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 2 

Abstract 23 

Incorporation of microbial community data into environmental monitoring programs 24 

could improve prediction and management of environmental pressures. Coral reefs 25 

have experienced dramatic declines due to cumulative impacts of local and global 26 

stressors. Here we assess the utility of free-living (i.e. seawater and sediment) and 27 

host-associated (i.e. corals, sponges and macroalgae) microbiomes for diagnosing 28 

environmental perturbation based on their habitat-specificity, environmental 29 

sensitivity and uniformity. We show that the seawater microbiome has the greatest 30 

diagnostic value, with environmental parameters explaining 56% of the observed 31 

compositional variation and temporal successions being dominated by uniform 32 

community assembly patterns. Host-associated microbiomes, in contrast, were five-33 

times less affected by the environment and their community assembly patterns were 34 

generally less uniform. Further, seawater microbial community data provided an 35 

accurate prediction on the environmental state, highlighting the diagnostic value of 36 

microorganisms and illustrating how long-term coral reef monitoring initiatives could 37 

be enhanced by incorporating assessments of microbial communities in seawater. 38 

Importance 39 

The recent success in disease diagnostics based on the human microbiome has 40 

highlighted the utility of this approach for model systems. However, despite improved 41 

prediction and management of environmental pressures from the inclusion of 42 

microbial community data in monitoring programs, this approach has not previously 43 

been applied to coral reef ecosystems. Coral reefs are facing unprecedented 44 

pressure on a local and global scale, and sensitive and rapid markers for ecosystem 45 
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stress are urgently needed to underpin effective management and restoration 46 

strategies. In this study, we performed the first assessment of the diagnostic value of 47 

multiple free-living and host-associated reef microbiomes to infer the environmental 48 

state of coral reef ecosystems. Our results reveal that free-living microbial 49 

communities have a higher potential to infer environmental parameters than host-50 

associated microbial communities due to their higher determinacy and environmental 51 

sensitivity. We therefore recommend timely integration of microbial sampling into 52 

current coral reef monitoring initiatives. 53 

 54 

Introduction  55 

Coral reef ecosystems are rapidly degrading due to local and global pressures (1). 56 

Overfishing, pollution, declining water quality, disease and outbreaks of coral 57 

predating crown-of-thorns starfish are responsible for localised reef degradation (2) 58 

while climate change is impacting reefs on a global scale, including remote reefs with 59 

little local anthropogenic pressure (3). For example, elevated sea surface 60 

temperatures caused back-to-back coral mass bleaching events in 2016 and 2017, 61 

resulting in a significant loss of shallow-water corals on the Great Barrier Reef (GBR) 62 

(4). Climate conditions predicted for the end of the century will result in even more 63 

frequent and severe coral mass bleaching events with dire projections for the future 64 

of coral reefs (5, 6). This global coral reef crisis is driving the development of new 65 

management, reef restoration and bioengineering tools to counteract reef loss and 66 

ensure the persistence of coral reefs (7, 8). Early prediction of ecosystem stress is 67 

critical for an effective implementation of local management and restoration 68 

strategies on threatened reef sites.  69 
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Microorganisms have considerable potential as a monitoring tool for coral reef 70 

ecosystem health (9-11). Microorganisms are fundamental drivers of biogeochemical 71 

cycling on coral reefs (12-14), they form intimate associations with the coral reef 72 

benthos (15-17), and they contribute significantly to host health and ecosystem 73 

homeostasis (18-20). The constant amendment of microbial communities to exploit 74 

available resources (21) can trigger differential abundances of specific 75 

microorganisms, hence shifts in community composition can provide an early 76 

indication of environmental change (22). For example, compositional and functional 77 

shifts of coral-associated microbial communities have been described along 78 

gradients of anthropogenic impact (23-25) and with changes in water quality (26). 79 

However, despite having many of the useful characteristics required of 80 

environmental indicators (9, 27), the diagnostic potential of microorganisms for coral 81 

reef monitoring is largely conceptual, with only a few studies elaborating on their 82 

potential value. For example, the ‘microbialisation score’ measures human impacts 83 

on coral reefs based on the ratio of microbial and fish metabolic rates (28). The main 84 

limitations to further develop and apply microbial-based monitoring approaches are 85 

the lack of temporal and spatial baselines for coral reef microbiomes (9, 29). 86 

