteria)24,30. Analysing this relationship across 416 bacterial and 8295

archaeal strains, we find that hotter is indeed better (HiB holds) across mesophiles (ĒS and EL are > 0,96

and their 95% CIs overlap; Fig 2 and Table 1). However, this result does not extend to thermophiles,97

where instead fitness is on average invariant with respect to temperature. Thermophiles have evolved98

specific adaptations to extreme temperature stress, such as mechanisms to cope with increased membrane99

permeability at high temperatures31 and thus adaptation to such niches may incur a fitness cost to100

thermophiles as seen in our results. This result is in concurrence with an investigation of the maximum101

growth rates of life on Earth, which found increases in microbial growth up to a peak before an attenuation102

of growth rates in warmer adapted organisms28,29.103

Table 1: Estimated mean short-term and long-term activation energies across archaea and
bacteria, and test of the HiB hypothesis. Estimated mean ES and EL values (95% CI ranges in
parentheses) for bacteria and archaea split by thermal niche (also see Fig 2). The last column indicates
whether or not the HiB hypothesis is supported.

Kingdom Thermal
Niche

EL ĒS EL > 0 ĒS ≈ EL HiB

Bacteria
Mesophile
(n = 264)

0.98 (0.75 – 1.25) 0.87 (0.82 – 0.93) TRUE TRUE TRUE

Thermophile
(n = 114)

-0.07 (-0.26 – 0.12) 0.85 (0.78 – 0.92) FALSE FALSE FALSE

Archaea
Mesophile
(n = 21)

0.97 (0.69 – 2.26) 0.60 (0.50 – 0.70) TRUE TRUE TRUE

Thermophile
(n = 60)

-0.09 (-0.21 – 0.17) 1.11 (0.95 – 1.28) FALSE FALSE FALSE

104
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Figure 2: Patterns of short- and long-term thermal responses of growth rate (fitness) for
archaea and bacteria. A and B: Activation energies (with 95% Confidence Intervals) from Boltzmann-
Arrhenius model fits (EL, blue triangle) compared to mean activation energy (ĒS, red square) of the intra-
specific (short-term) thermal responses. Distribution of all the ESs is also shown (orange points). C and
D: Arrhenius plots (x-axes inverted to aid visualisation) fitted to mesophile and thermophile sub-groups
separately within bacteria and archaea, respectively. That is, the lines (the long-term thermal responses)
are the Boltzmann-Arrhenius model fitted using weighted regression to mesophile and thermophile data
separately, after determining the breakpoint (Methods). The HiB hypothesis is best-supported for the
mesophile sub-group in both panels, while equalisation of fitness is best supported in the the thermophile
sub-groups (Table 1).

Variation in Thermal Sensitivity105

Under the MTE, the global (inter-specific) thermodynamic constraint is expected to center around106

0.65eV5,6. Mean intra-specific thermal sensitivities have been found to be very similar to this value,107

although the distribution is right-skewed with a median value of ∼0.55eV2. In contrast, we find that108

mean thermal sensitivities for both bacteria and archaea fall significantly above 0.65eV (Fig. 4, bac-109

teria ĒS = 0.88eV; archaea ĒS = 0.95eV). We observe the same right-skew in activation energies for110

prokaryotes as seen across other organisms and traits2. Even after accounting for this skew by taking the111

median instead of the mean, activation energy still falls significantly above 0.65eV (bacteria median =112

0.84eV, archaea median = 0.80eV; Fig. S2). Furthermore, we see a consistent pattern of median thermal113

sensitivity >0.65eV throughout the lower taxonomic groupings (Fig. 3A).114

To further understand these findings we also categorised the data into various groups based on func-115

tional traits (Fig. 3B). Again we find mean and median thermal sensitivity >0.65eV in the majority of116

functional groups, suggesting that this high E is a trait generally conserved across prokaryotic organisms.117
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Figure 3: Variation in thermal sensitivity among prokaryotic groups. Comparison of intra-
specific population growth rate activation energies (ĒS) across taxonomic levels (A) and functional trait
groupings (B). Points and error bars represent weighted mean and 95% CIs of ES for each group. Groups
shown are those with at least five data points, the number in brackets indicates the number of data points
from which ĒS was calculated for each grouping. The dotted line marks 0.65eV, the mean E previously
reported within the MTE framework. Grey triangles mark the median ES for each group.

