1	A next generation approach to species delimitation reveals the role of hybridization in a cryptic
2	species complex of corals
3	
4	
5	Andrea M. Quattrini ^{1*} , Tiana Wu ¹ , Keryea Soong ² , Ming-Shiou Jeng ³ , Yehuda Benayahu ⁴ ,
6	Catherine S. McFadden ¹
7	
8	
9	¹ Harvey Mudd College, Biology Department, 1250 N. Dartmouth Ave, Claremont CA 91711
10	² Institute of Marine Biology, National Sun Yat-sen University, Kaohsiung, Taiwan
11	³ Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
12	⁴ School of Zoology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Ramat Aviv,
13	69978, Israel
14	
	Email addresses: AMQ: aquattrini@g.hmc.edu, TW: 8timowu@gmail.com, KS:
15 16 17	keryea@mail.nsysu.edu.tw, MSJ: jengms@gate.sinica.edu.tw, YB: yehudab@tauex.tau.ac.il, CSM: mcfadden@g.hmc.edu
16	keryea@mail.nsysu.edu.tw, MSJ: jengms@gate.sinica.edu.tw, YB: yehudab@tauex.tau.ac.il,
16 17	keryea@mail.nsysu.edu.tw, MSJ: jengms@gate.sinica.edu.tw, YB: yehudab@tauex.tau.ac.il, CSM: mcfadden@g.hmc.edu
16 17 18	keryea@mail.nsysu.edu.tw, MSJ: jengms@gate.sinica.edu.tw, YB: yehudab@tauex.tau.ac.il, CSM: mcfadden@g.hmc.edu
16 17 18 19	keryea@mail.nsysu.edu.tw, MSJ: jengms@gate.sinica.edu.tw, YB: yehudab@tauex.tau.ac.il, CSM: mcfadden@g.hmc.edu
16 17 18 19 20	keryea@mail.nsysu.edu.tw, MSJ: jengms@gate.sinica.edu.tw, YB: yehudab@tauex.tau.ac.il, CSM: mcfadden@g.hmc.edu
16 17 18 19 20 21	keryea@mail.nsysu.edu.tw, MSJ: jengms@gate.sinica.edu.tw, YB: yehudab@tauex.tau.ac.il, CSM: mcfadden@g.hmc.edu *Corresponding Author
16 17 18 19 20 21 22	keryea@mail.nsysu.edu.tw, MSJ: jengms@gate.sinica.edu.tw, YB: yehudab@tauex.tau.ac.il, CSM: mcfadden@g.hmc.edu *Corresponding Author

26 Abstract

27	Background: Our ability to investigate processes shaping the evolutionary diversification of
28	corals (Cnidaria: Anthozoa) is limited by a lack of understanding of species boundaries.
29	Discerning species has been challenging due to a multitude of factors, including homoplasious
30	and plastic morphological characters and the use of molecular markers that are either not
31	informative or have not completely sorted. Hybridization can also blur species boundaries by
32	leading to incongruence between morphology and genetics. We used traditional DNA barcoding
33	and restriction-site associated DNA sequencing combined with coalescence-based and allele-
34	frequency methods to elucidate species boundaries and simultaneously examine the potential role
35	of hybridization in a speciose genus of octocoral, Sinularia.
36	Results: Species delimitations using two widely used DNA barcode markers, <i>mtMutS</i> and 28S
37	rDNA, were incongruent with one another and with the morphospecies identifications, likely due
38	to incomplete lineage sorting. In contrast, 12 of the 15 morphospecies examined formed well-
39	supported monophyletic clades in both concatenated RAxML phylogenies and SNAPP species
40	trees of >6,000 RADSeq loci. DAPC and Structure analyses also supported morphospecies
41	assignments, but indicated the potential for two additional cryptic species. Three
42	morphologically distinct species pairs could not, however, be distinguished genetically. ABBA-
43	BABA tests demonstrated significant admixture between some of those species, suggesting that
44	hybridization may confound species delimitation in Sinularia.
45	Conclusions: A genomic approach can help to guide species delimitation while simultaneously
46	elucidating the processes generating diversity in corals. Results support the hypothesis that
47	hybridization is an important mechanism in the evolution of Anthozoa, including octocorals, and

future research should examine the contribution of this mechanism in generating diversity acrossthe coral tree of life.

50

51 Keywords: hybridization, RADSeq, phylogenetics, coral reefs, taxonomy, Anthozoa,

52 Octocorallia

53

- 54
- 55

56 Background

57 The ability to delimit species is fundamental to the accurate assessment of biodiversity 58 and biogeography, information that is essential for studying their biology as well as for implementing conservation policies. Yet this task is not trivial, as species are often difficult to 59 discriminate for a multitude of reasons. Morphological traits have traditionally been used in 60 classical taxonomy; however, use of characters that might not be diagnostic or are homoplasious 61 62 can confound the interpretation of species boundaries. Cryptic species, particularly those that 63 occur in sympatry, and species that have arisen via hybridization and introgression are often challenging to discriminate without genetic, ecological or behavioral data. DNA barcoding of 64 65 mitochondrial genes has proven useful in many species groups (Hebert et al., 2004a, b), but 66 incomplete lineage sorting and past hybridization events complicate species delimitation based 67 on mitochondrial data alone, particularly in recently diverged taxa (Hickerson et al., 2006; 68 Johnston et al., 2017; McFadden et al., 2017). In addition, mitochondrial markers reflect the 69 history of maternal lineages, which are often incongruent with the species history (Currat et al., 70 2008; Rheindt & Edwards, 2011). The increased resolution of genomic data can potentially 71 disentangle some of these issues, facilitating species delimitation while simultaneously 72 furthering our understanding of processes that generate biodiversity (Sukumaran & Knowles,

2017). Moreover, such an approach may also provide a better evaluation of morphological traits
and insights into their congruence with genetic data.

75 In sessile marine invertebrates, such as corals, congeners often occur in sympatry and occupy similar ecological niches and reef zones. These ecological characteristics combined with 76 77 reproductive modes may lead to increased rates of hybridization among close relatives. 78 Broadcast-spawning species that occur in sympatry often participate in synchronous, mass-79 spawning reproduction events (Babcock et al. 1986; Harrison et al., 1984; Kahng et al. 2011; 80 Richmond & Hunter, 1990). Unless there are prezygotic mechanisms to reproductive isolation, 81 such as gametic incompatibility or asynchronous spawning times, there may be numerous 82 opportunities for hybridization to occur (van Oppen et al., 2002; Willis et al., 1997, 2006). In fact, laboratory crossings of sympatric congeners have produced viable hybrid offspring in several 83 84 species (Slattery et al., 2008; Willis et al., 1997). Hybridization followed by reticulate evolution 85 has been suggested to be an important mechanism generating the species diversity observed in 86 some groups of corals (Combosch & Vollmer, 2015; Diekmann et al., 2001; Frade et al., 2010; Hatta et al., 1999; McFadden & Hutchinson, 2004; Miller & van Oppen, 2003; Richardson et al., 87 88 2008; van Oppen et al., 2001, 2002; Willis et al., 2006). Vollmer and Palumbi (2002), however, 89 suggested that hybridization could yield distinct, new morphotypes that may be reproductively 90 inviable or subject to hybrid breakdown. It is clear that further investigation is needed to 91 determine the potential contributions of hybridization to speciation and morphological 92 innovation in corals.

One particularly speciose group of octocorals (Cnidaria: Anthozoa: Octocorallia) is the
genus *Sinularia* May, 1898. This zooxanthellate genus includes approximately 175 valid species
(WoRMS Editorial Board 2018), 47 of them described just in the last 25 years. They are diverse

96 and abundant throughout the Indo-Pacific, and biodiversity surveys of shallow-water coral reef 97 communities typically report more than 15 co-occurring species of Sinularia, with as many as 38 98 species recorded at some locations (Manuputty & Ofwegen, 2007; Ofwegen, 2002, 2008). 99 Sinularia species are typically most abundant on reef flats and shallow slopes, where single- or 100 multi-species assemblages may dominate the reef substrate (Benayahu, 1995; Benayahu & Loya, 101 1977; Dinesen, 1983; Fabricius, 1998; Tursch & Tursch, 1982). Sinularia can also play an active 102 role in reef biogenesis through deposition of spiculite formed by the cementation of layers of 103 calcitic sclerites (Jeng et al., 2011; Shoham et al. in press). In addition, many Sinularia species 104 produce secondary metabolites used for allelopathy and predator deterrence (Slattery et al., 1999, 105 2001; van Alstyne et al., 1994; Wylie & Paul, 1989), making the genus a rich and diverse source 106 of bioactive natural products (e.g., Blunt et al., 2016). 107 Because of the dominance and importance of Sinularia species across a wide depth 108 gradient (Shoham & Benayahu, 2017) as well as their susceptibility to bleaching-induced 109 mortality (Bruno et al., 2001; Fabricius, 1999; Goulet et al., 2006; Marshall & Baird, 2000), it is 110 of a great interest to better understand their ecology and function on the reefs. Ecological studies, however, are often hampered by the uncertainty of species identifications (McFadden et al., 111 112 2009). Classical taxonomy of Sinularia species is based primarily on morphological features of 113 the colony and the shape and dimension of sclerites (microscopic calcitic skeletal elements) 114 found in different parts of the colony (Fabricius & Alderslade, 2001; McFadden et al., 2009; 115 Verseveldt, 1980). Separation of species using these characters can be subjective, as the complex 116 morphologies of both colonies and sclerites are rarely quantified (Aratake et al., 2012; Carlo et 117 al., 2011). There is also a potential contribution of environmental plasticity to the morphological

variation observed, as has been documented in other octocorals (Kim et al., 2004; Rowley et al.,
2015; Sánchez et al., 2007).

120 The application of molecular systematic and DNA barcoding approaches to the study of species boundaries in *Sinularia* have been only partially successful (McFadden et al., 2009). 121 122 While molecular approaches have revealed that some well-known morphospecies comprise 123 cryptic species complexes (Ofwegen et al., 2013, 2016), it is also the case that numerous 124 morphologically distinct *Sinularia* species share identical haplotypes at barcoding loci 125 (Benayahu et al., 2018; McFadden et al., 2009, 2014). Because mitochondrial genes evolve 126 slowly in Anthozoa (Huang et al., 2008; Shearer & Coffroth, 2008), these markers often simply lack the resolution to distinguish recently diverged species (McFadden et al., 2011, 2014). As a 127 128 result, it is often not possible to conclude with certainty whether morphologically distinct 129 individuals that share identical DNA barcodes represent different octocoral species or 130 morphological variants of a single species. In addition, the reported ability of some species of 131 Sinularia to hybridize in the laboratory (Slattery et al., 2008), raises the possibility that naturally 132 occurring hybridization events could contribute to the observed morphological diversity of this 133 genus, as has been suggested for stony corals (Richards et al., 2008). The true identity of some 134 Sinularia species remains uncertain, and our ability to explore the evolutionary processes leading 135 to diversification of this hyperdiverse lineage are limited by a lack of understanding of species 136 boundaries. In fact, we have a limited understanding of species boundaries for numerous groups 137 of recently diverged corals (e.g., Johnston et al., 2017; McFadden et al., 2017; van Oppen et al., 138 2000).