Coral reefs comprise a complex network of free-living and host-associated 87 

microbial communities with strong benthic-pelagic exchange (13, 30). Therefore, 88 

holistic assessments that combine different reef hosts and habitats are required to 89 

better understand microbial dynamics and sensitivities to environmental 90 

perturbations. The diagnostic value of microbial-based monitoring is likely to vary 91 

between distinct habitats of a coral reef ecosystem. For example, microbial 92 

communities occurring in seawater may be directly affected by the quality of the 93 

ambient reef water or climate conditions, however, the high heterogeneity of 94 
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seawater due to local hot-spots of available resources (31, 32) may diminish the 95 

specificity of these communities. In contrast, microbial communities that dwell in 96 

corals live in tight association with the most important frame-builders of reefs (29) 97 

and hence may provide crucial information not only on the environmental conditions 98 

but also on the effect of the environment on the coral host itself. Sponges, a highly 99 

abundant and diverse component of coral reefs (33), are renowned for their 100 

enormous filtration capacity (34) and form diverse and intimate associations with 101 

microbial communities (35). Hence, sponge microbiomes may provide suitable 102 

indicators to monitor water quality. Host-associated biofilms, such as those inhabiting 103 

the mucus layer of corals and the surface of macroalgae, provide another potential 104 

niche habitat informative for microbial indicators of environmental state. Coral 105 

mucus, for example, has been described as a suitable habitat to screen for 106 

enterobacteria from sewage contamination due to its ability to trap bacteria (36).  107 

Given the complexity of microbial life on coral reefs we sought to identify the 108 

most suitable reef microbiomes for a microbial indicator program to pinpoint 109 

environmental state. To do this we quantified the 1) habitat-specificity, 2) 110 

determinacy of microbial community successions and 3) sensitivity towards 111 

environmental parameters of multiple free-living and host-associated microbiomes. 112 

Subsequently, we tested the microbiome’s ability to infer environmental state using 113 

indicator value (37) and machine learning approaches (38).  114 

 115 

Results  116 
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Samples were collected during a 16-month period (February 2016 - May 2017), at 117 

monthly (Magnetic Island - Geoffrey Bay) and seasonal (Orpheus Island – Pioneer 118 

Bay – Channel) intervals. The bacterial 16S rRNA genes of 381 samples including 119 

seawater, sediment, sponge tissue (Coscinoderma matthewsi and Amphimedon 120 

queenslandica), coral tissue and mucus (Acropora tenuis and Acropora millepora), 121 

and macroalgal surfaces (Sargassum sp.) were sequenced (Figure 1). In total 122 

231,316 zero-radius operational taxonomic units (zOTUs) were identified based on 123 

100% sequence similarity (39). 124 

 125 

Coral reef microbiomes are habitat-specific 126 

Habitat-specificity of coral reef microbes was assessed by comparing the similarities 127 

of microbial communities associated with seawater (n=48), sediment (n=48), A. 128 

queenslandica (n=30), C. matthewsi (n=42), A. tenuis (tissue n=48, mucus n=46), A. 129 

millepora (tissue n=42, mucus n=42) and Sargassum sp. (n=35). Non-metric 130 

Multidimensional Scaling based on Bray-Curtis dissimilarities revealed a clear 131 

separation of the microbial communities from different reef habitats (Figure 1), and 132 

habitat-specificity was further confirmed with Permutational Multivariate Analysis of 133 

Variance (PERMANOVA, p = 9.999 x 10-5, Table Supplementary Table 1-2). 134 

Furthermore, alpha diversities (ANOVA, F(8/372) = 142, p < 2 x 10-16) and zOTU 135 

richness (ANOVA, F(8/372) = 369, p < 2 x 10-16) varied significantly between reef 136 

habitats (Supplementary Figure 1 and Supplementary Table 3-5). Sediment 137 

harboured by far the most diverse (Shannon Index 7.4 ± 0.2 SD) bacterial 138 

community, although microbial diversity was also high in coral surface mucus 139 

(Shannon Index 5.1 ± 0.9 SD), macroalgal biofilms (Shannon Index 4.5 ± 1.4 SD), 140 

seawater (Shannon Index 4.4 ± 0.2 SD) and in the tissue of the sponge C. matthewsi 141 
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(Shannon Index 4.4 ± 0.3 SD). Microbial diversity was lowest in coral tissue 142 

(Shannon Index 3.3 ± 0.8 SD) and in the sponge A. queenslandica (Shannon Index 143 

2.7 ± 0.8 SD). These results suggest overall high habitat-specificity of free-living and 144 

host-associated microbial communities within coral reef ecosystems. 145 

 146 

Uniform vs variable community assembly pattern 147 

The uniformity versus variability of microbial community assembly patterns was 148 

explored through comparison of compositional similarity (Bray-Curtis index, 0 = 149 

dissimilar, 1 = identical) in samples collected monthly at Geoffrey Bay (Magnetic 150 

Island). The microbial communities of seawater (n = 30, Wilcoxon Rank-Sum test p = 151 

3.1 x 10-7) and sediment (n = 30; Wilcoxon Rank-Sum test p = 3 x 10-5) had 152 

significantly higher similarities “within” than “among” sampling events (Figure 2a). 153 

This uniform response of the free-living microbial communities suggests that 154 

deterministic rather than stochastic processes drive their community assembly. For 155 

host-associated microbiomes, the overall response pattern varied between species. 156 

Microbial communities associated with the sponge C. matthewsi (n = 27; Wilcoxon 157 

Rank-Sum test, p = 0.0076), the coral A. tenuis (mucus n = 28, tissue n = 30; 158 