Here we have focused on the TPCs (and activation energies) of population growth rate. However, to118

understand the implications of the short- and long-term thermal responses of prokaryotes for ecosystem119

functioning it is necessary to test whether these reflect the activation energies of underlying metabolic120

flux rates. To investigate this, we assembled another thermal response dataset (Methods) for metabolic121

fluxes recorded in prokaryotes and asked whether, on average, thermal sensitivity is equivalent for growth122
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rate and metabolic fluxes. We find that average intra-specific E values for growth rate TPCs were similar123

to, and statistically indistinguishable from the mean activation energy for metabolic fluxes (bacteria flux124

ĒS = 0.82eV; archaea flux ĒS = 1.01eV; Fig. 4A, see supplementary table S1 for a list of fluxes analysed).125

Furthermore, we compared both the prokaryotic growth rate and flux ES distributions, with yet another126

dataset (Methods) on thermal sensitivity of respiration in autotrophic eukaryotes. The results (Fig.127

4D) further support a lower thermal sensitivity of short term responses for eukaryotes than prokaryotes128

(ĒS = 0.67eV with CI = 0.63 – 0.72, median = 0.57).129

Figure 4: Differences in sensitivity (activation energy) of short-term thermal responses
across taxonomic groups. A. Comparison of the intra-specific thermal sensitivity (ĒS) for growth
and metabolic fluxes. CIs for growth rate thermal sensitivity fall within those for metabolic fluxes, and
each sit above 0.65eV (dotted line) for both archaea and bacteria (bacteria growth ĒS = 0.88eV, n =
416; bacteria flux ĒS = 0.82eV, n = 28; archaea growth ĒS = 0.95eV, n = 82; archaea flux ĒS = 1.01eV,
n = 20). B. Density plot of flux ES values for archaea and bacteria. C. Density plot of growth rate ES

values for archaea and bacteria. D. Density plot of ES values for respiration rate TPCs in autotrophs,
showing comparatively lower mean thermal sensitivity than those of the distributions for prokaryotes
(ĒS = 0.67eV, n = 381).

Potential Ecosystem-level Impacts130

Our results higher sensitivity of both short- (higher intraspecific activation energies) and long-term (higher131

interspecific activation energies – a HiB constraint) thermal responses in mesophilic prokaryotes may have132

profound implications for responses of ecosystem fluxes to climatic warming. To illustrate this, we built133

a simple mathematical model to calculate the potential change in the contribution of heterotrophs to134

ecosystem carbon efflux (Methods). Using our new estimates of ĒS and EL to parameterize this model,135

we calculate the impact of short- and long-term warming on the thermal response of carbon flux of136

model ecosystems that differ in composition of autotroph vs. heterotroph and eukaryote vs. prokaryote137

biomass. The results (Fig. 5) show that the difference in prokaryotic vs eukaryotic thermal sensitivities138

can substantially change the predicted increase in carbon efflux due to warming on the short- as well as139

long-term. For example, compared to the case where both prokaryotes and eukaryotes have the same140

short-term thermal sensitivity of 0.65eV (the assumption made by most current ecosystem carbon flux141

models32,33,34), using the actual difference in sensitivity that we have found (ĒS 0.65eV for eukaryotes vs.142

0.87 for mesophilic bacteria; Table 1; Figure 2), the flux increases by ∼8% with 10◦C short-term warming143

for a ecosystem composition of 50% heterotrophs (50% of which in turn are bacteria). This calculation144
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based on the average intra-specific activation energy is relevant to short-term increases in ecosystem145

fluxes without evolution or acclimation in response to, for example, temperature fluctuations from time-146

scales of minutes to days (10◦C is at the upper end of daily temperature fluctuations that organisms may147

typically experience35). When we consider the effects of longer-term warming (such as through gradual148

global climate change) on the prokaryotic sub-community using the inter-specific (evolutionary) thermal149

sensitivity, EL (0.98eV), we find that modelled ecosystem flux increases by ∼5% with 4◦C warming150

