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Abstract 

Reverse gyrase (RG) is the only protein found ubiquitously in hyperthermophilic organisms, but absent from 

mesophiles. As such, its simple presence or absence allows us to deduce information about the optimal growth 

temperature of long-extinct organisms, even as far as the last universal common ancestor of extant life (LUCA). 

The growth environment and gene content of the LUCA has long been a source of debate in which RG often 

features. In an attempt to settle this debate, we carried out an exhaustive search for RG proteins, generating the 

largest RG dataset to date. Comprising 376 sequences, our dataset allows for phylogenetic reconstructions of RG 

with unprecedented size and detail. These RG phylogenies are strikingly different from those of known LUCA-

encoded proteins, even when using the same set of species. Unlike LUCA-encoded proteins, RG does not form 

monophyletic archaeal and bacterial clades, suggesting RG emergence after the formation of these domains, 

and/or significant horizontal gene transfer. Even more strikingly, the branch lengths separating archaeal and 

bacterial groups are very short, inconsistent with the tempo of evolution from the time of the LUCA. Despite 

this, phylogenies limited to archaeal RG resolve most archaeal phyla, suggesting predominantly vertical 

evolution since the time of the last archaeal ancestor. In contrast, bacterial RG indicates emergence after the last 

bacterial ancestor followed by significant horizontal transfer. Taken together, these results suggest a non-

hyperthermophilic LUCA and bacterial ancestor, with hyperthermophily emerging early in the evolution of the 

archaeal and bacterial domains.  

 

Introduction 

Understanding the nature of the last universal common ancestor of extant life (LUCA) is one of the most 

difficult, yet important problems in evolutionary biology. If we were able to determine the genes encoded by the 

LUCA, we could make important conclusions regarding the evolutionary trajectories of all living organisms, as 

well as make predictions about the environment in which the LUCA lived. However, deciphering phylogenetic 

relationships dating back billions of years is a process fraught with difficulty. Not least because continual 

mutation over such time periods saturates sequences, erasing earlier phylogenetic signals that may exist, but also 

because mechanisms such as horizontal gene transfer act to blur phylogenies, further decreasing our ability to 

resolve such ancient relationships. Hence, the field of early evolutionary biology is one which is prone to 

disagreements, even when considering similar datasets. A poignant example of such disagreement comes from 

the phylogenies of Reverse Gyrase (RG), the only known hyperthermophile-specific protein, ubiquitously 

encoded by the genomes of hyperthermophilic organisms and absent from mesophiles (1-4). Understanding the 

evolutionary history of RG is important as the presence or absence of this gene in ancestral genomes (such as the 

LUCA) would allow us to infer a crude optimal growth temperature for these long-extinct species. The presence 

of reverse gyrase appears to be incompatible with mesophily, and, conversely, the absence of reverse gyrase 

appears incompatible with hyperthermophily. Thus, the presence of a gene encoding RG would infer a 

hyperthermophilic or thermophilic lifestyle excluding the option of a mesophilic lifestyle, and the absence, a 

mesophilic or moderately thermophilic growth condition, to the exclusion of hyperthermophily. This predictive 

ability is a powerful tool in evolutionary biology, where the optimal growth temperature of long-extinct 

organisms plays an important role in understanding genome evolution (e.g. “thermoreduction” (5) ); protein and 
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RNA evolution (6, 7) etc. In order to make inferences about the presence or absence of reverse gyrase in 

ancestral organisms, it is therefore vital to have a robust phylogeny for RG. However, the limited genetic data for 

hyperthermophilic organisms has restricted our ability to make such generalisations, and the small body of 

literature regarding RG evolution seems to flip-flop between the presence and absence of RG in LUCA. 

 

Early analyses for the presence of RG were carried out experimentally by looking for positive supercoiling 

activity in cell lysates (8, 9). Though this allowed the identification of new RG-encoding species, these early 

experiments failed to detect RG in bacteria (and some archaeal species) due to the presence of the antagonistic 

DNA gyrase (10). Later, the discovery of RG activity in bacteria (namely in the Thermotogales) suggested that 