Wilcoxon Rank-Sum test, p = 0.0041 and p = 0.0096, respectively) and the 159 

macroalga Sargassum sp. (n = 30; Wilcoxon Rank-Sum test, p = 0.00013) followed 160 

the same trend as the free-living communities, with significantly higher similarities 161 

“within” than “among” sampling events (Figure 2a). In contrast, the microbiome of the 162 

sponge A. queenslandica (n = 30; Wilcoxon Rank-Sum test, p = 0.23) and the coral 163 

A. millepora (mucus n = 24, tissue n = 24; Wilcoxon Rank-Sum test, p = 0.15 and p = 164 

0.11 respectively) showed no significant difference in similarities “within” and 165 

“among” time points (Figure 2a). Analysis of the compositional similarity of sample 166 
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replicates within each sampling time point indicated that the seawater microbial 167 

communities not only exhibit an overall higher similarity “within” replicates, but the 168 

high compositional similarity is conserved across all sampling events (Figure 2b). In 169 

contrast, host-associated microbial communities showed a generally lower 170 

compositional similarity and higher variation between sample replicates within each 171 

sampling time point (Figure 2b).  172 

Trends in the temporal community assembly pattern of free-living, host tissue- 173 

and biofilm-associated microbial communities were analysed using Analysis of 174 

Similarity (ANOSIM) as a proxy to describe similarity patterns (R = 0 indicates equal 175 

similarity “within” and “among” time point replicates and R = 1 indicates higher 176 

“within” than “among” sampling time point similarities; Figure 2b and Supplementary 177 

Figure 2). Overall, free-living microbiomes had R values closer to 1 (seawater R = 178 

0.9919 and sediment R = 0.7322), whereas host tissue-associated microbiomes had 179 

R values closer to 0 (A. queenslandica R = 0.2927, C. matthewsi R = 0.3449, A. 180 

tenuis tissue R = 0.4547 and A. millepora tissue R = 0.2151). Host biofilm-associated 181 

microbiomes showed R values of approximately 0.5 (A. tenuis mucus R = 0.4613 A. 182 

millepora mucus R = 0.3090 and Sargassum sp. biofilm R = 0.4440). These results 183 

suggest that free-living microbiomes (seawater and sediment) exhibit a uniform 184 

compositional succession, whereas host-associated microbiomes (coral, sponge and 185 

macroalgae) are more stochastic in their temporal community succession. 186 

Interestingly, host biofilm-associated microbiomes exhibited a higher uniformity 187 

(higher ANOSIM R values) in temporal community succession than tissue-188 

associated microbiomes, most likely reflecting greater environmental influence. The 189 

uniform temporal response of free-living microbiomes suggests a high diagnostic 190 
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value of these microbial communities; hence seawater and sediment microbiomes 191 

should provide an accurate prediction of environmental variables.  192 

Microbiomes in seawater (n=48) and sediment (n=48) were further tested for 193 

their compositional similarity between all three sampling sites (Geoffrey Bay, Pioneer 194 

Bay and Channel). The microbial community composition of sediment samples 195 

varied significantly between all three sampling sites (PERMANOVA, p = 9.999 x 10-5, 196 

10,000 permutations; Supplementary Figure 3a). The seawater microbiome, in 197 

contrast, showed high temporal variability (ANOSIM R = 0.9934, p = 0.001) and low 198 

spatial variability (ANOSIM R = 0.2343, p = 0.002; Supplementary Figure 3b). The 199 

high spatial variability of sediment microbiomes indicates that habitat characteristics 200 

rather than environmental fluctuations are the main drivers structuring community 201 

composition.  202 

 203 

Environmental sensitivity  204 

Environmental sensitivity of the different microbiomes was assessed by comparing 205 

how much of the compositional variation was explained by sea surface temperature, 206 

light and water quality parameters (Supplementary Figures 4 and 5). The 207 

compositional variability of the seawater microbiome (n=30) was significantly 208 

explained by sampling date, season (summer versus winter) and water quality 209 

parameters, such as average seawater temperature, average hours of daylight, total 210 

suspended solids (TSS), particulate organic carbon (POC), Chlorophyll a (Chl a), 211 

and non-purgeable organic carbon (NPOC) concentration (PERMANOVA for Bray 212 

Curtis distance based Redundancy Analysis (dbRDA); Figure 3a and Supplementary 213 

Table 6a-b). In total, these parameters explained 66% of the observed compositional 214 

variation in seawater, with 56% being significantly explained by environmental 215 
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variables (Variation Partitioning Analysis, Figure 3b). Season (summer versus 216 

winter) and sampling date explained 6% and 4%, respectively (Variation Partitioning 217 