(again with 50% heterotrophs of which 50% are bacteria) compared to a baseline where the long-term151

thermal sensitivity is 0.65eV for all components of the ecosystem. The actual increase in flux may indeed152

be higher, but is dependent upon the ratio of prokaryotic biomass to eukaryotic biomass within the153

ecosystem, a quantity for which estimates vary widely8,13,36,37,38. In our model, each percentage point154

increase in prokaryotic biomass within the heterotrophic component causes a flux increase of 0.05−0.15%,155

depending on the quantity of prokaryotic biomass already in the system.156

Figure 5: Potential changes in climate-driven short- and long-term ecosystem carbon flux
due to difference in sensitivity between prokaryotic and eukaryotic thermal responses. A.
Heat map of % short-term increase in flux with 10◦C temperature increase of model ecosystems with
bacteria having a different activation energy on average than eukaryotes, relative to ecosystems with all
components having the same (0.65eV) average activation energy. The flux change is shown over a range of
ecosystem biomass compositions in terms of heterotrophs vs. autotrophs and bacterial proportion of the
heterotrophs. The scale of emergent activation energies and Q10s for the ecosystems with amplified flux
are also shown. B. Similar to A, but for long-term flux increase under a 4◦C warming scenario. Values
for the short- and long-term thermal sensitivity of bacterial thermal responses used in these calculations
are our estimated ĒS and EL respectively for mesophilic bacteria (Table 1). The mathematical model is
described in Methods.

Discussion157

Our finding of high (relative to eukaryotes) intra-specific thermal sensitivities (activation energies, ES)158

in prokaryotes is consistent with previous work on methanogenic archaea17 and cyanobacteria39, but159

has never been demonstrated across all major lineages of prokaryotes. In particular, Yvon-Durocher160

et al. 17 have argued that the high methanogen ES are expected to translate into an increased ecosystem-161

level methane production at longer temporal and spatial scales. Our results suggest how these two162

different scales of response may be related — the short-term responses may be coupled with a Hotter-163
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is-Better constraint which results in the flux at thermal optimum also increasing with (longer-term)164

adaptation. Moreover, this coupling across timescales is expected not just in methanogens, but across165

most major mesophilic prokaryotes, including those involved in aerobic respiration. The data do not166

allow us to determine the time-scale of the adaptation resulting in the HiB pattern, but numerous167

previous studies have shown rapid adaptation of prokaryotes to experimental warming conditions40,41,42.168

Due to this adaptive capacity, as global temperatures rise prokaryotes would be expected to respond to169

new environmental temperatures rapidly, in effect pushing them further along the global (inter-specific)170

HiB curve (Fig. 1A). Alternatively, species sorting may occur such that prokaryotes inherently better-171

adapted to higher temperatures take advantage of temperature increases. This would have the same172

overall effect because these prokaryotes would also effectively be further up the inter-specific temperature173

response curve (Fig. 2). In either case, under HiB, we can expect global warming to result in prokaryotic174

communities with higher metabolic rates on average. Thus overall, our results suggest that further175

production of greenhouse gases from the prokaryotic component of ecosystems is likely to increase in176

general, and at a greater rate than that by component eukaryotic organisms (Fig 5).177

While in general, we see a tendency towards high thermal sensitivity (ES) in prokaryotes, there are178

taxonomic subgroups within our dataset for which this is not the case (Fig. 3). For example, ĒS for179

mesophilic archaea as a whole does not deviate significantly from the MTE 0.65eV average (Table 1). This180

is largely because this subgroup is primarily comprised of strains from Halobacteria, which have thermal181

sensitivities significantly lower than 0.65eV (Halobacteria ĒS = 0.46; CI = 0.38 – 0.58; fig 3A). This is182

likely a result of their extremophilic niche imposing unusual constraints on their physiology (these archaea183

have been isolated only from high salinity lakes). In general, it may be harder to make generalisations184

about short- long-term thermal responses across taxa for archaea as a whole, because these prokaryotes185

are partly typified by their propensity to adapt to different types of extreme environments43. We also186

note that while the majority of heterotrophic bacteria in our dataset respire aerobically, there are a187

number of anaerobic strains, the majority of which were grown under various fermentation conditions.188

However, when we consider these groups of bacteria separately, we see no significant difference between189

their mean intra-specific thermal sensitivities (aerobic ĒS = 0.86, CI = 0.81 – 0.91, n = 221; fermentation190

ĒS = 0.86, CI = 0.77 – 0.96, n = 62). Ultimately, despite all this variation, we find that both, the short-191

term (intra-specific) and long-term (HiB hypothesis) amplification of metabolic rate holds true for the192

mesophiles (. 45◦C), a temperature range in which most of the biomass on the planet exists.193