RG may be a more ancestral protein than previously thought, potentially evolving before the divergence of the 

bacterial and archaeal lineages (11). Even at this early stage in the absence of sequence data, the 

presence/absence of RG in the LUCA became an important factor in unravelling the nature of the ancestral life 

on earth (12). It wasn’t until sequence data for RG started to accumulate that phylogenetic analyses could be 

carried out. The first published phylogeny for RG included 13 sequences, and did not resolve the monophyly of 

the bacterial and archaeal domains (13). This result suggested that RG could not have evolved solely by vertical 

descent in the two domains, casting doubt over its presence in the LUCA. A later analysis was able to recover 

the bacterial and archaeal monophyly by using a dataset of 32 RG sequences; however, even then the domain 

separation was only weakly supported, and the bacterial tree did not reflect a canonical 16S phylogeny leading 

the authors to hypothesise an Archaea-to-Bacteria transfer for RG (4). Subsequently, another group was again 

able to recover the bacterial-archaeal domain separation in a phylogeny of only 15 sequences (2). Although these 

monophyly-recovering analyses suggest the direct descendance of RG from the LUCA, the datasets used were 

small and the intra-domain tree topologies were not as would be expected from an ancient protein evolving 

independently in the two domains. The most complete RG phylogeny to date formed part of a larger study 

searching for proteins present in the LUCA. Here, a dataset of 97 sequences identified RG as a candidate LUCA 

protein due to the monophyly of the bacterial and archaeal domains recovered in their analysis, prompting the 

authors to conclude that the LUCA was likely a hyperthermophile (14). Unfortunately, the topology of the 

recovered tree was not analysed in-depth and upon closer examination it is clear that this phylogeny suffers the 

same problems observed previously, that is, the branch between Archaea and Bacteria was rather short and the 

clades produced in the analysis are atypical and do not conform to the canonical 16S or universal protein 

phylogenies (tree reproduced in SI Fig. 1). Therefore, the conclusion that RG was encoded by the LUCA is 

supported weakly, at best. 

 

With the quantity of genetic data increasing exponentially, and significant effort being made to sequence the 

genomes of archaeal species (many of which are hyperthermophiles), we thought it important to update the 

phylogeny of RG, and the evolutionary conclusions this can achieve. Using bioinformatics techniques, we reveal 

376 RG sequences from 247 organisms across the bacterial and archaeal domains. Phylogenetic reconstruction of 

these sequences does not resolve the monophyly of the two domains, but rather reveals multiple potential 

horizontal transfer events. These results suggest RG was not present in the LUCA, but rather evolved after the 
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divergence of the lineages leading to the LBCA and LACA. We therefore conclude that LUCA was a mesophile 

or moderate thermophile, with hyperthermophily evolving later, possibly before the emergence of the LACA. 

 

Materials and Methods 

Generation of Reverse Gyrase dataset 

The 19 Reverse Gyrase sequences available in the Swiss-Prot database (15) were downloaded (July 2018) and 

aligned using MSAProbs v0.9.7 (16). The alignment was used to build a hidden Markov model (HMM) 

representative of confirmed RG proteins, using HMMER v3.1b2 (17) which was subsequently used as a query 

for a HMM search against the non-redundant protein database (downloaded 17 July 2018).  

Hits were limited by a strict E-value cutoff of 10-100, and then aligned to identify hits which encode both a 

helicase and topoisomerase domain in a single amino-acid sequence (as per all RG sequences (18)). Alignments 

were viewed in Geneious 11.0.4 (https://www.geneious.com). A dataset of 371 putative RG sequences was 

recovered. A second search iteration (using all 371 sequences in generation of the query HMM) did not reveal 

any new RG sequences, and recovered the entire RG dataset. 

 

Split RG sequences 

Known split RG sequences had to be added to the dataset manually as concatenations. To confirm the nature of 

split RG sequences, we used the entire output of the HMMer search to generate a simple phylogeny - alignment 

with ClustalW (19) and tree construction with Fasttree v2.1.9 (20), both performed on Galaxy@Pasteur (21) - to 

separate RG-encoding sequences from those of topoisomerase and helicase sequences. Sequences present in this 

RG clade, but excluded by our alignment-based hit-refining step were extracted from the tree, and themselves 

aligned with the 19 Swissprot RG sequences. These sequences indeed included the split RG sequences of the 

Nanoarchaeota and Methanopyrus species as well as truncated sequences (e.g. helicase-domain fragments of 

Thermotoga maritima RG used in structural analyses – 3OIY, 3P4Y, 3P4X), partial RG sequences recovered 

from metagenomic studies (e.g. KJR71718 from Vulcanisaeta sp. AZ3 and PSO07942 from Candidatus 

Marsarchaeota G2), and potential pseudogenisation and/or sequencing errors (e.g. WP_082398367 and 

WP_082398368 from Aeropyrum camini are encoded by two adjacent ORFs overlapping by 4bp which are out 

of frame by a single base). Potential new split RG sequences were also recovered in this analysis through 

visualisation of alignments in Geneious 11.0.4.  

 

RG sequence and species analyses 

Sequence logos were generated using WebLogo 3.6.0 (22), and structural conservation mapping carried out with 

ConSurf 2016 (23). 
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Growth temperatures of RG-encoding organisms were obtained from BacDive (24) when possible, otherwise 

original research papers were sourced. 