Analysis, Figure 3b). In comparison, sampling site significantly explained 24% of the 218 

variation in sediment microbial communities (n=48), which overlapped by 12% with 219 

the variation explained by sediment characteristics, such as particle size and total 220 

organic carbon (TOC) content (PERMANOVA for dbRDA and Variation Partitioning 221 

Analysis; Supplementary Table 6b and 7). Water quality parameters and sea surface 222 

temperature explained only 3% of the observed variability in the sediment 223 

microbiome (Variation Partitioning Analysis). 224 

Host-associated microbiomes varied substantially in their response to 225 

environmental parameters (PERMANOVA for dbRDA and Variation Partitioning 226 

Analysis, Figure 3b-c, Supplementary Table 6c-i and 7). On average, 11% of the 227 

observed community variations in host-associated microbiomes were explained by 228 

the environment, which is five-times less than what we found for the seawater 229 

associated microbial community (Supplementary Table 7). This suggests that 230 

compositional variations of the seawater microbiome are more likely to reflect 231 

environmental changes. Host-associated microbiomes, are comparatively stable to 232 

changes in environmental factors. 233 

 234 

Predictability of environmental metadata 235 

Due to the seawater microbiomes uniform temporal pattern and high sensitivity to 236 

changing environmental parameters, the ability to infer environmental state based on 237 

microbial community data was tested using an Indicator Value analysis (37) and a 238 

Random Forest machine learning approach. In total, 110 zOTUs were identified as 239 

significant indicators for temperature (Indicator Value p < 0.01). Microbial zOTU 240 
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assemblages that were indicative of high, low and average seawater temperatures 241 

(classification based on their variation around observed annual averages) were 242 

present throughout the sampling period. However, higher relative abundances and 243 

lower variation (as calculated by coefficient of variation) were evident at certain time 244 

points (Figure 4a). Furthermore, we were able to identify microbial indicator taxa for 245 

high and low Chl a, TSS and POC levels (Supplementary Material Figure 6). 246 

Indicators for low and high seawater temperatures were identified in the bacterial 247 

phyla Proteobacteria, Bacteroidetes, Cyanobacteria, Actinobacteria and 248 

Planctomycetes (Figure 4b). High temperatures were indicated by an increase of 249 

zOTUs belonging to the bacterial family Rhodobacteraceae and the presence of 250 

Cryomorphaceae, Synechococcaeae, Vibrio and Flavobacterium (Figure 4b). In 251 

contrast, the occurrence of zOTUS belonging to the family Pelagibacteriaceae and 252 

the genus Prochlorococcus were indicative for low seawater temperatures. The 253 

phyla Proteobacteria, Bacteroidetes and Cyanobacteria had the greatest number of 254 

indicator zOTUs for temperature and other water quality parameters (Supplementary 255 

Figure 6). Flavobacteriaceae-affiliated zOTUs were significant indicators for 256 

temperature, Chl a, TSS and POC. Halomonadaceae significantly associated with 257 

high Chl a and TSS and zOTUs belonging to the phylum Verrucomicrobia were 258 

significant indicators for high TSS levels.  259 

 The diagnostic value of the seawater microbiome (n=48) was further 260 

evaluated by applying a Random Forest machine learning classification and 261 

regression analysis with 1,213 zOTUs preselected based on a non-zero abundance 262 

threshold in at least 10% of the samples (n=48). The seawater microbiome enabled 263 

the prediction of seawater temperature classes (low, average, high) with 92% 264 

accuracy (Kappa = 88%, Figure 5a-b and Supplementary Figure 7). Highest 265 
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accuracy (lowest Out of Bag (OOB) estimated error rate) was achieved with mtry = 266 

100 zOTUS. Random Forest regression of the seawater microbiome predicted 267 

temperature values (R2 = 0.67, RMSE = 0.5) (Figure 5c-d and Supplementary Figure 268 

8) with the highest accuracy (lowest OOB estimated error rate) when mtry = 400 269 

zOTUs. The effectiveness of zOTUs in reducing uncertainty and variance (also 270 

referred to as ‘feature importance’) within the machine learning algorithm was 271 

measured by the decrease in mean accuracy for classification and mean-squared 272 

error (%incMSE) for regression. The most important zOTUs belong to the bacterial 273 

taxa Flavobacteriaceae, Pelagibacteraceae, Cyanobacteria, Rhodobacteraceae, 274 

Synechococcaceae and Pirrelulacae. These results demonstrate that the microbial 275 

community associated with coral reef seawater allows for the accurate prediction of 276 

fluctuations in sea surface temperature and water quality parameters. 277 

 278 

Discussion 279 

Sensitive and rapidly responding markers of coral ecosystem stress are needed to 280 

underpin effective management and restoration strategies. In this study, we used a 281 

range of statistical tests and machine learning approaches across multiple free-living 282 

and host-associated reef microbiomes to assess their diagnostic value as sensitive 283 

indicators of environmental state. Our results show that the microbial community in 284 

reef seawater has the highest diagnostic value when compared to other free-living 285 

(e.g. sediment) and host-associated microbiomes (e.g. coral, sponge and 286 

macroalgae). Our conclusion is based on the microbiome’s 1) habitat-specificity, 2) 287 

uniformity of its community assembly, 3) sensitivity towards environmental 288 

fluctuations and 4) accuracy to predict environmental parameters. This assessment 289 
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of the diagnostic capacity of various free-living and host-associated coral reef 290 

microbiomes to extrapolate environmental variations provides crucial information for 291 

ecosystem management initiatives aimed at incorporating microbial monitoring.  292 