For simplicity, when parametrising our ecosystem model we used ĒS and EG calculated from all of194

the mesophilic bacteria in the dataset, as we expect a huge amount of variation in the taxa present at195

the ecosystem scale. To expand this work further it may be possible to consider more specific situa-196

tions where certain prokaryotes may dominate in certain environments based on global biogeographic197

studies44. However, the majority of microbial taxa are known only from sequencing data45, for example198

Acidobacteria are thought to make up in the region of 50% of soil biodiversity46, yet very few strains199

have actually been cultured and therefore have TPCs available47. Thus in practice it may not be feasible200

to accurately parametrise this sort of model based on patterns of microbial biogeography and therefore,201

using a global average is appropriate.202
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We have focused on the ecosystem consequences in the face of global change, but our results also203

have implications for understanding of prokaryotic physiology. We are not aware of any previous work204

showing that prokaryotes differ systematically in their thermal sensitivity from eukaryotes. Therefore,205

further studies are needed to explore the mechanistic basis of this difference, and may reveal a major206

physiological transition mediated by an increase in cellular complexity as well as multi-cellularity in207

eukaryotes48,49. Also, our comparisons for growth rate and metabolic flux E are simply averages across208

strains. Direct within-strain comparisons of growth rate (a slower thermal response) and the more209

instantaneous metabolic flux TPCs will be needed in order to fully understand the coupling of positive210

intra-specific and inter-specific thermal responses we have found here.211

In summary, our results significantly deviate from current assumptions about the thermal sensitivity212

of heterotrophic respiration in ecosystems, and should be considered in ongoing efforts to model the213

impacts of climate change on ecosystem fluxes. More work needs to be undertaken to address whether214

intra- (short-term) and inter (long-term)-specific thermal responses are similarly conserved across other215

groups of organisms that are important for ecosystem function, such as fungi and insects in terrestrial,216

and phytoplankton and zooplankton in marine ecosystems.217

Methods218

Data Collection219

We compiled a dataset of published prokaryotic thermal performance curves (TPCs) by searching the220

literature for papers with these data and using digitisation software to collect the thermal performance221

point estimates. Candidate TPC data was identified via manual searches of google scholar and pubmed222

databases. Search terms such as ‘bacteria’, ‘bacterium’, ‘archaea’, ‘archaeon’, ’temperature’, ‘tempera-223

ture response’, ‘thermal response’, ‘growth’, ‘adaptation’, were used to find papers with response data224

particularly for growth rates. Later searches included terms such as ‘characterisation’, ‘isolation’, ‘nov.’,225

‘novel’, ‘gen.’, ‘sp.’, as it became clear that thermal responses were often tested in publications describing226

newly isolated species/strains. When presented as a response curve figure, ‘Plot Digitizer’ software50
227

was used to extract data points, including error bounds when reported. The ‘Taxize’ R package51 was228

used to standardise taxonomy of extracted data to the NCBI database. The papers were also manu-229

ally searched to collect data on growth conditions as well as other metadata where possible (historical230

lab growth conditions, sampling location). In instances where doubling rates or doubling times were231

reported, we used Doubling time td = ln(2)/µ to calculate the maximum specific growth rate. Raw data232

were normalised to rates per second and degrees Celsius for use in modelling comparisons. In total we233

collected 542 prokaryotic growth rate TPCs.234

Although we primarily collected growth rate data as a measure of fitness in order to test HiB, we235

additionally collected 54 TPCs covering various metabolic fluxes for comparison to growth rate TPCs.236

Our complete prokaryote dataset comprises 596 TPCs from 482 unique prokaryote strains across 239237

published studies.238

Finally, we compiled thermal response data for respiration rates in autotrophs from the literature using239
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the same methods for digitisation and data collation as for the prokaryote dataset. In total this autotroph240

dataset comprises 381 respiration rate TPCs from 140 unique autotroph species (98 vascular plants, 4241

mosses, 11 green algae, 22 red algae and 5 brown algae species).242

Biological replicates and pseudoreplicates243

We use prokaryotic “strains” to designate separate prokaryotic taxonomic entities with potentially dif-244

fering TPCs. If a single study provided multiple TPCs from the same prokaryotic strain under the same245

conditions, these were considered pseudoreplicates. In these cases, all data were collected and a single246

Sharpe-Schoolfield fit was computed for the combined set of points, yielding a single set of TPC param-247

eters. Where multiple TPCs were provided for the same strain under different growth conditions, these248

were considered as separate biological replicates, however in practice this is only the case for two replicates249

in each of two different strains in our dataset. Where TPCs were obtained from prokaryotes identified250

only to the species level (or higher), these were considered biological replicates as likely representing251

different strains of those species.252

Model Fitting253

To each TPC in the dataset, we fitted a modified Sharpe-Schoolfield model52 (eq. 1):254