Octocoral biodiversity surveys conducted recently at Dongsha Atoll, Taiwan, recorded 27
nominal morphospecies of *Sinularia* inhabiting the reef slope down to a depth of 20 m

141	(Benayahu et al., 2018), most of them belonging to the speciose clades "4" and "5C" (McFadden
142	et al., 2009). These two clades include several subclades each characterized by a different suite
143	of morphological characters whose diagnosis is quite confusing (McFadden et al., 2009). While
144	most of these morphospecies could be distinguished using a character-based mitochondrial gene
145	barcode (<i>mtMutS</i>), five distinct morphospecies in clade 5C shared identical haplotypes, and
146	several morphospecies in both clades were represented by more than one haplotype (Benayahu et
147	al., 2018). These morphospecies exemplify a problem common to many corals and raise the
148	following questions: (1) do the observed morphological differences reflect boundaries between
149	species whose mitochondrial haplotypes have not yet diverged or coalesced, or do these
150	differences reflect intraspecific variation? and (2) might the sharing of mitochondrial haplotypes
151	among distinct morphotypes reflect ongoing or past hybridization events?
152	To further explore these questions and to elucidate species boundaries in the Sinularia
153	that co-occur on Dongsha Atoll, we have (1) sequenced an additional, nuclear marker (28S
154	rDNA) that has been shown to be comparable to <i>mtMutS</i> as a species-specific barcode for
155	Sinularia and other octocoral taxa (McFadden et al., 2014); and (2) sequenced restriction-site
156	associated DNA (RADseq) to identify SNPs for multilocus species delimitation analyses using
157	allele-frequency and coalescence-based approaches. Expanding upon a recent study of co-
158	occurring Sinularia species at Dongsha Atoll (Benayahu et al., 2018), we validate morphospecies
159	identifications using a genomic approach, and provide insight into the possible role of
160	hybridization in the evolution of the genus.
161	

162 **Results**

163 Species Delimitation using DNA Barcodes

164	Neither the <i>mtMutS</i> (735 bp) nor the 28S rDNA (764 bp) barcoding marker delimited all
165	morphospecies of Sinularia when considered separately (Fig. 2). Phylogenetic relationships
166	among morphospecies were poorly resolved with low support values and few reciprocally
167	monophyletic groups, especially in clade 5C (Suppl. Fig. 1). Based on a 0.3% genetic distance
168	threshold, the <i>mtMutS</i> barcode identified six molecular operational taxonomic units (MOTUs)
169	among the four morphospecies belonging to clade 4, splitting S. tumulosa and S. ceramensis into
170	two MOTUs each (Fig. 2a). In contrast, 28S rDNA (0.3% threshold) delimited only four MOTUs
171	within clade 4, each of them congruent with morphospecies identifications. The only exception
172	was S. verruca (R41341) from Palau, included as a taxonomic reference, whose mtMutS and 28S
173	sequences were identical to those of S. tumulosa.
174	Among the clade 5C morphospecies, <i>mtMutS</i> delineated eight MOTUs (Fig. 2b). With
175	just two exceptions (D442, Z34695), mtMutS differentiated S. maxima, S. wanannensis, S.
176	lochmodes and S. densa from all other morphospecies (Fig. 2b). A majority of the colonies
177	identified as S. penghuensis and S. slieringsi, both individuals of S. exilis, and seven of eleven S.
178	acuta, however, belonged to a single MOTU, while the remaining four individuals of S. acuta
179	were assigned to a separate MOTU. Two individuals with divergent haplotypes (S. penghuensis
180	D002 and S. slieringsi D439) were each assigned to unique MOTUs.
181	In contrast to <i>mtMutS</i> , 28S delineated only four MOTUs within clade 5C (Fig. 2b). S.
182	penghuensis and S. slieringsi, which were not separated using mtMutS, were separated into two
183	distinct MOTUs; four of the S. penghuensis colonies belonged to a MOTU that was well
184	separated from all others, while the other five-including the holotype (Z34706) and both
185	paratypes—shared identical genotypes with S. slieringsi. A third MOTU included S. acuta, S.

186	densa and S. lochmodes along with S. abrupta and one S. exilis. The fourth MOTU included all
187	individuals of S. maxima and S. wanannensis plus the second S. exilis.
188	Several other colonies also had <i>mtMutS</i> or 28S genotypes that were not consistent with
189	their morphospecies identity. The holotype of S. daii from Penghu (Z34665) had mtMutS and
190	28S sequences identical to those of some S. penghuensis. Among the three colonies identified as
191	S. abrupta, D329 had a mtMutS sequence matching S. wanannensis but a 28S sequence matching
192	S. acuta; Z33623 (from Penghu) had a mtMutS sequence matching S. acuta but its 28S matched S.
193	densa; and D019 was identical to S. acuta at both loci. The holotype of S. wanannensis from
194	Penghu (Z34695) had a 28S sequence consistent with other individuals of that species, but shared
195	a mtMutS haplotype with S. penghuensis and S. slieringsi (Fig. 2b).
196	
197	RADSeq Data Statistics
198	A total of 289,373,374 reads were obtained for 95 Sinularia samples. After trimming in
199	both Stacks and pyRAD, 86% of reads were retained (247,873,622). The mean number of reads
200	per individual was 2,609,196 \pm 627,314. For each clade, the number of loci and the number of
201	SNPs obtained increased considerably when the number of shared heterozygous sites (p) was
202	increased and both the clustering threshold (c) and individual occupancy per locus (m) were
203	decreased (Table 2). Notably, a substantial increase in both the number of loci and SNPs
204	obtained occurred when p was set to 0.25 at a clustering threshold (c) of 0.85. The number of
205	loci obtained ranged from 73 to 28,179 for clade 4 and 115 to 23,946 for clade 5C depending
206	upon parameters used in pyRAD analyses (Table 2). The number of variable SNPs obtained
207	ranged from 382 to 251,615 for clade 4 and 885 to 329,837 for clade 5C (Table 2).
208	

209 Phylogenetic Inference and Species Delimitation

210 In contrast to the *mtMutS* and 28S rDNA trees (Suppl. Fig. 1), a majority of the identified 211 morphospecies formed well-supported monophyletic clades in both clade 4 and 5C phylogenies 212 constructed with the c 0.85, p 0.25, and m 0.75 RADSeq datasets (clade 4: 6,343 loci, clade 5C: 213 8,060 loci; Figs. 3-4). The maximum clade credibility species trees produced from SNP data in 214 the SNAPP analyses were largely congruent with the RAxML trees generated from concatenated 215 data (Fig. 5). However, in clade 4, S. pavida and S. ceramensis were reciprocally monophyletic 216 in the ML tree but not in the maximum clade credibility SNAPP species tree, although this 217 relationship was evident in 30% of the alterative SNAPP tree topologies (in red, Fig. 5A). In 218 clade 5C, S. acuta was sister to S. penghuensis and S. slieringsi in the ML tree, but not in the 219 maximum clade credibility species tree, although this relationship was evident in 25% of the 220 alternative SNAPP tree topologies (in red and green, Fig. 5B). For clade 4, 35% of the SNAPP 221 trees obtained were alternative topologies to the maximum clade tree and 37% of trees had 222 different topologies compared to the maximum clade credibility tree for clade 5C (Fig. 5). 223

224 *Clade 4*

Species delimitation analyses agreed with the currently defined morphospecies in *Sinularia* clade 4 (*S. ceramensis*, *S. humilis*, *S. pavida*, and *S. tumulosa*), and with the four
MOTUs identified by the 28S rDNA barcoding marker (Fig. 2a). Consistent with the barcoding
results, *S. verruca* was genetically indistinguishable from *S. tumulosa*. The optimal number of *K*clusters suggested by the DAPC analyses was four (BIC=120.4, Suppl. Fig. 2), and the DAPC
plot revealed no overlap among these four distinct clusters (Fig. 6a). Further support for group
assignment can be seen in the assignment plots, as all individuals were successfully re-assigned

232	into their respective clusters (Suppl. Fig. 3). In addition, the Distruct plot clearly illustrated little
233	to no admixture among these four species (Fig. 3). Upon further Structure analysis, little to no
234	admixture was also revealed between two sub-clades of S. tumulosa (Fig. 3), suggesting that S.
235	tumulosa might consist of two species. Other methods also support this result. First, following a
236	one-species model (MLE=-1119), DAPC+1 was the second most likely (MLE=-1291) species
237	model according to BFD* analyses (Table 3). The DAPC+1 model included species denoted by
238	DAPC, plus two sub-clades of S. tumulosa. Second, most of the individuals of these two sub-
239	clades formed two separate groupings in the DAPC plot, although there was some overlap
240	among individuals (Fig. 6a). Finally, S. tumulosa was divided into two well-supported,
241	reciprocally monophyletic clades (sp. a and b) in both concatenated and species tree phylogenies,
242	which match the <i>mtMutS</i> results (Figs. 2a, 3 and 5a). It is possible that these represent two
243	cryptic species.
243 244	cryptic species. Twenty-four separate ABBA-BABA tests were performed on clade 4 (Fig. 7, Suppl. File
244	Twenty-four separate ABBA-BABA tests were performed on clade 4 (Fig. 7, Suppl. File
244 245	Twenty-four separate ABBA-BABA tests were performed on clade 4 (Fig. 7, Suppl. File 1). The average number of loci shared across taxa in each test was 3313 ± 556 (Suppl. File 2).
244 245 246	Twenty-four separate ABBA-BABA tests were performed on clade 4 (Fig. 7, Suppl. File 1). The average number of loci shared across taxa in each test was 3313 ± 556 (Suppl. File 2). The ABBA-BABA tests indicated admixture between <i>S. tumulosa</i> and <i>S. pavida</i> lineages (α =3.0,
244 245 246 247	 Twenty-four separate ABBA-BABA tests were performed on clade 4 (Fig. 7, Suppl. File 1). The average number of loci shared across taxa in each test was 3313 ± 556 (Suppl. File 2). The ABBA-BABA tests indicated admixture between <i>S. tumulosa</i> and <i>S. pavida</i> lineages (α=3.0, Z= 3.44-4.10, D=0.11; tests 10, 18). Eleven of thirteen individuals of <i>S. tumulosa</i> (both clades a
244 245 246 247 248	Twenty-four separate ABBA-BABA tests were performed on clade 4 (Fig. 7, Suppl. File 1). The average number of loci shared across taxa in each test was 3313 ± 556 (Suppl. File 2). The ABBA-BABA tests indicated admixture between <i>S. tumulosa</i> and <i>S. pavida</i> lineages (α =3.0, Z= 3.44-4.10, D=0.11; tests 10, 18). Eleven of thirteen individuals of <i>S. tumulosa</i> (both clades a and b) appeared to be strongly admixed with <i>S. pavida</i> (α =3.0, Z=3.11-4.55, D=0.11-0.18; tests
244 245 246 247 248 249	Twenty-four separate ABBA-BABA tests were performed on clade 4 (Fig. 7, Suppl. File 1). The average number of loci shared across taxa in each test was 3313 ± 556 (Suppl. File 2). The ABBA-BABA tests indicated admixture between <i>S. tumulosa</i> and <i>S. pavida</i> lineages (α =3.0, Z= 3.44-4.10, D=0.11; tests 10, 18). Eleven of thirteen individuals of <i>S. tumulosa</i> (both clades a and b) appeared to be strongly admixed with <i>S. pavida</i> (α =3.0, Z=3.11-4.55, D=0.11-0.18; tests 11, 14-17, 19-24, Suppl. File 2). Upon further examination with partitioned D-statistics,
244 245 246 247 248 249 250	Twenty-four separate ABBA-BABA tests were performed on clade 4 (Fig. 7, Suppl. File 1). The average number of loci shared across taxa in each test was 3313 ± 556 (Suppl. File 2). The ABBA-BABA tests indicated admixture between <i>S. tumulosa</i> and <i>S. pavida</i> lineages (α =3.0, <i>Z</i> = 3.44-4.10, D=0.11; tests 10, 18). Eleven of thirteen individuals of <i>S. tumulosa</i> (both clades a and b) appeared to be strongly admixed with <i>S. pavida</i> (α =3.0, <i>Z</i> =3.11-4.55, D=0.11-0.18; tests 11, 14-17, 19-24, Suppl. File 2). Upon further examination with partitioned D-statistics, introgression appeared to have occurred from <i>S. pavida</i> into both <i>S. tumulosa</i> clades (α =3.0, <i>Z</i> =

254	Species delimitation analyses supported eight species in Sinularia clade 5C (S.
255	acuta/abrupta, S. densa, S. exilis, S. lochmodes, S. maxima, S. penghuensis/daii, S. slieringsi, and
256	S. wanannensis); S. abrupta was not distinguished from S. acuta, and the holotype of S. daii was
257	placed with S. penghuensis. In addition, five individuals identified as S. penghuensis, including
258	the holotype and paratypes, grouped with S. slieringsi. The optimal number of K clusters
259	suggested by the DAPC analyses was eight (BIC=377, Suppl. Fig. 2), and the DAPC plot
260	revealed no overlap among these distinct clusters (Fig. 6b). Further support for group assignment
261	can be seen in the assignment plots, as all individuals were successfully re-assigned into their
262	respective clusters (Suppl. Fig. 4). In addition, the Distruct plot clearly illustrated little to no
263	admixture between these eight species (Fig. 4), except that both individuals of S. exilis appeared
264	to be admixed with at least three different species, including S. densa, S. maxima, and S.
265	wanannensis. Individuals of S. abrupta (D329) and the holotype of S. wanannensis (Z34695)
266	whose 28S barcode sequences were incongruent with their mtMutS haplotypes (Fig. 2b) also
267	showed some evidence of admixture with S. maxima and S. densa, respectively.
268	It is possible that S. slieringsi represents two cryptic species, although results are not
269	conclusive. Upon further Structure analysis, little to no admixture was revealed between two
270	sub-clades of S. slieringsi; however, two individuals (one of them a paratype of S. penghuensis,
271	Z34681) were admixed (Fig. 4). Following a one-species model (MLE=-1298), DAPC+1 was the
272	second most likely (MLE=-1543) species model according to BFD* analyses (Table 3). The
273	DAPC+1 model included species designated by DAPC, plus the two groups of S. slieringsi.
274	Second, individuals of S. slieringsi formed two separate groupings in the DAPC plot, although
275	there was some overlap among individuals (Fig. 6b). S. slieringsi also split into two reciprocally

monophyletic clades in the species tree phylogeny (Fig. 5b), but not in the concatenated RAxML
phylogeny (Fig. 4).