In general, high habitat-specificity was observed across free-living and host-293 

associated microbiomes, confirming previous reports on the compositional variability 294 

of microbial communities between coral reef habitats (40), host species (15, 41-43) 295 

and even between host compartments (44). High compositional divergence of 296 

microbial communities across different reef habitats can be due to the variation of 297 

available resources and/or biotic interactions (21). High habitat-specificity contributes 298 

to the overall high diversity and complexity across different microbial communities on 299 

coral reefs, highlighting the importance of holistic studies that focus on microbial 300 

interactions across the benthic-pelagic realm. 301 

Bacterial community structure associated with water and sediment is thought 302 

to be primarily governed by deterministic processes (45). Our results are consistent 303 

with this, showing uniform community assembly patterns within time point replicates. 304 

In contrast, host-associated microbiomes displayed little compositional similarity 305 

within a sampling time point, suggesting a non-uniform temporal response. Host-306 

associated microbiomes were also only marginally affected by environmental 307 

parameters, indicating that their community assembly pattern are variable between 308 

conspecific individuals (45). A higher variability in community assembly can lead to 309 

increased community heterogeneity, also referred to as dispersion, which has been 310 

described as a common characteristic of host-associated microbiomes (18, 46-48). 311 

Furthermore, lower microbial compositional similarities amongst replicates may be 312 

driven by increased niche space (e.g. host compartments) (44) and host genotype 313 

effects (e.g. host genetics) (42). Collectively, our results show that free-living 314 
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microbial communities have a higher potential to infer environmental parameters 315 

(such as standard measures in environmental monitoring programs) than host-316 

associated microbial communities due to their higher uniformity and environmental 317 

sensitivity. Importantly however, previous metaproteomic research on reef sponges 318 

has shown that while microbial community composition can appear stable when 319 

seawater temperatures increase, disruption to nutritional interdependence and 320 

molecular interactions (such as reduced expression of transporters involved in the 321 

uptake of sugars, peptides and other substrates) actually occurs prior to detectable 322 

changes in community structure (49). Hence, considering the importance of 323 

microbes to reef invertebrate health, more sensitive transcriptomic / proteomic 324 

approaches may still be warranted for sensitive detection of microbial responses to 325 

environmental perturbations. 326 

The diagnostic potential of microbial communities, especially in combination 327 

with machine learning approaches, has gained momentum across multiple research 328 

fields, including disease identification by characterisation of the human gut-329 

microbiome (50), evaluation of the environment and host genetics on the human 330 

microbiome (51), prediction of hydrological functions in riverine ecosystems (52) and 331 

assessment of macroecological patterns in soil samples (53). This development of 332 

microbial-based diagnostics is largely due to availability of high-throughput 333 

sequencing of the 16S rRNA gene and streamlined analytical pipelines that facilitate 334 

rapid assessment of microbial community composition (54, 55). In addition to its 335 

utility for inferring environmental fluctuations, the seawater microbiome possesses 336 

numerous characteristics desirable for environmental monitoring programs: i) non-337 

destructive collection and simple processing methods facilitate large-scale 338 

collections alongside existing programs that sample water quality measurements, ii) 339 
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high fractional contribution of abundant microbes minimises the impacts of 340 

sequencing biases (Supplementary Figure 9) and iii) sampling is conducive to future 341 

automated, high throughput analyses such as in-line flow cytometry on vessels and 342 

real-time DNA/RNA sequencing for community characterisation. 343 

Incorporation of seawater microbial community data into coral reef monitoring 344 

approaches should enhance our ability to describe environmental conditions and 345 

changes more holistically. For example, temperature fluctuations drive structural 346 

variations in seawater microbial communities (56, 57), and elevated seawater 347 

temperatures on coral reefs are highly correlated with coral bleaching (1, 58). The 348 

inclusion of microbial community data alongside water quality parameters could 349 

therefore improve our ability to predict the likelihood of ecosystem stress. For 350 

instance, our sample sites, located in the central sector of the GBR, were not 351 

affected by the 2016 bleaching that primarily affected the northern sector (59), 352 

however they were impacted by the 2017 bleaching event (60). In the months prior to 353 

bleaching (late December 2016 till March 2017) we observed two to four times 354 

higher relative abundances of high temperature indicator assemblages than when 355 

compared to the equivalent period at the beginning of 2016 (Figure 4a), where no 356 

bleaching was observed. Interestingly, high temperature indicator assemblages 357 

included putative coral pathogens (e.g. Vibrio) and opportunistic bacteria (e.g. 358 

Rhodobacteraceae, Verrucomicrobia and Flavobacterium). Coral pathogens, such as 359 