 

Phylogenetic tree construction 

Complete sequences corresponding to these Reverse Gyrase hits were downloaded, and again aligned with 

MSAProbs. Phylogenetically informative regions were selected using BMGE v1.12 (25), substitution model 

selected with ModelFinder (26) and phylogenetic trees were generated using IQ-TREE v1.6.6 (27). Bootstrap 

analysis was performed using ultrafast bootstrap approximation (1,000 replicates). Confirmation of trees was 

performed with RAxML v8.2.11 (28), and MrBayes v3.2.6 (29). Trees were visualised with iTol 4.2.3 (30). 

Where phylogenies have concentrated on specific groups and/or particular groups of sequences have been 

removed from phylogenies, the reduced datasets were re-aligned, gaps removed, substitution model selected, and 

trees re-generated. 

 

Results 

Generation of Reverse Gyrase dataset 

We screened the non-redundant protein database (downloaded 17 July 2018) for reverse gyrase sequences using 

an HMM built from the 19 Reverse Gyrase sequences available in the Swiss-Prot database.  

The presence of helicase-like and topoisomerase-like sequences in our RG HMM (RG is a fusion between a SF2-

like helicase domain and a Topoisomerase 1A domain (18)) resulted in the overwhelming presence of helicase- 

and topoisomerase-domain containing proteins in our search results, only a subset of which are RG sequences. 

Thus, hits were limited to those sequences which encode both a helicase and topoisomerase domain within a 

single amino acid sequence, representing 371 sequences in our dataset. Known RG sequences encoded by split 

genes e.g. those of Methanopyrus kandleri (31) and Nanoarchaeum equitans (32) were removed by this process 

and thus it was necessary to manually re-added these sequences to the dataset in a concatenated form taking the 

dataset to a total of 376 sequences. We were able to confirm the nature of these as split RG sequences (rather 

than distinct helicase and topoisomerase proteins) by their phylogenetic relatedness to known RG sequences (SI 

Fig. 2). 

 

Interestingly, these analyses also revealed several potential split RG sequences previously unidentified e.g. 

protein pairs from Aeropyrum camini, Candidatus Kryptonium thompsoni, Desulfurococcales archaeon 

ex4484_217, and Nitrososphaera sp. (SI Fig. 3). However, of these sequences only the ORFs encoded by 

Desulfurococcales archaeon ex4484_217 are non-overlapping, thus, while recent gene splits cannot be ruled out, 

it is likely that the other pairs may be the result of sequencing errors.  
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Biochemical data will be necessary to elucidate whether potential split RG sequences code for functional 

enzymes. Due to the unknown nature of these sequences they were not added to our RG dataset, thus the final 

RG dataset contains 376 sequences. 

  

Analysis of RG sequences 

The 376 putative RG sequences originate from 247 unique species (with intra-species variant sequences 

potentially arising from gene duplications and/or differences in start site annotation etc.). Alignment of the 

amino acid sequences reveals an average pairwise sequence identity of 34.2% across the entire dataset, with 

known helicase and topoisomerase motifs well conserved (SI Fig. 4). Mapping the degree of sequence 

conservation observed at each position in our multiple sequence alignment onto the structure of the RG protein 

from Thermotoga maritima pdb:4DDT (33) (identical results obtained with mapping to the RG structure from 

the archaeon Archaeoglobus fulgidus - pdb:1GKU (34)) reveals a high level of conservation within both the 

helicase and topoisomerase domains, with less conservation observed at exterior protein regions (Fig. 1a). 

Though this result is not hugely surprising considering the requirement of both domain activities for RG activity, 

it does suggest that our dataset is likely composed of true reverse gyrase proteins. 

 

Species encoding RG 

We were able to obtain information on the optimum growth temperatures of 174 of the 247 species encoding 

RG. As observed previously, almost all organisms encoding RG are hyperthermophiles or extreme-thermophiles, 

with 60% of the species in our dataset having an optimum growth temperature above 75°C and 89% having an 

optimum growth temperature above 65°C. Although difficult to confirm, we believe this dataset includes all 

hyperthermophilic organisms for which genome sequences are available. Thus, our data reaffirm the previous 

observation that RG is encoded by the genomes of all hyperthermophiles (1). 

It is interesting to note that the archaeal species encoding RG tend to have significantly higher optimal growth 

temperatures than the bacterial species (Fig. 1b). The average optimal growth temperature for RG-encoding 

archaea is 84.3°C, whereas it is only 71.4°C for bacteria. This is further reinforced by the fact that 83% of the 

archaeal species with RG have optimum growth temperatures above 75°C, in contrast with only 21% of bacterial 

species. 