278	Fifty separate ABBA-BABA tests were run on clade 5C (Fig. 8, Suppl. File 1). The
279	average number of loci shared across taxa in each test was 1745 ± 216 (Suppl. File 2). The
280	ABBA-BABA tests indicated admixture between the S. penghuensis/S. daii clade and one clade,
281	clade b, of <i>S. slieringsi</i> (α=3.0, Z scores =4.51, D=-0.15; test 14). Most individuals in the latter
282	clade (which included the holotype of S. penghuensis) appeared to be strongly admixed as
283	evidenced by ABBA-BABA tests (α=3.0, Z =3.1-5.5, D=-0.13- ⁻ 0.20; tests 15, 19-26, 28). As
284	suggested by the Structure analysis, the holotype of S. wanannensis (Z34695) showed strong
285	admixture with S. densa (α =3.0, Z=3.13, D=0.14; test 9), but not with S. maxima (α =3.0, Z=0.25,
286	D=-0.01; test 2). It was also not admixed with either <i>S. penghuensis</i> or <i>S. slieringsi</i> (α =3.0,
287	Z=0.24-0.61, D=-0.0.3-0.01; tests 46-47), even though it shared the same <i>mtMutS</i> haplotype as
288	both of those species. Although S. abrupta D329 showed some evidence of admixture with S.
289	maxima and S. densa in the Structure analysis, the ABBA-BABA tests indicated that it was not a
290	hybrid (α=3.0, Z=1.59-2.78, D=0.10-0.18; tests 32, 45). The <i>S. abrupta</i> specimen Z33623 that
291	shared a 28S sequence with S. densa was also not significantly admixed with that species (α =3.0,
292	Z=2.11, D=0.13, test 44), whereas <i>S. abrupta</i> D19 was (α=3.0, Z=312, D=0.15; test 40). One
293	individual of <i>S. acuta</i> , D450, was also admixed with <i>S. densa</i> (α =3.0, Z=3.21, D=0.16; test 37).
294	Notably, the Distruct plot showed strong admixture of the two S. exilis specimens with S. densa,
295	S. maxima, and S. wanannensis (Fig. 4). However, ABBA-BABA tests suggested that these
296	individuals were not significantly introgressed with those or any other species (α =3.0, Z=0.25-
297	2.96, D=-0.15-0.04; tests 0-2, 5-6, 8, 48-49). Overall, the ABBA-BABA tests indicated that at
298	least 14 individuals were significantly introgressed with other species at an α =3.0; however, we

299 note that D statistics for several other tests also deviated considerably from 0, although they were 300 not significant at α =3.0.

301

302 Discussion

303 Species Delimitations

304 The different species delimitation methods based on RADseq data resulted in incongruence in the number of species suggested to be present among those sampled at Dongsha 305 306 Atoll in each of Sinularia clades 4 and 5C. BFD* analysis indicated that for each clade the most 307 likely model was a one-species model, whereas DAPC indicated that four species were present in 308 clade 4 and eight were present in clade 5C. It seems unlikely that only a single species exists in 309 each of clades 4 and clade 5C because there is little overlap among groups in the DAPC plots 310 and there is strong genetic structure shown in the Structure analyses. Furthermore, there are well-311 supported clades in both ML and species trees, many of them congruent with distinct 312 morphologies (Benayahu et al., 2018). The suggestion by BFD* analysis of only one species in each of the two clades is likely spurious due to the relatively few loci included in those analyses. 313 314 Because of the computational time it took to run each SNAPP species-delimitation model, only 315 complete datasets were used, i.e., those that included no missing data, and these contained 316 relatively few SNPs (< 200).

All other species delimitation analyses supported four or five species of *Sinularia* in clade 4 and eight or nine in clade 5C among the samples that were sequenced. Within clade 4, RADseq and both barcoding markers discriminated *S. humilis*, *S. ceramensis* and *S. pavida* from one another and from all specimens identified as *S. tumulosa*. Both the *mtMutS* barcode and RADseq results further delineated two distinct clades within *S. tumulosa*, with hybridization tests

322	suggesting that both are admixed with S. pavida. Within clade 5C, species delimitation analyses
323	clearly distinguished S. lochmodes, S. densa, S. wanannensis and S. maxima from all other
324	species, and each of those morphospecies also had unique haplotypes at both barcoding loci. S.
325	acuta was similarly delineated from all other morphospecies with the notable exception of S.
326	abrupta. Two of three individuals of S. abrupta shared a mtMutS haplotype with S. acuta, and
327	could not be distinguished from that species in the DAPC and Structure analyses. A third colony
328	identified as S. abrupta (D329) showed signs of admixture in both Structure and ABBA-BABA
329	analyses, suggesting a possible hybrid origin. As S. acuta and S. abrupta differ markedly in both
330	colony growth form and sclerite morphology (Benayahu et al., 2018), the apparent lack of
331	genetic distinction between these two morphospecies warrants further study.
332	The remaining morphospecies in clade 5C could not be separated clearly using either
333	barcode marker, and the multilocus analyses suggested that admixture may contribute to the
334	difficulty distinguishing them. Although both individuals of S. exilis had unique mtMutS
335	haplotypes, they shared 28S genotypes with S. densa and S. wanannensis. Phylogenetic analyses
336	placed S. exilis as the sister to S. wanannensis, but Structure suggested considerable admixture
337	with both S. maxima and S. densa. As ABBA-BABA tests did not strongly support a hybrid
338	origin of S. exilis, incomplete lineage sorting may better explain why this species shares
339	genotypes with other species in the clade. Hybridization was, however, supported as a possible
340	explanation for the confusing relationship between S. penghuensis and S. slieringsi, two
341	morphospecies that shared several different <i>mtMutS</i> haplotypes, one of which was also shared by
342	S. daii. Five colonies of S. penghuensis, including the holotype (ZMTAU Co34706) and two
343	paratypes (ZMTAU Co3464, Co34681), shared a 28S genotype with S. slieringsi, while the other
344	four shared a very different 28S genotype with the holotype of S. daii (ZMTAU Co 34665).

345	Multilocus species delimitation analyses separated the latter four S. penghuensis plus S. daii
346	from a large clade that included all S. slieringsi plus the S. penghuensis type specimens.
347	Structure and DAPC further separated that large clade into two sub-clades, suggestive of possible
348	cryptic species. ABBA-BABA tests indicated that a majority of the individuals of S. slieringsi
349	and S. penghuensis in one of those two sub-clades are admixed with the S. penghuensis-S. daii
350	clade.

- 351
- 352 Evidence for Hybridization in Sinularia

353 It is important to use a phylogenetic framework in assessments of introgressive hybridization. A species that appears admixed could have a close relative harboring a stronger 354 355 signal of admixture (Eaton et al., 2015), and if that species is not included in analyses, then the 356 admixture will be incorrectly attributed to a closely-related taxon (Durand et al., 2011; Eaton & 357 Ree, 2013; Rogers & Bohlender, 2015). In addition, it can be challenging to distinguish 358 introgression between two species from "secondary genomic admixture", which occurs when one 359 species shares recent ancestry with a true hybridizing lineage, thus causing that species to also 360 appear as if it were admixed (Eaton & Ree, 2013; Eaton et al., 2015). Although the current study 361 sequenced most of the clade 4 and 5C morphospecies that occur at Dongsha Atoll, there were at least two morphospecies in each clade that were not included in the analyses. In addition, there 362 363 are other Sinularia species in phylogenetically distinct clades that also inhabit this atoll, and 364 these too were not included in the analyses. While our results provide evidence for hybridization, 365 we acknowledge the possibility of incorrectly attributing admixture to a close relative of the true 366 hybridizing lineage, as not all possible Sinularia morphospecies were included in these analyses.

Because of the difficulties interpreting ABBA-BABA tests even when using a 367 368 phylogenetic framework (Eaton et al., 2015), it is best to focus on the strongest signals of 369 admixture (Eaton, 2018). The signal of introgression was strong in clade 4, with both clades of S. 370 tumulosa showing admixture with S. pavida; no other hybridization tests in this clade were 371 significant, with D-statistics centered around zero and Z scores fairly low. In contrast, it was a bit 372 more difficult to confidently determine which Sinularia species are hybridizing with others in 373 clade 5C, and perhaps this is due to the use of an incomplete phylogeny. There were some cases 374 where the signal of admixture was strong (e.g., S. acuta with S. densa, S. slieringsi with S. 375 *penghuensis*) and supported by other tests in addition to ABBA-BABA. However, there were 376 also cases where species appeared admixed, but the ABBA-BABA results were not significant at 377 an alpha of 3.0. For example, Structure analyses suggested there was considerable admixture 378 between S. wanannensis and S. exilis, and at least one S. exilis individual had the same 28S 379 barcode as S. wanannensis, but the ABBA-BABA tests were not significant. Perhaps with more 380 S. exilis individuals in the analyses, or with the addition of the missing morphospecies of Sinularia, a more complete picture would emerge of whether these species share genes as a result 381 382 of incomplete lineage sorting or hybridization. Because the current phylogenetic analysis did not 383 include all species, it is possible that the species identified as the source of introgressed alleles 384 may simply be close relatives of the actual parental species. Nevertheless, the phylogenetic 385 framework was a useful approach in determining that hybridization appears to be an important 386 process contributing to the diversification of this speciose group of soft corals. 387 Incongruence between the RAxML and SNAPP species trees (both built using 25% 388 missing data) may provide further support for hybridization among Sinularia species. In the

389 clade 4 SNAPP species tree, S. ceramensis was sister to a clade of S. pavida plus S. tumulosa,

390 whereas in the ML tree built using concatenated RAD loci, S. ceramensis was sister to S. pavida. 391 In clade 5C, S. acuta was sister to S. penghuensis and S. slieringsi in the ML tree, but sister to all 392 other species in the SNAPP species tree. Notably, relationships that differed between analyses 393 showed evidence of admixture in the ABBA-BABA results. Although incomplete lineage sorting 394 can lead to discordance between phylogenies built using concatenated data vs. species tree 395 methods (Edwards et al., 2007; Kubatko & Degnan, 2007; Maddison, 1997), hybridization has 396 also been shown to produce incongruence among gene trees (Edwards et al., 2007; Kubatko, 397 2009). Introgressive hybridization may also explain the alterative topologies recovered in the 398 SNAPP species tree. Johnston et al. (2017) suggested that alternative trees emerging from 399 SNAPP analyses of corals in the genus *Porites* could be due to introgressive hybridization, 400 incomplete lineage sorting, or contamination by loci of symbionts (e.g., Symbiodiniaceae). Our 401 results, however, indicate that introgressive hybridization likely explains the discordance 402 observed, as the species displaying different relationships in the SNAPP trees were suggested to 403 be hybridizing. Results further lend support to the idea that diversification of species-rich lineages may not be a solely bifurcating process. As such, phylogenetic tree reconstructions that 404 405 include taxa that do not follow the usual assumption of a bifurcating process of evolution can 406 lead to incongruence among gene trees and contribute to difficulties in resolving phylogenies.