Vibrio corallilyticus increase their efficiency and motility behaviours with rising 360 

seawater temperatures (61-63), and the higher abundance of these microbes may 361 

explain the increased prevalence of coral disease post bleaching (64). Hence, 362 

microbial monitoring could help inform managers about impending disease 363 

outbreaks.  364 
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While microbial inventories for reef biofilms and seawater have been 365 

established within the Red Sea (57) and Florida coastal areas (65), our study 366 

provides the first holistic microbial baseline spanning multiple free-living and host-367 

associated microbiomes for selected GBR sites. Results suggest that there is 368 

realistic scope to enhance long-term reef monitoring initiatives by incorporating 369 

seawater microbiome observations for assessments of environmental change over 370 

space and time, especially for rapid and sensitive identification of early signs of 371 

declining ecosystem health. The establishment of microbial observatories (66) and 372 

DNA biobanks for long-term biomonitoring (67) will be paramount to successfully 373 

inferring ecosystem state and / or perturbations from microbial communities. We 374 

therefore recommend timely integration of microbial sampling into current coral reef 375 

monitoring initiatives. Further refinement of the sampling and data analysis 376 

techniques should focus on selection and validation of additional indicator taxa as 377 

well as assessment of ecologically important microbial functions. A further 378 

consideration is to explore which monitoring objectives would benefit most from 379 

assessments of microbial communities. For example, it is likely that the rapid 380 

response time of microbial indicators makes them better suited to early-warning, 381 

impact or compliance monitoring programs than to monitoring of slower, long-term 382 

changes. 383 

 384 

Materials and Methods 385 

Sample collection 386 

Samples for microbial community characterization were collected monthly (Magnetic 387 

Island) and seasonally (Orpheus Island) from seawater, sediment and multiple host 388 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted January 18, 2019. ; https://doi.org/10.1101/524173doi: bioRxiv preprint 

https://doi.org/10.1101/524173


 17 

organisms (i.e. corals, sponges and macroalgae), along with environmental 389 

metadata, between February 2016 and May 2017 at three Great Barrier Reef sites 390 

(Figure 1). Samples were collected under the permit G16/38348.1 issued by the 391 

Great Barrier Reef Marine Park Authority.  392 

Samples (n= 3/ sample type/ sampling event) for molecular analysis and 393 

additional environmental metadata were collected following the standard operational 394 

procedures of the Australian Marine Microbial Biodiversity Initiative (AMMBI; 395 

https://data.bioplatforms.com/organization/pages/australian-microbiome/methods). In 396 

brief, seawater for molecular analysis was collected with collapsible sterile bags 397 

close to the reef substrate at 2 m depth and pre-filtered (50 µm) to remove large 398 

particles and subsequently filtered (2 L) onto 0.2 µm Sterivex-filters (Millepore). The 399 

sediment surface layer was sampled with sterile 50 mL tubes at 2 m depth and 400 

subsampled immediately into 2 mL cryogenic vials. The sponges Coscinoderma 401 

matthewsi and Amphimedon queenslandica were removed from the substrate (at 7 402 

m and 3 m respectively) with sterile scalpel blades, rinsed with 0.2 µm filter-sterilised 403 

seawater and subsampled into 2 mL cryogenic vials. The surface mucus layer of the 404 

two acroporid coral species, Acropora tenuis and Acropora millepora, was sampled 405 

with sterile cotton swabs (18). Additionally, coral fragments of each sampled coral 406 

were collected at 3 m depth. Coral fragments were rinsed with 0.2 µm filtered-407 

sterilised seawater and placed into 5 mL cryogenic vials. The thallus (including stem, 408 

floats and blades) of the macroalgae Sargassum sp. was sampled with sterile 409 

scalpels at 3 m depth, rinsed with 0.2 µm filtered-sterilised seawater and placed into 410 

2 mL cryogenic vials. All samples were immediately flash frozen in liquid nitrogen 411 

after processing and stored at -80°C until DNA extraction.  412 
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Additional seawater samples were collected with a diver-operated Niskin 413 

bottle close to the reef substrate at 2 m depth at each sampling occasion. Water was 414 

subsampled in duplicate for analyses of salinity and concentrations of dissolved 415 

organic carbon (DOC), dissolved inorganic carbon (DIC), particulate organic carbon 416 

(POC), dissolved inorganic nutrients (DIN), total suspended solids (TSS) and 417 

chlorophyll a (Chl a) concentration. Samples were further analysed according to the 418 

standard procedures of the Australian Institute of Marine Science (AIMS, Townsville, 419 

Australia)(68). Sediment samples were collected with 100 ml glass jars at 2 m depth 420 

and characteristics, such as grain size distribution and total organic carbon (TOC) 421 

and nitrogen (TON) content, were assessed for each sampling event. Seawater 422 

temperatures were obtained from AIMS long-term monitoring temperature records 423 

(http://eatlas.org.au/).  424 

 425 

DNA extraction 426 

Prior to extraction, the macroalgal biofilm was separated from the algal tissue by 427 

overnight incubation at 200 rpm in 10 mL 1 x PBS at 37°C. Coral fragments were 428 

defrosted on ice and the tissue was stripped from the skeleton with an airgun into 1 x 429 