In addition to extreme thermophiles, our search also gave hits to RG sequences in 5 moderate thermophiles with 

optimum growth temperatures below 65°C: Thermodesulfovibrio aggregans (60°C (35)); Nitratiruptor tergarcus 

(55°C (36)); Lebetimonas natsushimae (55°C (37)); Caminibacter mediatlanticus (55°C (38)); Nautilia 

profundicola (40°C (39)). The presence of RG in N. profundicola has been described previously and is likely an 

adaptation to short-term exposure to elevated temperatures in hydrothermal vent environments, with RG 

expression increasing 100-fold during temperature stress at 65°C (40). As Nitratiruptor tergarcus, Lebetimonas 

natsushimae and Caminibacter mediatlanticus were also isolated from the walls of active hydrothermal vents, 

similar adaptive mechanisms may explain the presence of RG in these species. 

 

Phylogenetic analysis of RG dataset 
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In order to investigate the evolutionary history of the RG protein as a whole, we used our entire RG dataset to 

generate a single phylogenetic tree. Due to the presence of non-informative residues in our alignment (e.g. an 

intein, difference in in silico start site prediction, poorly conserved residues etc), it was important to process the 

dataset to remove such positions. Trimming the dataset with BMGE resulted in an alignment of 571 positions. 

We were initially concerned that such severe trimming could remove important data from the alignment and 

decrease branch lengths in resulting phylogenies (41), thus the analyses were repeated with only light trimming 

(removing only 17% of positions) using Noisy (42). The resulting tree resolved similar clades with similar 

relative branch lengths to that generated with BMGE (SI Fig. 5 vs SI Fig. 6). 

The first feature that is clear to note in our complete RG phylogeny is that the bacteria and archaeal sequences 

are not monophyletic (Fig. 2). The bacterial sequences split into 3 different clades, as do the archaeal sequences. 

 

This is in direct contrast to that which would be expected if RG had emerged in a common ancestor of bacteria 

and archaea (i.e. the LUCA), and evolved independently since the divergence of the bacterial and archaeal 

lineages. In order to illustrate this contrast, we collected the sequences of two universal marker proteins (rpoB 

encoding the RNA polymerase β-subunit, and EF-G/aEF-2 encoding translation elongation factor G), as well as 

the 16S rDNA from the RG-encoding species recovered in our original RG search. These datasets were used to 

generate phylogenetic trees in a manner identical to that used for the RG dataset. In contrast to the RG 

phylogeny, these datasets show a clear monophyletic separation of the bacterial and archaeal species (Fig. 3, 16S 

in SI Fig. 7). This is exactly as would be expected for sequences which diverged before the appearance of the 

LACA and the LBCA (i.e. sequences present in the LUCA). 

 

Perhaps more strikingly, the lengths of branches separating the bacterial and archaeal species are clearly 

different between our RG phylogeny and those of our universal marker protein phylogenies (Fig. 3, SI Fig. 7). 

The very long branch lengths displayed by our universal marker proteins are in agreement with the idea that the 

tempo of evolution was much higher during the period between LUCA and the specific ancestors of Archaea and 

Bacteria, decreasing later on during the diversification of these two domains (43, 44). This results in the 

formation of two very divergent versions of universal proteins in Bacteria and Archaea, separated in 

phylogenetic trees by a very long branch. In contrast, the RG phylogenetic tree has much shorter inter-node 

branch lengths, inconsistent with such an evolutionary scenario. This result indicates that archaeal and bacterial 

RG do not form two distinct versions, and thus likely diverged from each other when the tempo of evolution had 

already slowed down i.e. shortly before or after the formation of the two prokaryotic domains. When combined 

with the polyphyletic nature of the bacterial and archaeal RG sequences, it becomes clear that RG must have 

evolved after the time of the LUCA. This result is in agreement with that observed in earlier RG phylogenies (4, 

13), but contrasts with more recent reconstructions (2, 14). 

 

Crenarchaeal RG duplication 
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An oddity in RG sequences is observed in a large group of Crenarchaeota, including the well-studied 

Sulfolobales. Here, RG has undergone a gene duplication, and this duplication is clearly represented in our RG 

phylogenetic tree where the two paralogs form two distinct clades (Fig. 2). Additionally, it is apparent from in 

vitro and in vivo experiments that the two RG paralogs have diverged in function (45, 46), with non-

complementary activities (and neither being essential in Sulfolobus islandicus (47) . For simplicity, we refer to 

these RG paralogs by their nomenclature in Sulfolobus species i.e. TopR1-like and TopR2-like. TopR1 has been 

reported to function as a classical RG, exhibiting ATP-independent topoisomerase activity and DNA 

renaturation at high temperature; whereas the function of TopR2 is less clear, seemingly exhibiting high levels of 