407

408 Morphospecies versus Genetic Data

Incongruence between morphological and molecular evidence for species boundaries is
common in corals (e.g., Forsman et al., 2009, 2010; Keshavmurthy et al., 2013). Contributing
factors include environmental plasticity (e.g., Paz-García et al., 2015) and frequent homoplasy of
morphological characters (e.g., Forsman et al., 2009) as well as the slow rate of mitochondrial

gene evolution that has made "universal" molecular barcodes such as COI relatively invariant 413 414 among congeneric species (Huang et al., 2008; McFadden et al., 2011; Shearer & Coffroth, 415 2008). When barcodes fail to discriminate distinct morphospecies it may be because the markers lack appropriate variation, or, alternatively, because morphological variation within a species has 416 417 been incorrectly interpreted as evidence of a species boundary (McFadden et al., 2017). Attempts 418 to integrate the two different sources of evidence have met with some success, as demonstrated 419 by Benayahu et al. (2018). By combining assessment of morphology with a character-based 420 barcoding approach, that study identified at least 27 species of Sinularia from Dongsha Atoll, 421 including those used in the current study. In several cases in which distinct morphotypes shared identical *mtMutS* haplotypes, however, they attributed the lack of congruence to invariance of the 422 423 barcode marker (i.e., incomplete lineage sorting), and delimited species using morphological characters. In two such cases, species delimitation methods using RADseq data also failed to 424 425 support the genetic distinction between discrete morphotypes, namely S. acuta and S. abrupta, 426 and S. slieringsi and S. penghuensis. Moreover, our inclusion of type specimens of S. penghuensis and S. daii as taxonomic references revealed no genetic distinction between the 427 428 material identified here as S. slieringsi and the S. penghuensis types, or between the holotype of 429 S. daii and additional colonies identified as S. penghuensis. In addition, a colony from Palau 430 identified as S. verruca (R41341) could not be distinguished genetically from one of the two 431 clades of S. tumulosa. Clearly, additional taxonomic work integrating both morphological and 432 molecular approaches will be necessary to clarify the relationships among these taxa. 433 Morphological discrimination of species is complicated in *Sinularia* and many other soft 434 corals due to the continuous nature of many of the characters used to diagnose species. Colony

435 growth forms and the intricate shapes of sclerites are difficult to quantify and may present a

continuum of variation, as do morphometric characters such as the sizes of sclerites commonly 436 437 used in the literature (e.g. Verseveldt, 1980). Many of the species examined here, including S. 438 tumulosa, S. verruca, S. acuta and S. daii, were described from single exemplars (Benayahu & 439 Ofwegen, 2011; Manuputty & Ofwegen, 2007; Ofwegen, 2008), and therefore no data exist on the possible range or limits of morphological variation they exhibit, potentially confounding 440 441 efforts to discriminate them from other similar species. Hybridization also offers a possible explanation for the lack of congruence between morphological and molecular determinations of 442 443 species identity. As has been suggested for some coral genera, hybridization can lead not only to 444 morphologically distinct or intermediate phenotypes (*Porites*: Forsman et al., 2017; Acropora: 445 van Oppen et al., 2000, 2002; Vollmer & Palumbi, 2002), but also to F1 hybrids that exhibit characters of both parental species (Slattery et al., 2008; Vollmer & Palumbi, 2002). In a 446 naturally occurring hybrid zone in Guam, for example, F1 hybrids of S. maxima and S. 447 448 polydactyla were found to contain a mix of sclerites resembling those of both parental species 449 (Slattery et al., 2008). Perhaps mechanisms such as these add to the confusion in morphospecies 450 identification, which is often pervasive in *Sinularia* and other octocorals. Although it is currently 451 unknown whether or not hybridization generates new species or asexual lines in the genus 452 Sinularia, admixture between Sinularia species occurs, and perhaps contributes to the range of 453 morphotypes observed in the genus.

454

455 Utility of DNA Barcoding in Corals

As numerous other studies have now cautioned, none of the single-gene molecular
barcodes currently used to help guide species identifications in octocorals successfully delimit all
species (Baco & Cairns, 2012; Herrera & Shank, 2016; McFadden et al., 2011, 2014; Pante et al.,

459 2015), particularly when genetic distance thresholds are used to decide species boundaries. For 460 example, in *Sinularia* clade 5C only four MOTUs were identified among eight morphospecies 461 using the 28S marker, whereas *mtMutS* resolved eight MOTUs, but not all of them were congruent with morphospecies and RADSeq delimitations. Such lack of concordance among 462 463 different molecular markers is not uncommon in corals and in recently diverged clades more 464 generally (McFadden et al., 2014; Prada et al. 2014; Radice et al., 2016; van Oppen et al. 2001), a result that is likely due to incomplete lineage sorting. For octocorals, a consensus has emerged 465 466 that mitochondrial and rDNA barcodes may be useful in species assessments for some taxa (e.g., 467 McFadden et al., 2014; Pante et al., 2015), but not all, and that multiple markers and other lines of evidence need to be considered when delimiting species (McFadden et al., 2017). Genomic 468 469 approaches such as RADseq are effective (Herrera & Shank, 2016; Pante et al., 2015), but still prohibitively expensive and impractical to use for the routine species identification work 470 471 required of biodiversity surveys. Alternatively, once species boundaries have been validated 472 using such approaches, it may be possible to identify morphological or simple molecular characters that are species-diagnostic. As discussed above, however, the continuum of variation 473 474 in morphological traits of corals complicates the search for diagnostic characters, and in some 475 recently discriminated octocoral taxa none have yet been identified (McFadden et al., 2017). 476 Single-gene barcode markers such as *mtMutS* and 28S offer diagnostic nucleotide 477 characters that can be used to identify cryptic taxa (McFadden et al., 2011). When Benayahu et 478 al. (2018) applied a character-based *mtMutS* barcode to the *Sinularia* species found at Dongsha, 479 the only morphospecies that could not be discriminated were the same ones for which the current 480 study also found incongruence between RAD clades and morphospecies designations: S. acuta, S. 481 abrupta, S. penghuensis, S. daii and S. slieringsi. A compound, character-based barcode that

combines *mtMutS* with 28S, however, yields diagnostic characters that discriminate each of the 482 483 Sinularia clades identified by RADseq, including both sub-clades of S. tumulosa and S. slieringsi 484 (Suppl. Fig. 5). Once species boundaries have been validated using integrated, genomic approaches such as those applied here, use of simple character-based barcodes to identify 485 morphologically cryptic species may be more time- and cost-effective than genomic approaches. 486 487 Assignment of character-based barcodes, however, requires a priori recognition of species boundaries, as well as screening of a sufficient number of individuals to identify polymorphic 488 489 characters.

490

491 Future Research Directions

492 Further investigation is needed to determine the evolutionary processes responsible for generating the high species diversity in the genus *Sinularia*, but a necessary first step is to 493 494 understand how many species there are and where they are distributed. With accurate species 495 identifications utilizing both classical taxonomy and advanced genomic techniques, it will be possible to address questions pertaining to how and when Sinularia diversified into coral reef 496 497 environments and why species in this genus appear to be so successful at co-existing on one reef. 498 One example of an intriguing question is whether the high diversity of Sinularia was generated 499 in sympatry through mechanisms such as hybrid speciation or whether species have diverged in 500 allopatry and then colonized the same reefs. With the advent of new genomic techniques such as 501 RADSeq and target-capture genomics (e.g., Quattrini et al., 2018), we can begin to examine how 502 pervasive hybridization is on coral reefs, particularly because F1 hybrids and their progeny may 503 be more fit than the parent populations, and hybrid vigor may help in the maintenance and 504 resilience of coral reef diversity (Slattery et al., 2008). Using a genomic approach can help to

guide species delimitation while simultaneously shedding light on the processes generating
diversity in this genus, just one of many hyperdiverse coral lineages (e.g., the scleractinians *Acropora, Porites, Pocillopora* and the octocorals *Dendronephthya, Lobophytum* and *Sarcophyton*) in which ecologically similar congeners co-occur in high numbers on coral reefs
throughout the Indo-Pacific.

510

511 Conclusions

512 Delimiting species is a critical first step in documenting the biodiversity of ecologically 513 important corals, such as species in the genus *Sinularia*. This study demonstrates the utility of 514 using genomic approaches to delimit species within a hyperdiverse lineage of soft corals and to 515 examine simultaneously whether hybridization may be contributing to its diversification. 516 Although there was some incongruence among datasets and species delimitation methods, we can confidently conclude that the sequenced individuals represent at least four species of 517 518 Sinularia in clade 4 and eight species in clade 5C (McFadden et al. 2009), with the potential for 519 one additional cryptic species in each clade. The results point to hybridization as an important 520 source of diversification in *Sinularia*, and suggest that this mechanism may produce hybrids with 521 morphologies intermediate to those of their parental species, contributing to the difficulty of 522 assigning species based on morphology in this and other coral genera (Forsman et al., 2017; 523 Fukami et al., 2004; Miller & van Oppen, 2003; Slattery et al., 2008). Furthermore, our results 524 raise the possibility that hybrid speciation (i.e., reticulate evolution via introgressive 525 hybridization) is one mechanism that has contributed to the diversity of octocorals. 526

527 Methods

528 Specimen Collection and Preparation

529	Colonies of Sinularia were collected using SCUBA during biodiversity surveys
530	conducted at Dongsha Atoll Marine National Park (Taiwan) in 2011, 2013 and 2015 (Benayahu
531	et al., 2018). Collections were made at 13 sites in the shallow fore-reef zone (3-21 m)
532	surrounding the 25-km diameter atoll (Fig. 1). During the 2015 survey we specifically targeted
533	common morphospecies belonging to clades 4 and 5C (McFadden et al., 2009). Following
534	collection, small subsamples of tissue were preserved in 95% EtOH, and the remainder of the
535	specimen was preserved in 70% EtOH. All vouchers have been deposited in the Steinhardt
536	Museum of Natural History, Tel Aviv University, Israel (ZMTAU, Suppl. File 3). To identify
537	morphospecies, sclerites were isolated from colonies by dissolving tissue in 10% sodium
538	hypochlorite and examined using either light microscopy or, when necessary, scanning electron
539	microscopy (SEM) (Benayahu et al., 2018). The morphological IDs were made by direct
540	comparison to type material when available. Specimens belonging to 13 Sinularia
541	morphospecies, four from clade 4 and nine from clade 5C, were selected for further species
542	delimitation analyses. Seven specimens collected in previous biodiversity surveys of the Penghu
543	Archipelago, Taiwan (Benayahu et al., 2012) and Palau (McFadden et al., 2014), including
544	original type material of S. penghuensis (ZMTAU Co34643, Co34706, Co34681), S.
545	wanannensis (ZMTAU Co34695) and S. daii (ZMTAU Co34665), were also included as
546	taxonomic references (Table 1; Suppl. File 3).
547	DNA was extracted from 95 Sinularia specimens, and quantified using a Qubit v 2.0
548	fluorometer (Broad Range Assay Kit). Quality was assessed by running 100 ng of DNA for each
549	sample on a 1% agarose gel, and checked with a Nanodrop spectrophotometer. Concentration of
550	high-quality (230/260 and 260/280 ratios >1.8) DNA was normalized to 20 ng per ul and sent to

551	Floragenex Inc (Eugene, OR) for RADSeq library preparation. DNA libraries were constructed
552	for each of the 95 samples using the 6-cutter PstI enzyme, and then split into two for sequencing
553	100 bp SE reads on two full lanes of an Illumina HiSeq2500 (University of Oregon's Genomics
554	and Cell Characterization Core Facility lab). In addition to RADseq, two gene regions (mtMutS,
555	28S rDNA) used widely for barcoding in octocorals were PCR-amplified and Sanger-sequenced
556	using published primers and protocols (McFadden et al., 2011, 2014).
557	
558	Phylogenetic Inference and Species Delimitation using DNA Barcodes
559	mtMutS and 28S sequences of the Sinularia species were each aligned using the L-INS-i
560	method in MAFFT (Katoh & Toh, 2008), and pairwise genetic distances (Kimura 2-parameter)
561	among sequences were calculated using the DNADist program in PHYLIP v. 3.69 (Felsenstein,
562	2005). MOTHUR v 1.29 (Schloss et al., 2009) was used to delimit molecular operational
563	taxonomic units (MOTUs) based on a genetic distance threshold of 0.3% applied separately to
564	mtMutS and 28S (e.g., McFadden et al., 2014). Phylogenetic trees were constructed separately
565	for <i>mtMutS</i> and 28S rDNA using maximum likelihood methods (Garli; Zwickl, 2006) (Suppl. Fig.
566	1). jModelTest (Darriba et al., 2012) was used to identify the best models of evolution (AIC
567	criterion) to use in these analyses (<i>mtMutS</i> : HKY + G; 28S rDNA: HKY + I).
568	
569	Phylogenetic Inference and Species Delimitation using RADSeq Data

570 We produced several different RADSeq locus datasets from the *Sinularia* material (Suppl. 571 Files 4-5; all tree files on datadryad). Datasets chosen for species delimitation and phylogenetic 572 analyses included those loci from pyRAD parameter settings that maximized the number of 573 phylogenetically informative sites and reduced the chances for including paralogous loci (Table

574 2). Thus, for most analyses, we used data produced from the following parameter settings: *c* 0.85,
575 *p* 0.25, and *m* 0.75 for each of clades 4 and 5C.