B(T ) = B0
e

−E
k ·

(
1
T − 1

Tref

)

1 + E
ED−E e

ED
k

(
1

Tpk
− 1

T

) (1)255

Here, T is temperature in Kelvin (K), B is a biological rate, B0 is a temperature-independent metabolic256

rate constant approximated at some (low) reference temperature Tref, E is the activation energy in electron257

volts (eV) (a measure of “thermal sensitivity”), k is the Boltzmann constant (8.617× 10−5 eV K−1), Tpk258

is the the temperature where the rate peaks, and ED the deactivation energy, which determines the rate259

of decline in the biological rate beyond Tpk. We fit this model to individual TPCs and solve for T = Tpk260

to calculate the population growth rate at Tpk (Ppk) for each strain. Note that this has been reformulated261

from the model presented in the original paper, to include Tpk as an explicit parameter53.262

Each strain’s TPC has a potentially different Tpk and Ppk. Compiling these values across strains263

yields an inter-specific thermal response curve (Fig 1). We fit the Boltzmann-Arrhenius equation (eq. 2,264

essentially the numerator in eq. 1) to these peak values to calculate inter-specific activation energy.265

B = B0e
−E/kT (2)266

All Boltzmann-Arrhenius and Sharpe-Schoolfield model fitting was performed in Python with the267

NumPy package, using a least squares regression method to minimise the fits.268

Comparing Short- and Long-term thermal responses269

We determined whether Hotter-is-Better by testing whether the activation energies from intra- (short-270

term) and inter-specific (long-term) TPCs were (statistically) significantly different. For each intra-271
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specific curve we fitted the Sharpe-Schoolfield model (eq. 1) and extracted the intra-specific activation272

energy (ES), peak temperature (Tpk) and corresponding growth rate (Ppk) for each curve. TPCs without273

a peak are thus excluded from this analysis.274

To estimate EL we fitted the Boltzmann-Arrhenius model (eq. 2) to the Tpk and Ppk values estimated275

from the intra-specific thermal responses. To account for uncertainty in the original Sharpe-Schoolfield276

model fits to the intra-specific curves, we fitted Boltzmann-Arrhenius using a weighted regression (see277

accounting for uncertainty). In order to provide a comparison between intra- and inter-specific activation278

responses, we used bootstrapping to generate confidence intervals (CIs) around the mean in each case.279

To provide boostrapped CIs for EL from the modified Boltzmann-Arrhenius fits, the data was re-sampled280

with replacement 1,000 times, with the model re-fitted to this data each time and the CIs defined as the281

2.5th and 97.5th percentiles of E values extracted from these fits. ĒS was calculated as the weighted mean282

ES for the group (see supplementary methods), and CIs were taken as the 2.5th and 97.5th percentiles283

from the resultant distribution of ES values from a bootstrap of the weighted mean.284

We then determined whether the data was consistent with either of the three hypotheses (main text285

Fig. 1) by comparing the overlap of confidence intervals of the relevant E estimates. First, we tested286

whether ĒS was greater than zero (null hypothesis that the CI includes zero). Second, we tested whether287

EL was greater than zero (null hypothesis that the CI includes zero). Finally, if both ĒS and EL were288

positive, we tested whether they were significantly different to each other (null hypothesis, that the CIs for289

ĒS and EL don’t overlap). Under a HiB scenario, Ppk will increase with Tpk across strains, and according290

to MTE this is best quantified by a Boltzmann-Arrhenius model. As a result, the Boltzmann-Arrhenius291

activation energies from the intra- and inter- specific responses should be positive and any differences292

between them not statistically significant, i.e. the confidence intervals of ĒS and EL should overlap each293

other, but not zero. Alternatively, if growth rates are not constrained by thermodynamics and Ppk does294

not increase with temperature, then EL will be close to zero (CI for EL includes zero), and HiB can be295

rejected. Finally, in scenarios where thermodynamic constraints may be partially evident but somewhat296

overcome by adaptation, ĒS and EL will both be positive, but with ĒS being significantly greater than297