ATP-dependent supercoiling at temperatures below those usually required for cell division (45). In order to 

analyse whether this divergence in activity was mirrored by changes in the RG amino-acid sequence, we used 

datasets limited to each paralog to generate alignments of TopR1-like and TopR2-like proteins. Comparison of 

these alignments with each other, and with that generated using the complete RG dataset reveals that all of the 

conserved motifs (both helicase and topoisomerase domain motifs) are present in both TopR1-like and TopR2-

like sequences, as well as the active site tyrosine. Despite the similarities, we observed a notable difference in the 

second putative zinc finger motif of RG (Zn2) of the Crenarchaeal paralogs. The Zn2 motif is conserved in only 

62% of our RG sequences, however, it is strictly conserved among all TopR2-like sequences. In contrast, only 

35% (23/65) of TopR1-like sequences encode the second cysteine in this CxxCx9-11CxxC motif, with around half 

of those (11/23) containing additional inserts within Zn2. This motif has been shown to be important for DNA 

binding and positive supercoiling, but not for relaxation of negative supercoils or for ATPase activity (33, 48) 

and thus may explain the differences in processivity and function of these two enzymes.   

Due to the apparent functional divergence of TopR1-like and TopR2-like proteins, as well as divergence of 

TopR2-like proteins from the canonical RG functionality, we chose to remove these sequences from our RG 

phylogeny. Not only could the different evolutionary trajectory of TopR1-like and TopR2-like proteins alter the 

tree structure (e.g. due to long-branch attraction artefacts), TopR2-like proteins do not seem necessary for 

growth at high temperature, and thus are not informative as to the hyperthermophily of ancestral species. 

Removal of these sequences did not resolve the monophyly of the bacterial and archaeal domains, nor did it 

increase the inter-domain branch lengths (Fig. 4, SI Fig. 8). Despite having minimal impact on tree topology and 

thus on our conclusions regarding RG presence in LUCA, we chose to carry out subsequent analyses without 

TopR1-like or TopR2-like proteins. 

 

Domain-specific RG phylogenies 

The absence of RG in LUCA suggests that the protein had to have emerged in either the lineage leading to the 

LACA (or in a more recent archaeal group), or in the lineage leading to the LBCA (or in a more recent bacterial 

group), with horizontal gene transfer spreading RG to the second domain. These two scenarios lead, a priori, to 

hypotheses testable by further phylogenetic analyses: if RG evolved in the lineage leading to the LACA, an RG 

phylogeny produced using only archaeal sequences should preserve the canonical archaeal taxonomic groups, 

whereas the inter-domain HGT required to introduce RG into the bacterial domain would likely not produce a 

typical bacterial taxonomy (and vice versa). 
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In order to test this hypothesis, we generated RG datasets containing only the 125 archaeal RG sequences 

(excluding TopR1-like and TopR2-like sequences), or containing only the 118 bacterial sequences (Fig. 5, SI 

Fig. 9, 10). These new datasets were then reanalysed in the same manner as the entire RG dataset. 

 

The archaeal RG phylogeny resulting from this analysis resolves into separate clades rather congruent with the 

consensus archaeal phylogeny but with several unexpected positions (Fig. 5). All group I Euryarchaeota 

(Thermococcus, Methanococcus, Methanobacteriales) group together, with the exception of Methanopyrus 

kandleri which is known to be fast evolving and difficult to position in the archaeal tree (49). Methanopyrus 

kandleri and three RG from Korarchaea (other fast evolving archaeal species) branch at the base of a clade 

grouping Euryarchaea group II (Aciduliprofundum and Archaeoglobales). A RG from a candidatus 

Bathyarchaeon branches within group II archaea, suggesting either contamination of this metagenome or lateral 

gene transfer from a group II euryarchaeon to a Bathyarchaeon.  Two other bathyarchaeal RG branch with a 

Thaumarchaeon and two candidatus Caldiarchaeum subterraneum. This grouping is consistent with the 

monophyly of the BAT (Bathyarchaea, Aigarchaea, Thaumarchaea) clade observed in most phylogenetic 

analyses (50, 51). However, in the RG phylogeny, this BAT clade branches within Crenarchaeota, reminiscent of 

the TACK grouping recovered in previous phylogenies (52). Another unexpected position is that of the 

Marsarchaeota that usually branch as sister group of Crenarchaeota in phylogenetic analyses (53), and that 

branch within Euryarchaea in the RG tree, together with a single Korarchaeota and Nanoarchaea (also fast 

evolving species and thus difficult to place phylogenetically).  It is unclear if these anomalies are due to some 

gene transfer events between Archaea (from Crenarchaea to archaea of the BAT group and from Euryarchaea to 

Marsarchaeota) or from the low resolution of the RG tree at the interphylum level (branch support for these 

spurious clades is weak). Intriguingly, the archaeal phylogeny is perhaps better resolved in RG trees where 

bacterial sequences are present – Fig. 4, a full RG tree (without TopRG1 or TopRG2-like sequences) reveals 

Marsarchaeota located in their canonical position close to the Crenarchaeota and the BAT group distinct from 

Crenarchaeota. These results are further difficult to interpret since there is no consensus to the position of the 

root of the archaeal tree (54, 55), and thus no ‘true’ phylogeny to which we can compare RG evolution. 