576	RAxML v8 (Stamatakis, 2006) was used to create maximum likelihood (ML)
577	phylogenies for clades 4 and 5C. A GTR+G+I model as suggested by the Akaike Information
578	Criterion [(AIC=371918), JModelTest v2, Darriba et al., 2012] was used. A total of 20 ML
579	searches and 200 bootstrap replicates were performed using rapid bootstrapping on concatenated
580	loci. RAxML analyses were performed (12 analyses per clade) for each of the different datasets
581	produced by pyRAD with different parameter combinations and clustering thresholds (Table 2,
582	Suppl. Files 4-5).
583	Discriminant Analysis of Principal Components (DAPC) was performed using the
584	package 'adegenet' v2.0 in R (Jombart & Collins, 2015; R Core Team, 2012) to explore genetic
585	structure in both clades 4 and 5C. The DAPC method, used previously in species delimitation
586	analyses (Pante et al., 2015), forms clusters based on genetic similarity of each multilocus
587	genotype, without considering a model of evolution. We first used the function <i>find.clusters</i> to
588	find the best number of K genetic clusters in unlinked SNP datasets for each clade. <i>Find.clusters</i>
589	was performed on $K=20$ for each clade. The lowest value of the Bayesian Information Criterion
590	(BIC) statistic was used to detect the optimal number of K clusters. These clusters were then
591	analyzed using DAPC, which first transforms the data using principal components analysis and
592	then performs a Discriminant Analysis on the retained principal components. The optim.a.score
593	function was used to determine how many PC axes needed to be retained (Suppl. Fig. 6). Six
594	PCAs and four discriminant functions were retained for clade 4; and six PCAs and six
595	discriminant functions were retained for clade 5C (Suppl. Fig. 7). Scatterplots of discriminant
596	functions were then created. We also used the function assignplot to visualize individual

597	membership in each K cluster, which can help show the accuracy of the cluster assignments and
598	identify any individuals that have high probabilities of membership in >1 cluster.
599	The Bayesian model-based clustering approach, Structure v2.3 (Pritchard et al., 2000),
600	was also used to infer the number of Sinularia species. The program clusters individuals based
601	on genetic variation alone, without any other prior information such as geographic origin or
602	population assignment. Structure was performed on unlinked SNP datasets for both Sinularia
603	clades 4 and 5C, and run in parallel using StrAutoParallel v 1.0 (Chhatre & Emerson, 2017)
604	using an admixture model with correlated allele frequencies. Burnin was set to 250,000 followed
605	by 1,000,000 MCMC generations. The inferred number of populations (K) was set from 1 to 8
606	for clade 4 and 1 to 10 for clade 5C; 20 runs of each K were conducted. We plotted the
607	population structure assignments of $K=4$ for clade 4 and $K=8$ for clade 5C, because these were
608	the number of genetic clusters suggested by DAPC analyses. Multiple runs of K were aligned
609	with CLUMPP v 1.2 (Jakobsson & Rosenberg, 2007), and the resulting <i>indivq</i> file was input into
610	Distruct v. 1.1 (Rosenberg, 2004) for graphical display of individual population assignments.
611	The commonly used ΔK method (Evanno et al., 2005) was not used in our study to identify an
612	optimal K value because this method is known to be most successful at finding only the
613	uppermost levels of genetic structure in a hierarchical system (Evanno et al., 2005). In addition,
614	initial tests of the ΔK method revealed $K=2$ as the best model for each clade; however, analysis
615	at $K > 2$ indicated strong genetic structure in both clades 4 and 5C. Therefore, following Gowen
616	et al., (2014), we analyzed successively smaller groups of species in separate analyses. We re-ran
617	structure on the putative species, S. tumulosa and S. slieringsi, because Bayes Factor
618	Delimitation with genome data (BFD*) analyses (see below), suggested the presence of
619	additional species within each of S. tumulosa and S. slieringsi.

620	Coalescent-based SNAPP v 1.3 (Bryant et al., 2012) analyses were used to test alternative
621	species models for both clades 4 and 5C. Samples were assigned to the following alternative
622	species models (Suppl. Figs. 8-9): 1) one species (ONESP), 2) two species (TWOSPP), 3) DAPC
623	clusters (DAPC), 4) DAPC clusters plus division of another clade (DAPC+1), 5) MOTHUR
624	species assignments based on <i>mtMutS</i> (MUTS), and 6) MOTHUR species assignments based on
625	28S rDNA (28S). In addition, three (THREESPP) and four (FOURSPP) species models were
626	also tested for clades 4 and 5C, respectively. SNAPP analyses were performed in BEAST v 2.4.5
627	(Bouckaert et al., 2014) with a path sampling of 48 steps (MCMC length=100,000, pre-burnin=
628	1,000) following Leaché et al. (2014) and Herrera & Shank (2016). The c0.85, m1.0, p0.25 bi-
629	allelic SNP datasets (175 SNPs for clade 4, 140 SNPs for clade 5C, no missing data) were used
630	because of the long computational time it took for each SNAPP run. Marginal likelihood
631	estimates were obtained for each different model run in SNAPP analyses. The different species
632	delimitation models were then ranked using BFD* methods. Bayes Factors were calculated
633	between each of two alternative models by subtracting the marginal likelihood estimates between
634	two models, and then multiplying the difference by two (following Kass & Raftery, 1995;
635	Leaché et al., 2014).
636	SNAPP was also used to infer the species tree for each Sinularia clade. Three

independent runs were performed on SNP data (MCMC length=1,000,000, pre-burnin=1,000, samplefreq=1,000) using BEAST with default parameters for mutation rate, coalescent rate, and ancestral population sizes (following Herrera & Shank, 2016). The c0.85, m0.75, p0.25 bi-allelic SNP datasets were used for species tree analyses. Acceptance probabilities were checked to ensure that tuning parameters were appropriate and the chain mixed well (Drummond & Bouckaert, 2015). Log files were combined using LogCombiner v 1.1 and input into Tracer v1.6

643	(Rambaut & Drummond, 2007). Convergence and ESS>200 were assessed using Tracer after a
644	10% burnin. Maximum clade credibility trees were generated with TreeAnnotator v 2.3
645	(Bouckaert et al., 2014). Both the consensus tree and all tree topologies were drawn in
646	DensiTree v2.2 (Bouckart, 2010).
647	
648	Hybridization Tests
649	We calculated Patterson's D statistics in ipyRAD v 0.7.28 (Eaton & Overcast, 2016) to
650	test for hybridization between species. Briefly, these tests calculate the proportion of ABBA and
651	BABA site patterns, and excess of either is indicative of admixture rather than incomplete
652	lineage sorting (Durand et al., 2011; Green et al., 2010). Multiple 4-taxon tests were generated
653	for both clades 4 and 5C (Suppl. File 1). For both clades, S. humilis was set as the outgroup
654	('p4'). For tests that included multiple individuals per lineage, SNP frequencies were pooled.
655	For tests performed on clade 4, each species was set as 'p3' and all possible 4-species
656	combinations were tested. For clade 5C, all possible 4-species combinations were tested in each
657	of two sub-clades (i.e., the S. slieringsi-S. penghuensis-S. acuta clade and the S. wanannensis-
658	S.exilis-S. lochmodes-S. densa-S. maxima clade). Additional tests were conducted either when
659	Structure results indicated potential admixture or there was incongruence between the different

660 molecular markers (i.e., 28S, *mtMutS*, RAD). When test results were significant at the species

level, further tests were performed to determine if particular individuals within the lineage were

admixed. Significance of each test was determined by performing 1000 bootstrap replicates in

663 which loci were resampled with replacement. Both D statistics and Z statistics, which represent

the number of bootstrap standard deviations (alpha=3.0) that D statistics deviate from zero

665 (Federman et al., 2018), are reported. Following D-statistic tests, partitioned D-statistic tests

666	were performed	for a few	cases to examine	e the directior	n of introgression.	Tests were	conducted
-----	----------------	-----------	------------------	-----------------	---------------------	------------	-----------

- and figures were plotted following the ipyRAD ABBA-BABA cookbook in Jupyter Notebook
- 668 (Kluyver et al., 2016; see Suppl. File 6).
- 669
- 670 Abbreviations
- 671 RADSeq: Restriction Site-Associated Sequencing
- 672
- 673 Declarations
- 674 Ethics Approval
- 675 Not Applicable
- 676 **Consent for Publication**
- 677 Not Applicable
- 678 Data Availability
- 679 Raw RADSeq data: SRA######
- 680 Mafft alignments: Data Dryad###
- 681 .Tre files: Data Dryad ####
- 682 28S sequences: Genbank #s MK333539–MK333628
- 683 mtMutS: GenBank #s: See Suppl. File 1
- 684 **Competing Interests**
- The authors declare that they have no competing interests.
- 686
- 687 Funding
- This study was made possible by a grant to YB from the Taiwanese Ministry of Science (MOST)
- to conduct octocoral surveys at Dongsha Atoll. Additional funding was provided by Dongsha

- 690 Atoll Research Station and Howard Hughes Medical Institute Undergraduate Science Education
- 691 Program award #52006301 to Harvey Mudd College.

692 Author Contributions

- 693 CSM, TW and YB conceived and designed the study. AMQ and CSM conducted all
- 694 phylogenetic and species delimitation analyses, and co-wrote the manuscript. TW prepared
- samples, barcoded genes and conducted preliminary RADSeq analyses. YB made morphological
- 696 identifications. CSM and YB collected specimens, facilitated by KS and MSJ. All authors edited
- and approved the final version of this manuscript.

698 Acknowledgements

- All collections were made in accordance with permits obtained from Marine National Parks,
- 700 Taiwan. We thank the staff members of Dongsha Atoll National Park, Dongsha Atoll Research
- 701 Station (DARS), and Biodiversity Research Center, Academia Sinica (BRCAS) for assistance
- during the field work; A. Gonzalez, J.M. Adams, A. Torres-Navarro, and N. Liu for help with
- 703 DNA extraction and barcoding; Ben Titus for helpful discussions; and Alex Shlagman for
- 704 curatorial skills.

705

706 **References**

- 707 Aratake S, Tomura T, Saitoh S, Yokokura R. Kawanishi Y., Shinjo R, Reimer JD, Tanaka J,
- 708 Maekawa H. Soft coral *Sarcophyton* (Cnidaria: Anthozoa: Octocorallia) species diversity and
- chemotypes. PLoS One. 2012;7:e30410.
- 710 Babcock RC, Bull GD, Harrison PD, Heyward AJ, Oliver JK, Wallace CC, Willis BL.
- 711 Synchronous spawnings of 105 scleractinian coral species on the Great Barrier Reef. Mar Bio.
- 712 1986;90:379-394.

- 713 Baco AR, Cairns SD. Comparing molecular variation to morphological species designations in
- the deep-sea coral *Narella* reveals new insights into seamount coral ranges. PLoS One. 2012;7:
- e45555.
- 716 Benayahu Y, Loya Y. Space partitioning by stony corals, soft corals and benthic algae on the
- coral reefs of the northern Gulf of Eilat (Red Sea). Helgolander wissenschaftliche
- 718 Meeresuntersuchungen. 1977;30:362-382.
- 719 Benayahu Y. Species composition of soft corals (Octocorallia, Alcyonacea) on the coral reefs of
- Sesoko Island, Ryukyu Archipelago, Japan. Galaxea. 1995;12:103-124.
- 721 Benayahu Y, Ofwegen LP van. New species of octocorals (Coelenterata: Anthozoa) from the
- Penghu Archipelago, Taiwan. Zool. Studies, 2011;50:350-362.
- 723 Benayahu Y, Ofwegen LP van, Soong K, Dai CF, Jeng MS, Shlagman A, Hsieh HJ, McFadden
- CS. Diversity and distribution of Octocorals (Coelenterata: Anthozoa) on the coral reefs of
- 725 Penghu, Taiwan. Zool. Studies. 2012;51:1529-1548.
- 726 Benayahu Y, Ofwegen LP van, Dai CF, Jeng MS, Soong K, Shlagman A, ...McFadden CS. The
- 727 octocorals of Dongsha Atoll (South China Sea): an iterative approach to species identification
- using classical taxonomy and molecular barcodes. Zool. Studies.
- 729 2018;57:doi:10.6620/ZS.2018.57-50.
- 730 Blunt JW, Carroll AR, Copp BR, Davis RA, Keyzers RA, Prinseps MR. Marine natural products.
- 731 Natural Products Reports. 2018;35:8-53
- 732 Bouckaert RR. DensiTree: making sense of sets of phylogenetic trees. Bioinformatics.
- 733 2010;26:1372-1373
- 734 Bouckaert R, Heled J, Kühnert D, Vaughan T, Wu CH, Xie D, Drummond AJ. BEAST 2: a
- software platform for Bayesian evolutionary analysis. PLoS Comp. Biol. 2014;10:4:e1003537