EL (i.e. ĒS > EL > 0)298

Accounting for Statistical Uncertainty299

Weighted means were used to account for uncertainty in Sharpe-Schoolfield point estimates when calculat-300

ing ĒS and when fitting inter-specific Boltzmann-Arrhenius curves. After performing Sharpe-Schoolfield301

fits we extracted the E and µpk point estimates as well as the covariance matrix. We then sampled302

1,000 times from a bivariate distribution accounting for the covariance, producing 1,000 model parameter303

combinations. We used these parameters to generate 1,000 different Sharpe-Schoolfield curves, providing304

a distribution of E and µpk from which we took the standard deviations (SDE and SDµ) as a measure305

of uncertainty. In some cases the Sharpe-Schoolfield fit did not produce a covariance matrix and these306

fits were excluded from further analysis.307

When combining E values across strains to calculate ĒS we, took weighted arithmetic means of E308

to account for uncertainty in the original fits, where Weight = 1/(SDE + 1). Similarly, when fitting309
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Boltzmann-Arrhenius, we apply a weighting to µpk where Weight = 1/(SDµ + 1).310

Applying these weightings does not alter the main results we obtain from this study in terms of whether311

the HiB hypothesis is accepted or not for different groupings, however we felt that it was important to312

acknowledge and account for error in the underlying Schoolfield fits so that our results were not skewed313

by poor parameter estimates from questionable fits, hence this step was included. Figure S2 illustrates314

the differences between ĒS calculated with and without a weighting – applying a weighting pushes ĒS315

down a little, likely due to high E values obtained from fits to lower quality data. In either case, with316

or without a weighting, ĒS falls significantly above the 0.65eV MTE average activation energy for both317

Bacteria and Archaea.318

Taxonomic and Physiological Groupings319

Pychrophiles and mesophiles inhabit low to medium temperature ranges, while thermophiles and hyper-320

thermophiles grow at much higher temperatures54. The distinction between mesophiles and thermophiles321

is usually defined relatively arbitrarily, with mesophiles often considered strains with thermal optima up322

to 45°C and thermophiles those with thermal optima of 55°C and above54. Corkrey et al. 28 found a peak323

in microbial growth rates at ∼42°C (mesophile peak) followed by an attenuation of maximum growth rates324

until a second peak at ∼67°C (thermophile peak), suggesting a biological transition between mesophiles325

and thermophiles.326

In order to determine whether it was appropriate to consider mesophiles and thermophiles separately,327

we performed a break-point analysis on our dataset using the ‘Segmented’ R package55. Segmented is328

not compatible with non-linear least-squares (nls) fitting, so this was performed with a linearised version329

of Boltzmann-Arrhenius, i.e. x ∼ y where x = 1/(kTpk) and y = log(µpk). As this process was merely330

to confirm whether it was appropriate to split the data into mesophiles and thermophiles as suggested331

by eye, it is not important that these linearised fits may give slightly different slope and intercepts to332

the weighted nls fits. Using this methodology we determined significant break-points for bacteria and333

archaea within our growth rates dataset at 40.48°C and 46.21°C respectively. These are similar to the334

∼42°C mesophile growth rate peak seen by Corkrey et al. 28 and were thus used as cut-off points for335

defining mesophiles and thermophiles in our analysis.336

In addition, archaea are typified by their adaptations to energetically demanding niches, while in337

contrast bacteria perform better in more “ambient” environments43. A major physiological difference338

between these taxa lies in their fundamentally divergent membrane structures. This affects these organ-339

isms’ abilities to maintain proton gradients and thus drive metabolism under different conditions43, a340

difference that may be particularly important for thermal performance. As such, we separate bacteria341

and archaea in our analysis as disparate organisms with divergent evolutionary histories.342

In order to classify prokaryotes by the energy generating metabolic processes that they use, we took note343

of the growth conditions used when initially digitizing the TPC data. For the majority of heterotrophic344

bacteria and archaea this was simply whether they were grown under aerobic or anaerobic (fermentative)345

conditions. However there are also a number of strains utilising more exotic metabolic processes such as346

methanogenesis, sulfur reduction, etc. In these cases we matched taxa against those able to utilise certain347
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metabolic reactions according to Amend & Shock 56 before manually checking the culture conditions in348

each study for the metabolites required for certain metabolic processes.349

We also categorised taxa by their status as potential pathogens. We matched taxon names against the350

database of host-pathogen interactions provided in Wardeh et al. 57 to understand whether each strain351

was potentially pathogenic, and what taxa they were known to infect.352

Ecosystem carbon flux model353

To quantify the effect of differences in activation energy of respiration between prokaryotes and eukaryotes354

on carbon flux, one can calculate the percentage increase in flux (Fx) of an ecosystem as,355