PBS solution, homogenised for 1 min at 12.5 rpm with a tissue homogeniser, 430 

pelleted (10 min at 16,000 rcf) and snap frozen in liquid nitrogen prior to DNA 431 

extraction. DNA from seawater, sediment, sponge and macroalgal biofilms was 432 

extracted with the DNeasy PowerSoil kit (Qiagen) and DNA of coral tissue and 433 

mucus samples was extracted using the DNeasy PowerBiofilm kit (Qiagen) following 434 

the Manufacturer’s instructions. DNA extracts were stored at -80°C until being sent 435 

for sequencing. 436 

 437 
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16S rRNA gene sequencing 438 

DNA extracts were sent on dry ice to the Ramaciotti Centre for Genomics (Sydney, 439 

Australia) for sequencing. The bacterial 16S rRNA genes were sequenced using the 440 

27F (69) and 519R (70) primer pairs on the Illumina MiSeq platform utilising a duel 441 

indexed 2 x 300 bp paired end approach. Further documentation outlining the 442 

standard operating procedures for generating and sequencing amplicons is available 443 

at https://data.bioplatforms.com/organization/pages/bpa-marine-microbes/methods. 444 

 445 

Sequence analysis 446 

Sequencing data were analysed as single nucleotide variants in a standardized 447 

platform alongside other Australian microbial biodiversity initiative samples (39, 71). 448 

In brief, forward and reverse reads were merged using FLASH (72). FASTA 449 

formatted sequences were extracted from FASTQ files and those < 400 bp in length 450 

or containing N’s or homopolymer runs of > 8 bp were removed using MOTHUR 451 

(v1.34.1) (73). USEARCH (64 bit v10.0.240) (74) package was used to de-replicate 452 

sequences and to order them by abundance. Sequences with < 4 representatives 453 

and Chimeras were removed. Quality-filtered sequences were mapped to chimera-454 

free zero-radius operational taxonomic units (zOTUs) and a sample by read 455 

abundance table created. zOTUs were taxonomically classified with SILVA v132 (75) 456 

database using MOTHUR’s implementation of the Wang classifier (76) and a 60% 457 

Bayesian probability cut-off.  458 

 Chloroplast and mitochondria derived reads as well as singletons were 459 

removed from the dataset. Remaining data were rarefied to 3,600 reads per sample 460 

and transformed to relative abundances using the phyloseq package (77) in R (78).  461 

 462 
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Habitat and host-specificity  463 

Habitat and host-specificity of a microbiome was assessed by calculating the 464 

compositional similarities of all 381 samples with the Bray-Curtis Index and 465 

illustrating them in a Non-Metric Multidimensional Scaling (NMDS) plot using the 466 

phyloseq package (77). To confirm habitat and host-specificity, Permutational 467 

Multivariate Analysis of Variance (PERMANOVA) was applied using the adonis() 468 

function of the vegan package (79) with 10,000 permutations.  469 

 470 

Uniform response pattern 471 

The microbiome similarity of replicates for sampling time points versus the 472 

microbiome similarity among sampling time points was compared by obtaining the 473 

Bray-Curtis Similarity for each habitat individually. The variation between the overall 474 

within and among time point replicates was tested with a Wilcoxon Rank-sum test in 475 

R (78). The dispersion of the Bray-Cutis similarities within a sampling time point was 476 

calculated as the coefficient of variation. Analysis of Similarity (ANOSIM; anosim() 477 

function of the vegan package (79)) based on Bray-Curtis similarities was used to 478 

further evaluate within and among time point similarities in the microbial 479 

communities. 480 

 481 

Environmental sensitivities 482 

Environmental metadata were z-score standardized (80) and checked for collinearity 483 

using the Pearson correlation coefficient. Collinearity was assumed if correlation was 484 

> 0.7 or < -0.7 (81). Collinear variables were considered redundant and removed 485 

from the analysis.  486 
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zOTU relative abundance, environmental metadata (e.g. average seawater 487 

temperature, average hours of daylight, Chl a, POC, NPOC and TSS concentration), 488 

season (summer versus winter) and sampling date were used for Bray-Curtis 489 

distance-based redundancy analysis (db-RDA) using the phyloseq package (77). 490 

The significance of each response variable was confirmed with an Analysis of 491 

Variance (ANOVA) for the db-RDA (anova.cca() function in the vegan package (79)). 492 

Only significant (p-value < 0.05) response variables were kept in the model. The 493 

explanatory value (in %) of significant response variables (e.g. environmental 494 

parameters, season and sampling date) was assessed with a Variation Partitioning 495 

Analysis of the vegan package (79).  496 

 497 

Indicator value analysis 498 

Indicator taxa were identified with the indicator value analysis (indicspecies package 499 

(37)) using the following thresholds: 1,000 permutations, minimum specificity (At) 500 

and minimum sensitivity (Bt) set to 70% and p-value ≤ 0.01.  501 

 502 

Random forest machine learning 503 

Random forest machine learning was performed with the caret (82) and random 504 

forest package (83) in R (78). zOTUs with non-zero abundance values in at least 505 