- 736 Bruno JF, Siddon CE, Witman JD, Colin PL, Toscano MA. El Niño related coral bleaching in
- Palau Western Caroline Islands. Coral Reefs. 2001;20:127-136
- 738 Bryant D, Bouckaert R, Felsenstein J, Rosenberg NA, RoyChoudhury A. Inferring species trees
- directly from biallelic genetic markers: bypassing gene trees in a full coalescent analysis. Mol.
- 740 Biol. Evol. 2012;29:1917-1932
- 741 Carlo JM, Barbeitos MS, Lasker HR. Quantifying complex shapes: elliptical Fourier analysis of
- octocoral sclerites. Biol. Bull. 2011;220:224-237
- 743 Catchen J, Hohenlohe PA, Bassham S, Amores A, Cresko WA. Stacks: an analysis tool set for
- 744 population genomics. Mol. Ecol.. 2013;22:3124-3140
- 745 Chhatre VE, Emerson KJ. StrAuto: automation and parallelization of STRUCTURE analysis.
- 746 BMC Bioinformatics. 2017;18:192
- 747 Combosch DJ, Vollmer SV. Trans-Pacific RAD-Seq population genomics confirms introgressive
- hybridization in Eastern Pacific *Pocillopora* corals. Mol. Phy. Evol. 2015;88:154-162
- 749 Currat M, Ruedi M, Petit RJ, Excoffier L. The hidden side of invasions: Massive introgression
- 750 by local genes. Evolution. 2008;62:1908–1920
- Darriba D, Taboada GL, Doallo R, Posada D. jModelTest 2: more models new heuristics and
 parallel computing. Nature Methods. 2012;9:772
- 753 Diekmann O, Bak R, Stam W, Olsen J. Molecular genetic evidence for probable reticulate
- speciation in the coral genus *Madracis* from a Caribbean fringing reef slope. Mar. Biol.
- 755 2001;139:221-233
- Dinesen ZD. Patterns in the distribution of soft corals across the Great Barrier Reef. Coral Reefs.
 1983;1:229-236

- 758 Drummond AJ, Bouckaert RR. Bayesian evolutionary analysis with BEAST. Cambridge
- 759 University Press
- 760 Durand EY, Patterson N, Reich D, Slatkin M. Testing for ancient admixture between closely
- related populations. Mol. Biol. Evol. 2011;28:2239-2252
- 762 Eaton DA. PyRAD: assembly of de novo RADseq loci for phylogenetic analyses.
- 763 Bioinformatics. 2014;30:1844-1849
- Eaton DA, Ree RH. Inferring phylogeny and introgression using RADseq data: an example from
- flowering plants (Pedicularis: Orobanchaceae). Syst. Biol. 2013;62:689-706
- Eaton DA, Hipp AL, González-Rodríguez A, Cavender-Bares J. Historical introgression among
- the American live oaks and the comparative nature of tests for introgression. Evolution.
- 768 2015;69:2587-2601
- Eaton DAR, Overcast I. ipyRAD: interactive assembly and analysis of RADseq data sets. 2016
- Eaton DA. Ipyrad Cookbook. 2018.
- 771 http://nbviewerjupyterorg/github/dereneaton/ipyrad/blob/master/tests/cookbook-abba-
- babaipynb. accessed 20 December 2018
- Edwards SV, Liu L, Pearl DK. High-resolution species trees without concatenation. PNAS.
 2007;104:5936-5941
- Evanno G, Regnaut S, Goudet J. Detecting the number of clusters of individuals using the
- software STRUCTURE: a simulation study. Mol. Ecol. 2005;14:2611-2620
- Fabricius KE. Reef invasion by soft corals: which taxa and which habitats? In: Greenwood JG,
- Hall NJ, editors. Proceedings of the Australian Coral Reef Society 75th Anniversary
- Conference Heron Island October 1997. University of Queensland Brisbane; 1998. P. 77-90

780 Fabricius K. Tissue loss and mortality of soft corals following mass-bleaching. Coral Reefs.

781 1999;18:54

- Fabricius K, Alderslade P. Soft corals and sea fans: a comprehensive guide to the tropical
- shallow-water genera of the Central West-Pacific the Indian Ocean and the Red Sea.
- 784 Townsville: Australian Institute of Marine Science; 2001
- Federman S, Donoghue MJ, Daly DC, Eaton DA. Reconciling species diversity in a tropical
- plant clade Canarium Burseraceae. PloSOne. 2018;13:6:e0198882
- 787 Felsenstein J. PHYLIP phylogeny inference package Distributed by the author. Department of
- Genome Sciences University of Washington Seattle Version 3; 2005
- Forsman ZH, Barshis DJ, Hunter CL, Toonen RJ. Shape-shifting corals: molecular markers show
 morphology is evolutionarily plastic in *Porites*. BMC Evol. Biol.. 2009;9:45
- Forsman ZH, Concepcion GT, Haverkort RD, Shaw RW, Maragos JE, Toonen RJ. Ecomorph or
- endangered coral? DNA and microstructure reveal Hawaiian species complexes: *Montipora*
- *dilatata/flabellata/turgescens M. patula/verrilli*. PLoS One. 2010;5:e15021
- Forsman ZH ,Knapp ISS, Tisthammer K, Eaton DAR, Belcaid M, Toonen RJ. Coral
- hybridization or phenotypic variation? Genomic data reveal gene flow between *Porites lobata*
- and *P. compressa*. Mol. Phyl. Evol. 2017;111:132-148
- Frade PR, Reyes-Nivia MC, Faria J, Kaandorp JA, Luttikhuizen PC, Bak RPM. Semi-permeable
- species boundaries in the coral genus *Madracis*: introgression in a brooding coral system.
- 799 Mol. Phyl. Evol. 2010;57:1072-1090
- Fukami H, Budd AF, Levitan DR, Jara J, Kersanach R, Knowlton N. Geographic differences in
- species boundaries among members of the *Montastraea annularis* complex based on
- molecular and morphological markers. Evolution. 2004;58:324-337

- 803 Goulet TL, LaJeunesse TC, Fabricius KE. Symbiont specificity and beaching susceptibility
- among soft corals in the 1998 Great Barrier Reef mass coral bleaching event. Mar. Biol.
- 805 2006;154:795-804
- 806 Gowen FC, Maley JM, Cicero C, Peterson AT, Faircloth BC, Warr TC, McCormack JE.
- 807 Speciation in Western Scrub-Jays Haldane's rule and genetic clines in secondary contact.
- 808 BMC Evol. Biol.. 2014;14:135
- 809 Green RE, Krause J, Briggs AW, Maricic T, Stenzel U, Kircher M, Hansen NF. A draft
- sequence of the *Neandertal* genome. Science 2010;328:710-722
- 811 Harrison PL, Babcock RC, Bull GD, Oliver JK, Wallace CC, Willis BL. Mass spawning in
- tropical reef corals. Science 1984;223:1186-1189
- 813 Hatta M, Fukami H, Wang W, Omori M, Shimoike K, Hayashibara T, Sugiyama T.
- 814 Reproductive and genetic evidence for a reticulate evolutionary history of mass-spawning
- 815 corals. Mol. Biol. Evol. 1999;16:1607-1613
- 816 Hebert PD, Penton EH, Burns JM, Janzen DH, Hallwachs W. Ten species in one: DNA
- 817 barcoding reveals cryptic species in the neotropical skipper butterfly *Astraptes fulgerator*.
- 818 PNAS. 2004a;101:14812-14817
- 819 Hebert PD, Stoeckle MY, Zemlak TS, Francis CM. Identification of birds through DNA
- barcodes. PLoS Biology. 2004b;2:e312
- 821 Herrera S, Shank TM. RAD sequencing enables unprecedented phylogenetic resolution and
- objective species delimitation in recalcitrant divergent taxa. Mol. Phyl. Evol. 2016;100:70-79
- 823 Hickerson MJ, Meyer CP, Moritz C. DNA barcoding will often fail to discover new animal
- species over broad parameter space. Syst. Biol. 2006;55:729-739

- Huang D, Meier R, Todd PA, Chou LM. Slow mitochondrial COI sequence evolution at the base
- of the metazoan tree and its implications for DNA barcoding. JJ. Mol. Evol. 2008;66:167-174
- Jakobsson M, Rosenberg NA. CLUMPP: a cluster matching and permutation program for
- dealing with label switching and multimodality in analysis of population structure.
- Bioinformatics. 2007;23:1801-1806
- 830 Jeng M-S, Huang H-D. Dai C-F, Hsiao Y-C, Benayahu Y. Sclerite calcification and reef-
- building in the fleshy octocoral genus *Sinularia* (Octocorallia: Alcyonacea). Coral Reefs.
- 832 2011;30:925-933
- Johnston EC, Forsman ZH, Flot JF, Schmidt-Roach S, Pinzón JH, Knapp IS, Toonen RJ. A
- genomic glance through the fog of plasticity and diversification in *Pocillopora*. Scientific
 Reports. 2017;7:5991
- B36 Jombart T, Collins C. A tutorial for discriminant analysis of principal components DAPC using
- adegenet. Imperial College of London MRC Center for Outbreak Analysis and Modelling;
 2015
- Kahng SE, Benayahu Y, Lasker HR. Sexual reproduction in octocorals. Mar. Ecol. Prog. Ser.
 2011;443:265-283
- 841 Katoh K, Toh H. Recent developments in the MAFFT multiple sequence alignment program.
- 842 Briefings in Bioinformatics 2008;9:286-298
- Kass RE, Raftery AE. Bayes factors. J. Am. Stat. Assoc. 90. 1995;90:773-795
- 844 Keshavmurthy S, Yang S-Y, Alamaru A, Chuang Y-Y, Pichon M, Obura D, Chen AC. DNA
- barcoding reveals the coral "laboratory rat" *Stylophora pistillata* encompasses multiple
- identities. Scientific Reports. 2013;3:1520

- 847 Kim E, Lasker HR, Coffroth MA, Kim K. Morphological and genetic variation across reef
- habitats in a broadcast-spawning octocoral. Hydrobiologia 2004;530:423-432
- 849 Kluyver T, Ragan-Kelley B, Pérez F, Granger BE, Bussonnier M, Frederic J, Ivanov P. May
- 350 Jupyter Notebooks-a publishing format for reproducible computational workflows.
- 851 In: ELPUB; 2016. p. 87-90
- 852 Kubatko LS, Degnan JH. Inconsistency of phylogenetic estimates from concatenated data under
- 853 coalescence. Syst. Biol. 2007;56:17-24
- 854 Kubatko LS. Identifying hybridization events in the presence of coalescence via model selection.
- 855 Syst. Biol. 2009; 58:478-488
- LaJeunesse TC, Parkinson JE, Gabrielson PW, Jeong HJ, Reimer JD, Voolstra CR, Santos SR.
- 857 Systematic revision of Symbiodiniaceae highlights the antiquity and diversity of coral
- endosymbionts. Current Biol. 2018;28:2570-2580
- Leaché AD, Fujita MK, Minin VN, Bouckaert RR. Species delimitation using genome-wide SNP
 data. Syst. Biol. 2014;63:534-542
- Lin S, Cheng S, Song B, Zhong X, Lin X, Li W, Cai M. The Symbiodinium kawagutii genome
- illuminates dinoflagellate gene expression and coral symbiosis. Science. 2015;350:691-694
- Maddison WP. Gene trees in species trees. Systematic biology 1997;46:523-536
- 864 Manuputty AEW, Ofwegen LP van. The genus Sinularia (Octocorallia: Alcyonacea) from
- Ambon and Seram Moluccas Indonesia Zoologische Mededelingen Leiden .2007;81:187-216
- 866 Marshall PA, Baird AH. Bleaching of corals on the Great Barrier Reef: differential
- susceptibilities among taxa. Coral Reefs. 2000;19:155-163
- 868 McFadden CS, Hutchinson MB. Molecular evidence for the hybrid origin of species in the soft
- coral genus *Alcyonium* (Cnidaria: Anthozoa: Octocorallia). Mol. Ecol. 2004;13:1495-1505