Fx =
FT+x

FT
,

where x is the temperature increase (at the end of a warming scenario), and FT and FT+x) are the fluxes356

at the two temperatures. Because ecosystem carbon flux at night (i.e. without photosynthesis) is the sum357

of autotrophic and heterotrophic respiration rates weighted by the biomasses of these compartments, we358

can re-write Fx as:359

Fx =

(1 − δ)caee
−Eae

k(T+x) + δ

(
βchpe

−Ehp
k(T+x) + (1 − β)chee

−Ehe
k(T+x)

)
(1 − δ)caee

−Eae
kT + δ

(
βchpe

−Ehp
kT + (1 − β)chee

−Ehe
kT

) . (3)360

Here, each compartment’s total flux contribution (identified by a subscript: autotrophic eukaryotes =361

ae, heterotrophic prokaryotes = hp; heterotrophic eukaryotes = he) is modelled as a Boltzmann-Arrhenius362

equation, with c a normalisation constant. Each compartment’s contribution is weighted by the biomass363

proportionality constants: δ is the proportion of heterotrophic biomass in the ecosystem, while β is the364

proportion of prokaryotic biomass within the heterotrophic component (so 1 − β is the proportion of365

non-prokaryotic heterotrophs such as fungi or insects). We do not use the Sharpe-Schoolfield model here366

because it does not apply to long-term thermal responses (Fig. 1), whilst for short-term responses most367

warming as well as temperature fluctuations are expected to occur within an “operational temperature368

range”, which excludes temperatures greater than Tpk (the heat-stress region)58. We do include any369

potential contribution of autotrophic prokaryotes (such as cyanobacteria), as these are not expected to370

provide a significant flux contribution to a typical terrestrial ecosystem.371

We then use eqn. 3 to calculate the percent change in ecosystem flux due to differences in activation372

energies of the three compartments (Eae, Ehp, and Ehe):373

Fx,2
Fx,1

,

where Fx,2 and Fx,1 are the warming-induced flux changes in ecosystems with and without differences in374

activation energies of the compartments, respectively (the value of the heat map in Fig. 4). That is, for375

Fx,1, all E values, i.e. Eau, Ehp and Ehe in Eq. 3 = 0.65eV. This is the assumption made by most current376

ecosystem carbon flux models32,33,34. For Fx,2, the differing activation energies were parametrised using377
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either the mean of the estimated Es for the short-term (intra-specific) or the long-term (inter-specific)378

TPCs (Table 1; Fig 2). For this we used estimates of EL and ĒS from mesophilic bacteria (long-term379

“evolutionary” EL = 0.98eV, short-term “instantaneous” ĒS = 0.87eV) only, because the archaea in our380

data are largely composed of strains adapted to extremophilic niches, which are largely irrelevant from a381

global warming perspective.382

We calculated the emergent E of the Fx,2 ecosystems (flux response to warming when prokaryotic and383

eukaryotic thermal sensitivities differ), which is the the average of activation energies for each ecosystem384

compartment weighted by its biomass proportion:385

E = (1 − δ)Eae + δ(βEhp + (1 − β)Ehe).

We also calculated the emergent Q10 of the Fx,2 ecosystems, as it is a widely used measure in climate

change models of carbon flux33,59:

Q10 = (Fx,2)
10
x .

We chose a warming magnitude x = 10◦C for short-term responses because this at the upper end (e.g.,386

generally, at higher latitudes) of the range of daily (over 24 hrs) fluctuations that organisms experience35.387

For long-term warming scenarios, we used x = 4◦C, the approximate upper end of the range for the year388

2100 projected by the IPCC60.389

The biomass proportions δ and β were varied to capture the effect of different ecosystem compositions.390

In a typical forest ecosystem, the contribution of autotrophic to heterotrophic (mostly soil) respiration391

has been estimated to be approximately 50% each36. This heterotrophic component would be comprised392

largely of prokaryotes and soil fungi biomass, the ratios of which have shown to vary widely depending on393

soil type and the experimental methodology used13. Here we vary the percentage of heterotrophs within394

an ecosystem (δ) between 25 – 75% and the percentage of prokaryotes within heterotrophs (β) between395

25 – 75% to generate a range of potential scenarios in Fig. 5.396
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