10% of the samples (n=48) were preselected and z-score standardised prior to 506 

model training. Random Forest (with ntress = 10,000) prediction error was measured 507 

with out-of-bag (OOB) error. Highest accuracy (lowest OOB estimated error rate) for 508 

classification was achieved with mtry = 100 zOTUS and for regression with mtry = 400 509 

zOTUs. Importance of zOTUs was measured using the decrease in mean accuracy 510 

for classification and mean-squared error (%incMSE) for regression.  511 
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 512 

Data availability 513 

Sequencing data, metadata and protocols are available at the Bioplatforms Australia 514 

data portal under the Australian Microbiome project (www.data.bioplatforms.com). 515 

Full usage requires free registration. To search for the sequencing data, navigate to 516 

“Processed data”, select “Amplicon is 27f519r_bacteria” and “Environment is 517 

Marine”. To search for the Great Barrier Reef sampling sites, add an additional 518 

contextual filter, select “Sampling Site” from the dropdown menu and search for 519 

“Geoffrey Bay”, “Pionner Bay” and “Channel”.  520 
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 827 

 828 

Figure 1. Habitat-specificity of coral reef microbiomes. Seawater, sediment, 829 

coral (Acropora tenuis and Acropora millepora), sponge (Amphimedon 830 

queenslandica and Coscinoderma matthewsi) and macroalgae (Sargassum sp.) 831 

samples were collected for 16S rRNA gene sequencing at fringing reefs surrounding 832 

Magnetic Island (Geoffrey Bay) and Orpheus Island (Pioneer Bay and Channel; 833 

Queensland, Australia). Non-metric multidimensional scaling (NMDS) based on 834 

Bray-Curtis dissimilarities revealed high habitat-specificity of coral reef microbiomes. 835 

 836 

Figure 2. Compositional similarity of coral reef microbiomes over time a) 837 

Variations in the compositional similarity among and within sampling time points of 838 

various coral reef microbiomes collected at Geoffrey Bay (Magnetic Island). A higher 839 

similarity within time point replicates than among time point replicates suggests a 840 

uniform response of the microbial community to temporal variations. Similarities were 841 

calculated with Bray-Curtis Similarity Index (0=no similarity, 1=high similarity) and 842 

significances tested with Wilcoxon rank-sum test. b) The within sampling time point 843 

similarities of replicates (n=3) is indicated in colour and the coefficient of variation 844 

(dispersion) is displayed as size. Analysis of Similarity (ANOSIM) was further used 845 

as a proxy for the within and among time point variation. R-values of 1 indicate high 846 

similarity within sampling time points and high variability among sampling time 847 

points, whereas 0 indicates equal similarity within and among sampling time points. 848 

 849 
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Figure 3. Coral reef microbiome sensitivity to environmental parameters. Bray-850 

Curtis distance-based RDA (dbRDA) was used to evaluate the effect of 851 

environmental fluctuations on the microbial community composition of various coral 852 

reef habitats/hosts. a) Environmental factors significantly explained 56% of the 853 

observed compositional variation in the seawater associated microbial community. b) 854 

Variation partitioning shows that environmental parameters rather than season and 855 

sampling date explain observed community composition structures in the seawater 856 

microbiome. c) Coral mucus and algae biofilm as well as d) coral and sponge tissue 857 

microbial communities were significantly influenced by environmental factors; 858 

however, environmental parameters only explain on average 11% of the observed 859 

community variation. 860 

 861 

Figure 4. Microbial indicator taxa for seawater temperature fluctuations. 862 

Seawater temperatures were z-score standardised and, based on their variation 863 

around their mean, classified into low (< -0.5), average (-0.5 – 0.5) and high (> 0.5) 864 

temperature groups. Indicator zOTUs were identified with the Indicator Value 865 

analysis (IndVal). a) The average relative abundance of the sum of low, average and 866 

high temperature indicators is represented for each sampling time point. Significant 867 

indicator zOTUs assemblages (p<0.01) for the respective temperature group are 868 

indicated in black and size represents the coefficient of variation. Colour gradient 869 

further represents the seawater temperature at the given sampling timepoints. b) 870 

Relative abundances and taxonomic affiliation of zOTUs identified to be significant 871 

(p<0.01) indicators for high and low seawater temperatures. Each dot represents a 872 

unique zOTU. 873 
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Figure 5. Random Forest machine learning a) The 30 most important zOTUs 875 

reducing the uncertainty in the prediction of seawater temperature classes (low, 876 

average, high) based on their mean decrease in accuracy and b) their enrichment in 877 

the temperature classes. c) The 30 most important zOTUs reducing the variance 878 

(mean squared error (% Inc MSE)) in regression based prediction of seawater 879 

temperatures. d) Predicted seawater temperature values versus actual seawater 880 

temperature values based on Random Forest regression. 881 
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