- 870 McFadden CS, Ofwegen LP van, Beckman EJ, Benayahu Y, Alderslade P. Molecular
- 871 systematics of the speciose Indo-Pacific soft coral genus *Sinularia* (Anthozoa: Octocorallia).
- 872 Invert. Biol. 2009;128:303-323
- 873 McFadden CS, Benayahu Y, Pante E, Thoma JN, Nevarez PA, France SC. Limitations of
- mitochondrial gene barcoding in Octocorallia. Mol. Ecol. Res. 2011;11: 19-31
- 875 McFadden CS, Brown AS, Brayton C, Hunt CB, Ofwegen LP van. Application of DNA
- barcoding to biodiversity studies of shallow-water octocorals: molecular proxies agree with
- morphological estimates of species richness in Palau. Coral Reefs. 2014;33:275-286
- 878 McFadden CS, Haverkort-Yeh R, Reynolds AM, Halàsz A, Quattrini AM, Forsman ZH, Toonen
- 879 RJ. Species boundaries in the absence of morphological ecological or geographical
- differentiation in the Red Sea octocoral genus *Ovabunda* (Alcyonacea: Xeniidae). Mol. Phyl.
- 881 Evol. 2017;112:174-184
- Miller DJ, Van Oppen MJ. A 'fair go' for coral hybridization. Mol. Ecol. 2003;12:805-807
- 883 Ofwegen LP van. Status of knowledge of the Indo-Pacific soft coral genus Sinularia May 1898
- 884 (Anthozoa: Octocorallia) Proceedings of the 9th International Coral Reef Symposium.
- 885 2002;1:167-171
- 886 Ofwegen LP van. The genus Sinularia (Octocorallia: Alcyonacea) at Palau Micronesia.
- 887 Zoologische Mededelingen Leiden. 2008;82:631-735
- Ofwegen LP van, Benayahu Y, McFadden CS. *Sinularia leptoclados* Ehrenberg 1834 Cnidaria:
 Octocorallia re-examined. ZooKeys. 2013;272:29-59
- 890 Ofwegen LP van, McFadden CS, Benayahu Y. Sinularia polydactyla Ehrenberg 1834 (Cnidaria,
- 891 Octocorallia) re-examined with description of a new species. ZooKeys. 2016;581:71-126

- 892 Pante E, Abdelkrim J, Viricel A, Gey D, France SC, Boisselier MC, Samadi S. Use of RAD
- sequencing for delimiting species. Heredity 2015;114:450
- 894 Paz-García DA, Hellberg ME, García-de-León FJ, Balart EF. Switch between morphospecies of

895 *Pocillopora* corals. Am. Nat. 2015;186:434-440

- 896 Prada C, DeBiasse MB, Neigel JE, Yednock B, Stake JL, Forsman ZH, Hellberg ME. Genetic
- species delineation among branching Caribbean *Porites* corals. Coral Reefs. 2014;33:1019-
- 898 1030
- 899 Pritchard JK, Stephens M, Rosenberg NA, Donnelly P. Association mapping in structured
- 900 populations. The American Journal of Human Genetics. 2000;67:170-181
- 901 Quattrini AM, Faircloth BC, Dueñas LF, Bridge TC, Brugler MR, Calixto-Botía IF, et al.
- 902 McFadden CS. Universal target-enrichment baits for anthozoan (Cnidaria) phylogenomics:
- 903 New approaches to long-standing problems. Mol. Ecol. Res. 2018;18:281-295
- 904 R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for
- 905 Statistical Computing Vienna Austria. 2012 <u>http://wwwr-projectorg/</u>, accessed 15 Jan 2019.
- 906 Radice VZ, Quattrini AM, Wareham VE, Edinger EN, Cordes EE. Vertical water mass structure
- 907 in the North Atlantic influences the bathymetric distribution of species in the deep-sea coral
- 908 genus *Paramuricea*. Deep Sea Res. I. 2016;116: 253-263
- 909 Rambaut A, Drummond AJ. Tracer v1.4 2007; 2012
- 910 Richards ZT, van Oppen MJH, Wallace CC, Willis BL, Miller DJ. Some rare Indo-Pacific coral
- 911 species are probable hybrids. PLoS One. 2008;3:e3240
- 912 Richmond RH, Hunter CL. Reproduction and recruitment of corals: comparisons among the
- 913 Caribbean the Tropical Pacific and the Red Sea. Mar. Ecol. Prog. Ser. 1990;60:185-203

- 914 Rheindt FE, Edwards SV. Genetic introgression: an integral but neglected component of
- 915 speciation in birds. The Auk. 2011;128:620-632
- 916 Rogers AR, Bohlender RJ. Bias in estimators of archaic admixture. Theoretical Pop. Biol.
- 917 2015;100:63-78
- 918 Rosenberg NA. DISTRUCT: a program for the graphical display of population structure. Mol.
- 919 Ecol. Notes. 2004;4:137-138
- 920 Rowley SJ, Pochon X, Watling L. Environmental influences on the Indo-Pacific octocoral Isis
- 921 *hippuris* Linnaeus 1758 Alcyonacea: Isididae: genetic fixation or phenotypic plasticity? PeerJ
- 922 2015;3:e1128
- 923 Sánchez JA, Aguilar C, Dorado D, Manrique N. Phenotypic plasticity and morphological
- 924 integration in a marine modular invertebrate. BMC Evol. Biol. 2007;7 :122
- 925 Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB, Sahl JW. Introducing
- 926 mothur: open-source platform-independent community-supported software for describing and
- 927 comparing microbial communities. Appl. Envir. Micro. 2009;75:7537-7541
- 928 Schmieder R, Edwards R. Fast identification and removal of sequence contamination from
- genomic and metagenomic datasets. PLoS One. 2011;6: e17288
- 930 Shearer TL, Coffroth MA. Barcoding corals: limited by interspecific divergence not intraspecific
- 931 variation. Mol. Ecol. Res. 2008;8:247-255
- 932 Shoham E, Benayahu Y. Higher species richness of octocorals in the upper mesophotic zone in
- Eilat Gulf of Aqaba compared to shallower reef zones. Coral Reefs. 2017;36:71-81
- 934 Shoham E, Prohaska T, Barkai Z, Zitek A, Benayahu Y. Soft corals form aragonite-precipitated
- 935 columnar spiculite in mesophotic reefs. Scientific Reports. In press

936	Slattery M, Hines GA, Starmer J, Paul VJ. Chemical signals in gametogenesis spawning and
937	larval settlement and defense of the soft coral Sinularia polydactyla. Coral Reefs. 1999;18:75-
938	84
939	Slattery M, Starmer J, Paul VJ. Temporal and spatial variation in defensive metabolites of the
940	tropical soft corals Sinularia maxima and S. polydactyla. Mar. Biol. 2001;138:1183-1193
941	Slattery M, Kamel HN, Ankisetty S, Gochfield DJ, Hoover CA, Thacker RW. Hybrid vigor in a
942	tropical Pacific soft-coral community. Ecol Monogr. 2008;78:423-443
943	Stamatakis A. RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with
944	thousands of taxa and mixed models. Bioinformatics. 2006;22:2688-2690
945	Sukumaran J, Knowles LL. Multispecies coalescent delimits structure not species. PNAS.
946	2017;114:1607-1612
947	Titus BM, Daly M. Reduced representation sequencing for symbiotic anthozoans: are reference
948	genomes necessary to eliminate endosymbiont contamination and make robust
949	phylogeographic inference? bioRxiv 2018; doi: https://doi.org/10.1101/440289
950	Tursch B, Tursch A. The soft coral community on a sheltered reef quadrat at Laing Island Papua
951	New Guinea. Mar. Biol. 1982;68:321-332
952	Van Alstyne KL, Wylie CR, Paul VJ. Antipredator defenses in tropical Pacific soft corals
953	Coelenterata: Alcyonacea II. The relative importance of chemical and structural defenses in
954	three species of Sinularia. J. Mar. Biol. Ecol. 1994;178:17-34
955	van Oppen MV, Willis BL, Vugt HV, Miller DJ. Examination of species boundaries in the
956	Acropora cervicornis group (Scleractinia, Cnidaria) using nuclear DNA sequence analyses.
957	Mol Ecol. 2000;9:1363-1373

958	van Oppen MJ, McDonald BJ, Willis B, Miller DJ. The evolutionary history of the coral genus
959	Acropora (Scleractinia, Cnidaria) based on a mitochondrial and a nuclear marker: reticulation
960	incomplete lineage sorting or morphological convergence? Mol. Biol. Evol. 2001;18:1315-
961	1329
962	van Oppen MJ, Willis BL, Van Rheede T, Miller DJ. Spawning times reproductive
963	compatibilities and genetic structuring in the Acropora aspera group: evidence for natural
964	hybridization and semi-permeable species boundaries in corals. Mol. Ecol. 2002;11:1363-
965	1376
966	Vargas S, Breedy O, Siles F, Guzman HM. How many kinds of sclerite? Towards a
967	morphometric classification of gorgoniid microskeletal components. Micron. 2010;41:158-
968	164
969	Verseveldt J. A revision of the genus Sinularia May Octocorallia Alcyonacea. Zoologische
970	Verhandelingen. 1980;179:1-128
971	Vollmer SV, Palumbi SR. Hybridization and the evolution of reef coral diversity. Science.
972	2002;296:2023-2025
973	Willis BL, Babcock RC, Harrison PL, Wallace CC. Experimental hybridization and breeding
974	incompatibilities within the mating systems of mass spawning reef corals Coral Reefs.
975	1997;16:S53-S65
976	Willis BL, van Oppen MJ, Miller DJ, Vollmer SV, Ayre DJ. The role of hybridization in the
977	evolution of reef corals. Annu. Rev. Ecol. Evol. Syst. 2006;37:489-517
978	WoRMS Editorial Board. World Register of Marine Species. 2018 http://www.marinespecies.org
979	at VLIZ. Accessed 19 Dec 2018, doi:1014284/170

- 980 Wylie CR, Paul VJ. Chemical defenses in three species of *Sinularia* Coelenterata Alcyonacea:
- 981 effects against generalist predators and the butterflyfish *Chaetodon unimaculatus* Bloch. J.
- 982 Mar. Biol. Ecol. 1989;129: 141-160
- 983 Zwickl DJ. GARLI: genetic algorithm for rapid likelihood inference. 2006.
- 984 http://www.bio.utexas.edu/faculty/antisense/garli/Garli.html, accessed 15 Jan 2019

985

987 Figures

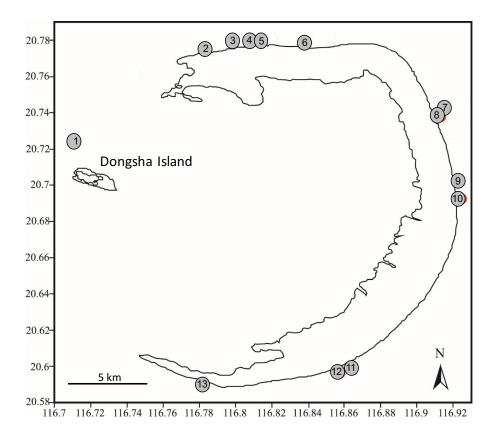


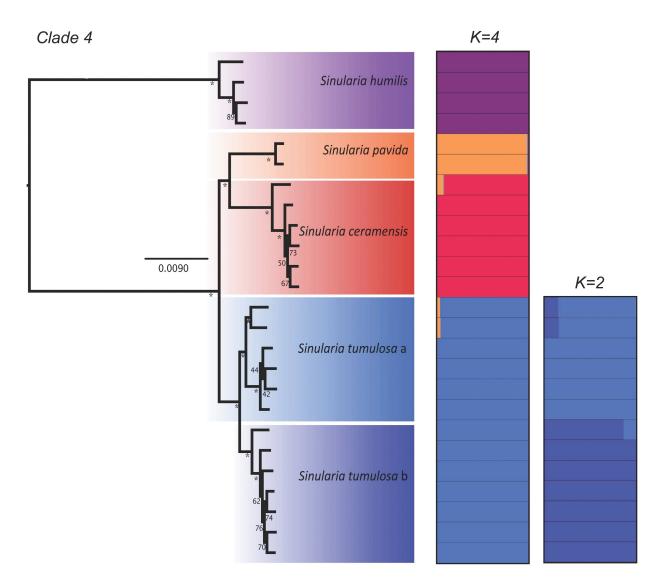

Figure 1. Map of Dongsha Atoll Marine National Park, Taiwan. Collection sites indicated bynumbered circles. Adapted from Benayahu et al. (2018).