Regardless, the clear-cut separation between Crenarchaeota and Euryarchaeota (Fig. 2, 4; SI Fig. 1) suggest that 

RG was introduced into the archaeal domain before their divergence. It is unclear if RG was already present in 

the LACA, though the recovered divergence of the Thaumarchaeota and Bathyarchoaeta from the Crenarchaeota 

and Euryarchaeota might suggest this to be the case. More sequences from basal archaeal groups (e.g. 

Thaumarchaeota and Bathyarchaeota), as well as under-represented groups (e.g. Nanoarchaeota and 

Korarchaeota) will help to strengthen the archaeal RG tree, and allow more unambiguous extrapolation to the 

LACA. 

 

Notably, the bacterial RG phylogeny follows a much more random pattern of clade separation than the archaeal 

one. This is exemplified by the Thermotogales and Aquificales, where members of these orders can be seen in 4 

and 6 separate clades, respectively (Fig. 5). Moreover, the major clade of Aquificae and that of the 

Thermodesulfobacteria are separated by quite some distance, with many other clades branching between them. 

This result is very different from that observed previously with 16S phylogenies (SI Fig. 7), and also with our 
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phylogenies based on universal proteins, where the Aquificae and Thermodesulfobacteria are closely related 

groups. Furthermore, the Thermotoga form a clade together with the Firmicutes – a branching which is not 

unreasonable; yet the very closely related Pseudothermotoga form a clade within an Aquificae sub-group. 

Similarly to the Archaea, no universally accepted Bacterial phylogeny is available, and thus comparing the order 

of bacterial clades resolved with RG is difficult. However, it is clear that the bacterial RG phylogeny does not 

even conform to canonical taxonomy, and thus is likely highly influenced by gene transfer events. 

 

Taken together, these results suggest that RG has evolved mostly vertically in the Archaea before the divergence 

of Euryarchaea and Crenarchaea, partly preserving the evolutionary history of the Archaea within its sequence. 

The evolution of RG in the bacteria has not followed such a pattern of vertical inheritance, rather several 

horizontal transfer events have resulted in the movement of RG within the bacterial domain. 

 

Evidence for horizontal transfer of RG 

The dataset of bacterial RG proteins shows further evidence of HGT at the level of individual species or genera. 

For example, some members of the Aquificae (including Aquifex aeolicus and Hydrogenivirga sp. 128-5-R1-1) 

encode two copies of RG proteins. In these cases, one of the RG copies is most closely related to other RG 

proteins encoded by Aquificales; however, the second RG appears most closely related to that of 

Thermodesulfobacteria (SI Fig. 8). If these two RG copies had arisen by duplication within an ancestor of 

Aquifex and Hydrogenivirga, we might expect the two proteins to be most closely related to each other rather 

than to RG of other species. Instead, it appears that the second RG copy has arisen by HGT from an ancestor of 

Thermodesulfobacteria. Alternatively, the two RG sequences could have arisen by duplication within an ancestor 

of Aquificales, and then each transferred independently to other organisms, thus disrupting the expected tree 

topology. Either way, it is clear that HGT has played a significant role in the evolution of RG in these groups. 

Our RG phylogeny also confirms previously observed evidence for HGT of RG. For example, the inter-domain 

transfer from a Crenarchaeon to an ancestral Kryptonia bacterium (56), and the non-canonical position of some 

Dictyoglomus species suggesting transfer from a Fervidobacterium (57) (SI Fig. 8). 

 

Rooting of the RG phylogenetic tree 

The rooting of the reverse gyrase tree could potentially bring new arguments in favour of specific scenarios for 

the origin of RG. If RG initially originated in Archaea and was present in this domain before the diversification 

of Euryarchaea and other Archaea, the tree should be a priori rooted in the archaeal domain. RG is thought to 

have arisen from a gene fusion event between a helicase and a topoisomerase 1A domain, thus we expect that 

both helicase- and topoisomerase 1A-containing proteins could act as an appropriate outgroup to root the 

archaeal tree. We selected the topoisomerase domain since its larger size made it a more appropriate candidate 

for rooting the archaeal tree. We used topoisomerase sequences with a known phylogenetic relationship taken 
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from Forterre et al. 2007 (58). Including these sequences with our dataset of RG sequences (excluding the 

TopR1 and TopR2-like sequences) produces a tree with three well separated clades corresponding to RG, 