991

993 Figure 2. Maximum likelihood cladograms for Dongsha Atoll *Sinularia* a) clade 4 and b) clade

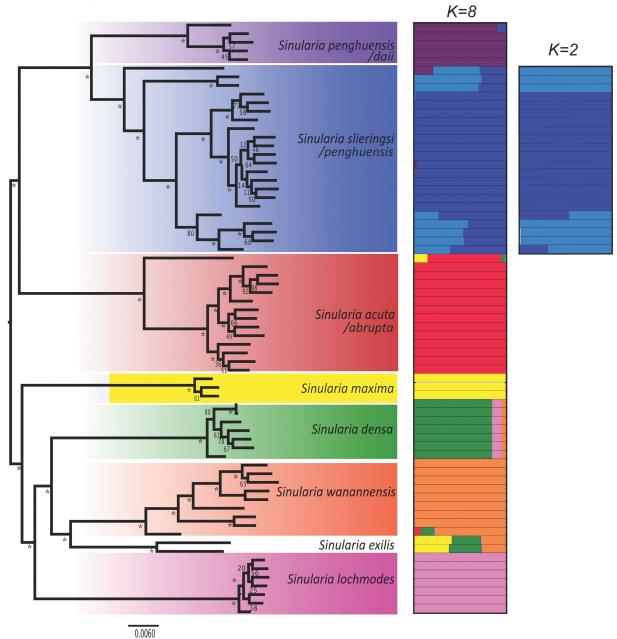
3.30

steingileeguenis


5C. Each colored cell denotes an individual's species assignment based on RAD data (R), a

morphospecies assignment (Sp), or a molecular operational taxonomic unit (MOTUs) based on *mtMutS* (M) and 28S rDNA (28). Colors match RAD clades in Figures 3 and 4. *=holotype and

paratype. Morphospecies names are also included. See also Suppl. Table 1 for clade and MOTU

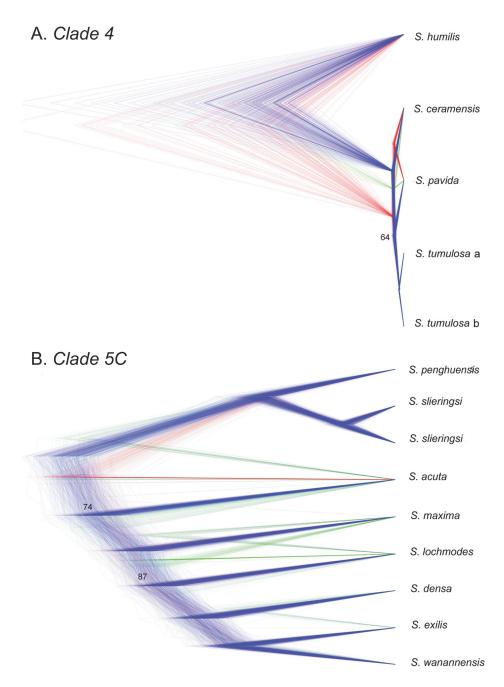

998 assignments. Gray cells ('na') denote missing data.

huensis/daii

- 1000 Figure 3. Maximum likelihood phylogeny of Dongsha Atoll *Sinularia* clade 4 constructed using
- 1001 RAxML rapid bootstrapping (200 b.s. replicates) on the concatenated c 0.85, m 0.75, p 0.25
- 1002 locus dataset. * denotes 100% b.s. support. Distruct plots are included and show the probability
- 1003 of individual membership into different K (K=4 for clade4 and K=2 for the S. *tumulosa* group)
- 1004 clusters. Colors denote different species.
- 1005

Clade 5C

1006


1007 Figure 4. Maximum likelihood phylogeny of Dongsha Atoll *Sinularia* clade 5C constructed

1008 using RAxML rapid bootstrapping (200 b.s. replicates) on the concatenated c 0.85, m 0.75, p

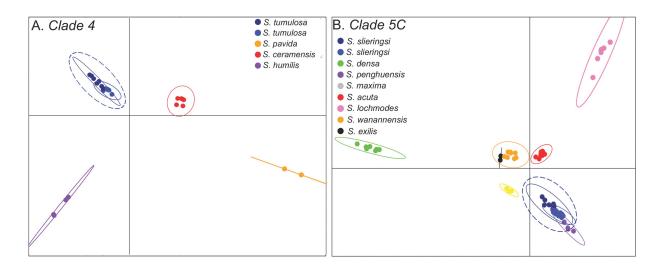
1009 0.25 locus dataset. * denotes 100% b.s. support. Distruct plots are included and show the

1010 probability of membership into different *K* (*K*=8 for clade 5C, and *K*=2 for the *S*. *slieringsi* group)

1011 clusters. Colors denote different species.

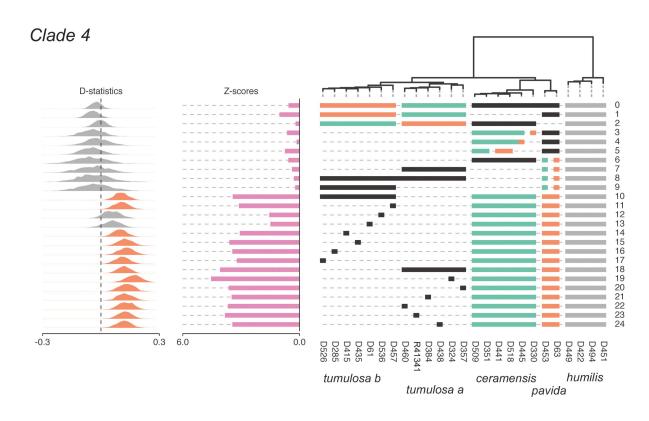
1012

1013


1014 Figure 5. Species trees of Dongsha Atoll *Sinularia* clades 4 and 5C. Cloudograms illustrate the

1015 best species delimitation models (DAPC+1) for both clades inferred from bi-allelic SNP data [(A)

1016 clade 4: 6,236 SNPs and (B) clade 5C: 8,022 SNPs); *m*0.75 datasets] using SNAPP species tree


1017 analyses. The maximum clade credibility tree and congruent trees are in blue. Trees with

different topologies are in red and green. Posterior probabilities at internal nodes >95% unless
 indicated.

1022

- 1023 Figure 6. Discriminant analysis of principal components (DAPC) plots for Dongsha Atoll
- 1024 *Sinularia* (A) clade 4 and (B) clade 5C. Genetic clusters representing different morphospecies
- are color coded to match the phylogenetic trees in Figures 2, 3 and 4. Species (S. tumulosa in (A)
- 1026 and S. slieringsi in (B) encircled in dotted lines) that were suggested to be further divided into
- 1027 two species by Bayes Factor Determination are also denoted.

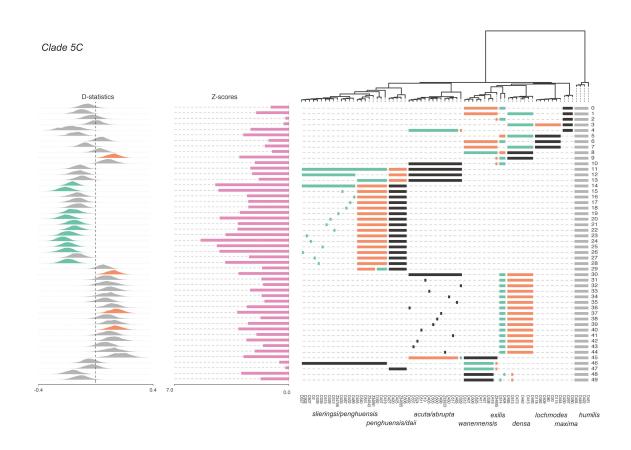
1029

1030

Figure 7. D-statistic tests for admixture in Dongsha Atoll *Sinularia* clade 4. Test numbers are listed on the right for each 4-taxon test (((p1, p2), p3), p4). Horizontal bars below the tips of the

1032 listed on the right for each 4-taxon test (((p1, p2), p3), p4). Horizontal bars below the tips of the 1033 tree indicate which taxa were included in each test. *S. humilis* was set as the outgroup for all tests

1034 (indicated by gray bars). Tests are configured to ask whether P3 (black bars) shares more derived


1035 SNPs with lineage P1 (green bars) relative to P2 (orange bars). As illustrated to the left, Z scores

1036 are bar plots and D-statistics are histograms. Histograms are green for significant gene flow

1037 between P1 and P3 (BABA) and orange for significant gene flow between P2 and P3 (ABBA).

1038 D-statistics that were not significant are gray. Significance was assessed at an alpha level of 3.0

1039 (i.e., when D deviates > 3.0 standard deviations from zero).

Figure 8. D-statistic tests for admixture in Dongsha Atoll Sinularia clade 5C. Test numbers are listed on the right for each 4-taxon test (((p1, p2), p3), p4). Horizontal bars below the tips of the tree indicate which taxa were included in each test. S. humilis was set as the outgroup for all tests (indicated by gray bars). Tests are configured to ask whether P3 (black bars) shares more derived SNPs with lineage P1 (green bars) relative to P2 (orange bars). As illustrated to the left, Z scores are bar plots and D-statistics are histograms. Histograms are green for significant gene flow between P1 and P3 (BABA) and orange for significant gene flow between P2 and P3 (ABBA). D-statistics that were not significant are gray. Significance was assessed at an alpha level of 3.0 (i.e., when D deviates > 3.0 standard deviations from zero).

	1055	Table 1. Morpho	species of Sinula	ria included in RA	Dseq analysis. C	lade corresponds to
--	------	-----------------	-------------------	--------------------	------------------	---------------------

designations in McFadden et al., (2009). N: number of specimens sequenced. #Sites: number of different dive sites at Dongsha Atoll at which a species was collected.

Species	Authority	Clade	Ν	#Sites	Depth (m)
S. abrupta	Tixier-Durivault,1970	5C	3	2	8-13
S. acuta	Manuputty & Ofwegen, 2007	5C	11	6	4-14
S. ceramensis	Verseveldt, 1977	4D	6	5	3-13
S. daii*	Benayahu & Ofwegen, 2011	5C	1	-	
S. densa	(Whitelegge, 1897)	5C	6	4	3-14
S. exilis	Tixier-Durivault, 1970	5C	2	2	5-14
S. humilis	Ofwegen, 2008	4B	4	3	3-21
S. lochmodes	Kolonko, 1926	5C	8	6	4-14
S. maxima	Verseveldt, 1971	5C	3	2	3-17
S. pavida	Tixier-Durivault, 1970	4D	2	2	4-5
S. penghuensis	Ofwegen & Benayahu, 2012	5C	8	3	3-21
S. slieringsi	Ofwegen & Vennam, 1994	5C	17	6	3-21
S. tumulosa	Ofwegen, 2008	4D	12	8	3-17
S. verruca*	Ofwegen, 2008	4D	1	-	
S. wanannensis	Ofwegen & Benayahu, 2012	5C	9	5	5-21

*reference species not collected at Dongsha

Table 2. Dongsha Atoll *Sinularia*. Loci and SNP summary statistics of pyRAD simulations at two different clustering thresholds (c), three different levels of taxon occupancy per locus (m), and two different levels of shared polymorphic sites (p). Minimum and maximum loci obtained for one individual are included as well as total loci obtained across all individuals. Total number of variable SNPs (Var), parsimony informative SNPs (PI), and unlinked bi-allelic SNPs (BI) are also included.

				Number	of Loci					Number	of SNPs		
(m)	(c)	Min	Max	Total	Min	Max	Total	Var.	PI	BI	Var.	PI	BI
Clade 4			p10			p25			p10			p25	
1.0	0.90	73	73	73	154	154	154	382	78	63	1,358	617	144
	0.85	93	93	93	185	185	185	563	255	83	1,675	778	175
0.75	0.90	1,570	2,391	2,552	3,139	5,331	5,515	17,690	10,505	2,448	48,301	28,211	5,411
	0.85	1,869	2,869	2,958	3,791	6,113	6,343	22,936	14,026	2,851	60,232	36,467	6,236
0.50	0.90	3,391	9,742	10,813	6,923	24,178	26,861	70,048	38,239	10,490	214,870	121,983	26,532
	0.85	4,347	10,341	11,540	8,693	25,221	28,179	86,607	49,558	11,225	251,615	147,779	27,860
Clade 5C													
1.0	0.90	115	115	115	143	143	143	885	212	104	1,222	356	132
	0.85	123	123	123	154	154	154	908	229	109	1,325	385	140
0.75	0.90	2,500	4,174	4,306	4,060	6,675	7,083	52,325	31,844	4,276	91,810	57,263	7,051
	0.85	2,781	4,793	4,968	4,491	7,771	8,060	62,057	38,113	4,930	106,548	66,726	8,022
0.50	0.90	6,210	11,587	13,189	9,439	20,926	23,946	171,091	104614	13141	329,837	205,990	23,898
	0.85	5,381	11,697	13,281	9,329	20,582	23,484	175,558	108,258	13,225	327,211	205,557	23,428

species mode	i buseu o	II Duyes		<u></u>
Model	MLE	BF	Rank	
Clade 4				
ONESPP	-1119		1	
TWOSPP	-1450	-662	6	
THREESPP	-1327	-416	5	
mtMutS	-1300	-362	3	
DAPC/28s	-1310	-382	4	
DAPC+1	-1291	-344	2	
Clade 5C				
ONESPP	-1298		1	
TWOSPP	-1660	-724	7	
FOURSPP	-1594	-592	4	
mtMutS	-1625	-654	6	
28s	-1607	-618	5	
DAPC	-1544	-492	3	
DAPC+1	-1543	-490	2	
	1 T 1 1	1 1	• •	

Table 3. SNAPP results for different species delimitation models for Dongsha Atoll *Sinularia* clades 4 and 5C. Rank of most likely species model based on Bayes Factor delimitation is indicated.

MLE=Marginal Likelihood Estimate BF=Bayes Factor.