Bacterial Type IA DNA topoisomerases (the orthologues of the Escherichia omega-protein), and archaeal type 

IA DNA topoisomerases (also often annotated as DNA topoisomerase III). In this tree, the RG turned out to be 

rooted in one of the bacterial RG clades (SI Fig. 11). The same rooting was obtained with bacterial or archaeal 

Topo IA alone (SI Fig. 12), suggesting that RG may have emerged within an ancestral bacterial group. This 

bacterial group consists of Thermodesulfobacteria, Aquificae, and Thermotoga species; often represented as 

deeply branching bacteria (Colman et al. 2016). Interestingly, despite the rooting of RG within a bacterial clade, 

the archaeal phylogeny is still congruent with canonical archaeal trees. This result suggests that RG was indeed 

present very early in the history of archaea, possibly in LACA, but surprisingly also suggests that RG might have 

been also present very early in some Bacteria, and transferred to an ancestral archaeal lineage. It is worth noting 

that this rooting in a bacterial RG clade was lost when the Crenarchaeal TopR1-like proteins were included in 

the analyses (SI Fig. 13), with the RG root falling between a bacterial and archaeal clade. If either of these 

rootings were confirmed in future analyses, one could imagine evolutionary scenarios to explain them. For 

instance, RG could have originated in a subgroup of Bacteria (e.g. an ancestor of Thermodesulfobacteria) and 

later transferred to the archaeal lineage before the emergence of LACA (at the very least, before the divergence 

of the Crenarchaeota and Euryarchaeota, see above), giving a bacterial rooting. Alternatively if RG originated in 

the archaeal stem lineage (between the LUCA and the LACA), it could have been transferred from a member of 

this lineage to a subgroup of Bacteria before the LACA, giving a root between bacterial and archaeal clades. 

Notably, both of these scenarios would imply that the LBCA emerged before the LACA, a possibility which, to 

our knowledge, has not been considered up to now. However, considering the large distance between RG and the 

outgroup sequences, and the variability of rooting obtained depending upon the RG dataset selected, the above 

scenarios should be interpreted with much caution. 

 

Discussion 

 

The work presented here strongly suggests the absence of RG in the LUCA since the archaeal and bacterial RG 

do not form two monophyletic clades in our phylogenetic analyses. Furthermore, the short branch length 

between any inter-domain clades of our phylogenies (Fig. 4) indicate a period of divergence inconsistent with the 

tempo of evolution between LUCA and the common ancestors of Archaea and Bacteria; the branches between 

the different archaeal and bacterial clades are all very short, suggesting the existence of a single version of RG. 

In contrast, using the same set of species, we have shown here that not only do Archaea and Bacteria form two 

monophyletic clades in phylogenies of markers known to be present in LUCA such as EF-G, RNA polymerase 

and 16S rRNA, but also that the branch between these two clades is very long (Fig. 3). Using a different set of 

species, we also systematically observed long branches separating Archaea and Bacteria in the phylogenies of 36 

universal proteins (most likely present in the LUCA) except for a handful of very small ribosomal proteins (51). 

Our RG results are in contradiction with those of Weiss and colleagues who recently concluded that RG was 

present in LUCA in their tentative reconstruction of the LUCA proteome (14) (SI Fig. 1 vs SI Fig. 6). This could 
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be explained by the difference in the number of sequences used in the two analyses (347 and 97, respectively) 

and the fact that Weiss and colleagues do not include the branch length between the Archaea and Bacteria as a 

criterium to conclude that a protein was present or not in the LUCA. This branch was also very short in the RG 

tree of Weiss and colleagues (SI Fig. 1) and we could not ourselves recover the monophyly of Archaea and 

Bacteria using their dataset and tree construction method, suggesting that the monophyly versus paraphyly of 

Archaea and Bacteria is sensitive to some parameters of tree reconstruction, further suggesting a non-distinct 

separation of these usually highly divergent domains. 

 

The absence of RG in LUCA, combined with the apparent requirement of RG for growth at high temperature, 

suggests the existence of a non-hyperthermophilic LUCA. This is consistent with the work of Manolo Gouy and 

colleagues on ancestral protein and rRNA reconstructions (6, 7, 59). These authors suggested that the LUCA was 

either a mesophile or a moderate thermophile based on the rRNA GC percent and on the amino-acid composition 

of its proteome. A non-hyperthermophilic LUCA is also in agreement with the idea that LUCA was an organism 

simpler than modern ones, with smaller ribosomes (60) and possibly an RNA genome (61). The origin of most 

DNA replication proteins cannot be traced back to LUCA (62), and it seems that RG is not an exception. The 

few universal proteins that manipulate DNA in modern organisms could have been working on RNA in the 

LUCA or transferred independently from DNA viruses to the archaeal and bacterial lineages (63). RNA being 

extremely fragile at high temperature (64) a mesophilic LUCA fits also well with the hypothesis of LUCA 

having an RNA genome. The transition from a LUCA with an RNA genome to LACA and LBCA with DNA 

genomes could also explain why the tempo of evolution drastically slowed down between LUCA and the two 

prokaryotic ancestors, considering that DNA can be replicated and repaired much more faithfully than RNA 

(Forterre, 2006). With respect to our RG phylogenies, and RG evolution in general, the short branch lengths 

between bacterial and archaeal clades would place the emergence of RG in the age of DNA cells i.e. more 

recently than the time of a rapidly evolving RNA-based LUCA (and post-LUCA lineage). This, perhaps, would 

seem logical considering the strict DNA substrate-dependence of RG, and RG conferring adaptation to 

hyperthermophilic growth temperatures – a state likely incompatible with RNA genomes. Finally, our work 

suggest that the criteria of branch length should be considered, in addition to the monophyly of Archaea and 

Bacteria, in establishing which proteins were probably present or not in LUCA. 
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Fig. 1. a) Sequence conservation recovered from alignment of RG dataset mapped onto RG 
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Archaea have a significantly high mean growth temperature than RG-encoding bacteria.

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 20, 2019. ; https://doi.org/10.1101/524215doi: bioRxiv preprint 

https://doi.org/10.1101/524215
http://creativecommons.org/licenses/by-nc-nd/4.0/


Crenarchaeota
"TopRG2-like"

Crenarchaeota
"TopRG1-like"

Euryarchaeota
Group I

Euryarchaeota
Group II

*Aigarchaeota
*Bathyarchaeota

Marsarchaeota

Korarchaeota

Euryarchaeota, Methanopyrus

Nanoarchaeota

Korarchaeota

*T
he

rm
ot

og
ae

Crenarchaeota, Thermof lum

Spirochaetes

Therm
otogae

F
irm

icutes
D

ictyoglom
i

B
at

hy
ar

ch
ae

ot
a

Crenarchaeota
(single RG)

*Kryptonia

P
ac

ea
rc

ha
eo

ta

T
ha

um
ar

ch
ae

ot
a

Aquif cae-dominated
group

*Nitrospirae

*Dictyoglomi

*Thermotogae

*Caldiserica

*Proteobacteria

*D
einoco

cc
us

-Therm
us

*T
he

rm
od

es
ul

fo
ba

ct
er

ia
*T

he
rm

ot
og

ae

Fig. 2. Schematic representation of phylogenetic tree generated using entire RG dataset. 
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Fig. 3. Phylogenetic trees generated using universal proteins from RG-encoding species, 

compared with RG itself. First panel, RNA Polymerase subunit β; second panel, reverse 

gyrase; third panel, Elongation Factor G. In all trees, sequences encoded by Archaeal species 

are indicated in blue, Bacterial species in red.

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 20, 2019. ; https://doi.org/10.1101/524215doi: bioRxiv preprint 

https://doi.org/10.1101/524215
http://creativecommons.org/licenses/by-nc-nd/4.0/


Aquif cae-dominated
group

*N
itr

os
pi

ra
e

*D
ictyoglom

i

*T
herm

otogae

*C
al

di
se

ric
a

*P
ro

te
ob

ac
te

ria

*D
ei

no
co

cc
us

-T
he

rm
us

*Thermodesulfobacteria

*Therm
otogae

*U
ncla

ss
if e

d bacte
ria B

athyarchaeota

P
acearchaeota

T
haum

archaeota

Crenarchaeota

(single RG)

Marsarchaeota

Korarchaeota

Kryptonia

Crenarchaeota

Euryarchaeota
Group II

*Aigarchaeota
*Bathyarchaeota

Korarchaeota

Nanoarchaeota

Th
er

m
ot

og
ae

Firm
icu

tes

Dict
yo

gl
om

i

S
pi

ro
ch

ae
te

s

C
re

na
rc

ha
eo

ta
, T

he
rm

of
lu

m

Euryarchaeota
Group I

*Therm
otogae

Fig. 4. Schematic representation of phylogenetic tree generated using RG dataset without 

TopR1-like and TopR2-like sequences. Archaeal clades coloured in blue, Bacterial clades in red, 

with phyla indicated. Clades formed inside canonical phyla are indicated in darker shades, and 

labelled with an asterisk. Clades labelled with italicised text indicate ≤2 sequences present. 

Detailed tree available in SI Fig. 8.
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Fig. 5. Schematic representation of phylogenetic trees generated using only Archaeal RG 

sequences (blue), or Bacterial RG sequences (red). Clades formed inside canonical phyla are 
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cross, respectively, to highlight their paraphyletic nature.
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